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1 Overview

The term machine learning refers to a family of computational methods for analyzing
multivariate datasets. Each data point has a vector of features in a shared feature space,
and may have a class label from some fixed finite set.

Supervised learning refers to processes that help articulate rules that map feature vectors
to class labels. The class labels are known and function as supervisory information to
guide rule construction. Unsupervised learning refers to processes that discover structure
in collections of feature vectors. Typically the structure consists of a grouping of objects
into clusters.

This practical introduction to machine learning will begin with a survey of a low-
dimensional dataset to fix concepts, and will then address problems coming from genomic
data analysis, using RNA expression and chromatin state data.

Some basic points to consider at the start:

� Distinguish predictive modeling from inference on model parameters. Typical work
in epidemiology focuses on estimation of relative risks, and random samples are not
required. Typical work with machine learning tools targets estimation (and mini-
mization) of the misclassification rate. Representative samples are required for this
task.

� “Two cultures”: model fitters vs. algorithmic predictors. If statistical models are
correct, parameter estimation based on the mass of data can yield optimal discrim-
inators (e.g., LDA). Algorithmic discriminators tend to prefer to identify boundary
cases and downweight the mass of data (e.g., boosting, svm).

� Different learning tools have different capabilities. There is little a priori guidance
on matching learning algorithms to aspects of problems. While it is convenient to
sift through a variety of approaches, one must pay a price for the model search.

� Data and model/learner visualization are important, but visualization of higher di-
mensional data structures is hard. Dynamic graphics can help; look at ggobi and
Rggobi for this.

� These notes provide very little mathematical background on the methods; see for
example Ripley (Pattern recognition and neural networks, 1995), Duda, Hart, Stork
(Pattern classification), Hastie, Tibshirani and Friedman (2003, Elements of statis-
tical learning) for copious background.
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2 Getting acquainted with machine learning via the crabs
data

2.1 Attaching and checking the data

The following steps bring the crabs data into scope and illustrate aspects of its structure.

> library("MASS")

> data("crabs")

> dim(crabs)

[1] 200 8

> crabs[1:4,]

sp sex index FL RW CL CW BD

1 B M 1 8.1 6.7 16.1 19.0 7.0

2 B M 2 8.8 7.7 18.1 20.8 7.4

3 B M 3 9.2 7.8 19.0 22.4 7.7

4 B M 4 9.6 7.9 20.1 23.1 8.2

> table(crabs$sex)

F M

100 100

> library("lattice")

> print(bwplot(RW~sp|sex, data=crabs))

The plot is shown in Figure 1.
We will regard these data as providing five quantitative features (FL, RW, CL, CW,

BD)1 and a pair of class labels (sex, sp=species). We may regard this as a four class
problem, or as two two class problems.

2.2 A simple classifier derived by human reasoning

Our first problem does not involve any computations. If you want to write R code to solve
the problem, do so, but use prose first.

� Question 1. On the basis of the boxplots in Figure 1, comment on the prospects for
predicting species on the basis of RW. State a rule for computing the predictions.
Describe how to assess the performance of your rule.

1You may consult the manual page of crabs for an explanation of these abbreviations.
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Figure 1: Boxplots of RW, the rear width in mm, stratified by species (”B” or ”O” for blue
or orange) and sex (”F” and ”M”).

2.3 Prediction via logistic regression

A simple approach to prediction involves logistic regression.

> m1 = glm(sp~RW, data=crabs, family=binomial)

> summary(m1)

Call:

glm(formula = sp ~ RW, family = binomial, data = crabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.67807 -1.08840 -0.04168 1.07160 1.88030

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.44908 0.82210 -4.195 2.72e-05 ***

RW 0.27080 0.06349 4.265 2.00e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.26 on 199 degrees of freedom

Residual deviance: 256.35 on 198 degrees of freedom
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AIC: 260.35

Number of Fisher Scoring iterations: 4

� Question 2. Write down the statistical model corresponding to the R expression
above. How can we derive a classifier from this model?

� Question 3. Perform the following computations. Discuss their interpretation. What
are the estimated error rates of the two models? Is the second model, on the subset,
better?

> plot(predict(m1,type="response"), crabs$sp)

> table(predict(m1,type="response")>.5, crabs$sp)

> m2 = update(m1, subset=(sex=="F"))

> table(predict(m2,type="response")>.5, crabs$sp[crabs$sex=="F"])

2.4 The cross-validation concept

Cross-validation is a technique that is widely used for reducing bias in the estimation
of predictive accuracy. If no precautions are taken, bias can be caused by overfitting a
classification algorithm to a particular dataset; the algorithm learns the classification ”by
heart”, but performs poorly when asked to generalise it to new, unseen examples. Briefly, in
cross-validation the dataset is deterministically partitioned into a series of training and test
sets. The model is built for each training set and evaluated on the test set. The accuracy
measures are averaged over this series of fits. Leave-one-out cross-validation consists of N
fits, with N training sets of size N-1 and N test sets of size 1.

First let us use MLearn from the MLInterfaces package to fit a single logistic model.
MLearn requires you to specify an index set for training. We use c(1:30, 51:80) to choose
a training set of size 60, balanced between two species (because we know the ordering of
records). This procedure also requires you to specify a probability threshold for classifica-
tion. We use a typical default of 0.5. If the predicted probability of being ”O” exceeds 0.5,
we classify to ”O”, otherwise to ”B”.

> library(MLInterfaces)

> fcrabs = crabs[crabs$sex == "F", ]

> ml1 = MLearn( sp~RW, fcrabs, glmI.logistic(thresh=.5), c(1:30, 51:80),

+ family=binomial)

> ml1

MLInterfaces classification output container

The call was:

MLearn(formula = sp ~ RW, data = fcrabs, .method = glmI.logistic(thresh = 0.5),
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trainInd = c(1:30, 51:80), family = binomial)

Predicted outcome distribution for test set:

O

40

Summary of scores on test set (use testScores() method for details):

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7553 0.8861 0.9803 0.9355 0.9917 0.9997

> confuMat(ml1)

B O NA

B 0 20 0

O 0 20 0

� Question 4. What does the report on ml1 tell you about predictions with this model?
Can you reconcile this with the results in model m2? [Hint – non-randomness of the
selection of the training set is a problem.]

� Question 5. Modify the MLearn call to obtain a predictor that is more successful on
the test set.

Now we will illustrate cross-validation. First, we scramble the order of records in the
ExpressionSet so that sequentially formed groups are approximately random samples.

> set.seed(123)

> sfcrabs = fcrabs[ sample(nrow(fcrabs)), ]

We invoke the MLearn method in two ways – first specifying a training index set, then
specifying a five-fold cross-validation.

> sml1 = MLearn( sp~RW, sfcrabs, glmI.logistic(thresh=.5),

+ c(1:30, 51:80),

+ family=binomial)

> confuMat(sml1)

predicted

given B O

B 13 10

O 3 14

> smx1 = MLearn( sp~RW, sfcrabs, glmI.logistic(thresh=.5),

+ xvalSpec("LOG", 5, function(data, clab, iternum) {

+ which(rep(1:5, each=20) == iternum) }),

+ family=binomial)

> confuMat(smx1)

6



predicted

given B O

B 34 16

O 12 38

� Question 6. Define clearly the difference between models sml1 and smx1 and state
the misclassification rate estimates associated with each model.

2.5 Exploratory multivariate analysis

2.5.1 Scatterplots

� Question 7. Interpret the following code, whose result is shown in Figure 2. Modify
it to depict the pairwise configurations with different colors for crab genders.

> pairs(crabs[,-c(1:3)], col=ifelse(crabs$sp=="B", "blue", "orange"))

2.5.2 Principal components; biplot

Principal components analysis transforms the multivariate data X into a new coordinate
system. If the original variables are X1, . . . , Xp, then the variables in the new represen-
tation are denoted PC1, . . . , PCp. These new variables have the properties that PC1 is
the linear combination of the X1, . . . , Xp having maximal variance, PC2 is the variance-
maximizing linear combination of residuals of X after projecting into the hyperplane normal
to PC1, and so on. If most of the variation in Xn×p can be captured in a low dimensional
linear subspace of the space spanned by the columns of X, then the scatterplots of the first
few principal components give a good representation of the structure in the data.

Formally, we can compute the PC using the singular value decomposition of X, in
which X = UDV t, where Un×p and Vp×p are orthonormal, and D is a diagonal matrix of p
nonnegative singular values. The principal components transformation is XV = UD, and
if D is structured so that Dii ≥ Djj whenever i > j, then column i of XV is PCi. Note
also that Dii =

√
n− 1 sd(PCi).

> pc1 = prcomp( crabs[,-c(1:3)] )

> pairs(pc1$x, col=ifelse(crabs$sp=="B", "blue", "orange"))

The plot is shown in Figure 3.
The biplot, Figure 4, shows the data in PC space and also shows the relative contribu-

tions of the original variables in composing the transformation.

> biplot(pc1, choices=2:3, col=c("#80808080", "red"))
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Figure 2: Pairs plot of the 5 quantitative features of the crabs data. Points are colored by
species.

2.5.3 Clustering

A familiar technique for displaying multivariate data in high-throughput biology is called
the heatmap. In this display, samples are clustered as columns, and features as rows. The
clustering technique used by default is R hclust. This procedure builds a clustering tree
for the data as follows. Distances are computed between each pair of feature vectors for all
N observations. The two closest pair is joined and regarded as a new object, so there are
N − 1 objects (clusters) at this point. This process is repeated until 1 cluster is formed;
the clustering tree shows the process by which clusters are created via this agglomeration
process.

The most crucial choice when applying this method is the initial choice of the distance
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Figure 3: Pairs plot of the crabs data in principal component coordinates.

metric between the features.
Once clusters are being formed, there are several ways to measure distances between

them, based on the initial between-feature distances. Single-linkage clustering takes the
distance between two clusters to be the shortest distance between any two members of the
different clusters; average linkage averages all the distances between members; complete-
linkage uses hte maximum distance between any two members of the different clusters.
Other methods are also available in hclust.

Figure 5 shows cluster trees for samples and features. The default color choice is not
great, thus we specify own using the col argument. A tiled display at the top, defined
via the argument ColSideColors shows the species codes for the samples. An important
choice to be made when calling heatmap is the value of the argument scale, whose default
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Figure 4: Biplot of the principal component analysis of the crabs data.

setting is to scale the rows, but not the columns.

> X = data.matrix(crabs[,-c(1:3)])

> heatmap(t(X),

+ ColSideColors=ifelse(crabs$sp=="O", "orange", "blue"),

+ col = colorRampPalette(c("blue", "white", "red"))(255))

Typically clustering is done in the absence of labels – it is an example of unsupervised
machine learning. We can ask whether the clustering provided is a ’good’ one using the
measurement of a quantity called the silhouette. This is defined in R documentation as
follows:

For each observation i, the _silhouette width_ s(i) is defined as

follows:

Put a(i) = average dissimilarity between i and all other points

of the cluster to which i belongs (if i is the _only_ observation

in its cluster, s(i) := 0 without further calculations). For all

_other_ clusters C, put d(i,C) = average dissimilarity of i to all

observations of C. The smallest of these d(i,C) is b(i) := min_C

d(i,C), and can be seen as the dissimilarity between i and its

10



51 1 10
1 2 53 10
2

10
3 4 5 3 54 52 55 59 61 6 60 62 56 57 58 10
4

15
1

15
2

15
4 69 67 10
9

10
7

15
5

10
5

10
6

15
3 7 65 9 8 63 10 68 64 66 78 20 11
8

15
8

15
7

11
9

11
1

11
7

11
5

11
3

11
2

11
4

15
6

11
6

10
8

11
0 70 72 71 12 16 14 13 11 15 77 73 76 17 18 74 19 75 21 23 22 27 26 24 25 84 86 85 82 16
1

12
1

12
2

12
0

15
9

16
0 81 80 79 12
4

12
3

12
5

16
8

16
7

16
6

16
4

16
3

16
5

16
2

20
0 50 14
9

15
0

14
7

14
8

14
5

14
4

19
7

19
8

19
9

19
5 49 48 14
6

14
2

14
3 40 37 35 98 99 42 41 43 17
9

18
0

17
6

18
4

18
5

13
8

13
9

13
3

13
5

13
4 46 45 10
0 47 44 14
0

14
1

18
8

19
2

19
3

19
6

19
4

18
9

19
1

19
0

18
7

18
6 30 29 12
8

12
6

12
9

16
9

17
0

17
3 87 93 90 89 83 91 88 97 18
3

18
2

17
8

17
7

12
7

13
0

13
1

13
2

13
6

13
7 31 28 33 34 32 39 36 38 92 95 96 94 18
1

17
4

17
5

17
2

17
1

RW

BD

FL

CL

CW

Figure 5: Heatmap plot of the crabs data, including dendrograms representing hierarchical
clustering of the rows and columns.

"neighbor" cluster, i.e., the nearest one to which it does _not_

belong. Finally,

s(i) := ( b(i) - a(i) ) / max( a(i), b(i) ).

We can compute the silhouette for any partition of a dataset, and can use the hierar-
chical clustering result to define a partition as follows:

> cl = hclust(dist(X))

> tr = cutree(cl,2)

> table(tr)
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tr

1 2

105 95

> library(cluster)

> sil = silhouette( tr, dist(X) )

> plot(sil)

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = tr, dist = dist(X))

Average silhouette width :  0.55

n = 200 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   105  |  0.52

2 :   95  |  0.57

� Question 8. In the preceding, we have used default dist, and default clustering
algorithm for the heatmap. Investigate the impact of altering the choice of distance
and clustering method on the clustering performance, both in relation to capacity to
recover groups defined by species and in relation to the silhouette distribution.
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� Question 9. The PCA shows that the data configuration in PC2 and PC3 is at least
bifurcated. Apply hierarchical and K-means clustering to the two-dimensional data
in this subspace, and compare results with respect to capturing the species × gender
labels, and with respect to silhouette values. For example, load the exprs slot of crES
[see just below for the definition of this structure] with the PCA reexpression of the
features, call the result pcrES, and then:

> ff = kmeansB(pcrES[2:3,], k=4)

> table(ff@clustIndices, crES$spsex)

2.6 Supervised learning

In this section we will examine procedures for polychotomous prediction. We want to be
able to use the measurements to predict both species and sex of the crab. Again we would
like to use the MLInterfaces infrastructure, so an ExpressionSet container will be useful.

> feat2 = t(data.matrix(crabs[, -c(1:3)]))

> pd2 = new("AnnotatedDataFrame", crabs[,1:2])

> crES = new("ExpressionSet", exprs=feat2, phenoData=pd2)

> crES$spsex = paste(crES$sp, crES$sex, sep=":")

> table(crES$spsex)

B:F B:M O:F O:M

50 50 50 50

We will permute the samples so that simple selections for training set indices are random
samples.

> set.seed(1234)

> crES = crES[ , sample(1:200, size=200, replace=FALSE)]

2.6.1 RPART

A classic procedure is recursive partitioning.

> library(rpart)

> tr1 = MLearn(spsex~., crES, rpartI, 1:140)

> tr1

MLInterfaces classification output container

The call was:

MLearn(formula = spsex ~ ., data = crES, .method = rpartI, trainInd = 1:140)

Predicted outcome distribution for test set:

13



B:F B:M O:F O:M

17 11 16 16

Summary of scores on test set (use testScores() method for details):

B:F B:M O:F O:M

0.3013154 0.2050270 0.2892524 0.2044052

> confuMat(tr1)

predicted

given B:F B:M O:F O:M

B:F 10 4 3 0

B:M 2 4 0 4

O:F 3 1 11 3

O:M 2 2 2 9

The actual tree is

> plot(RObject(tr1))

> text(RObject(tr1))

14



|RW< 15.9

CW< 40.6

RW>=12.9

FL< 15.65 BD< 12

RW>=11.3
CL< 26.3

BD< 9.15

BD< 16.95

B:FO:F

B:F

B:FB:M
B:M

O:M

B:MO:M

O:F

This procedure in-
cludes a diagnostic tool called the cost-complexity plot:

> plotcp(RObject(tr1))
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2.6.2 Random forests

A generalization of recursive partitioning is obtained by creating a collection of trees by
bootstrap-sampling cases and randomly sampling from features available for splitting at
nodes.

> set.seed(124)

> library(randomForest)

> rf1 = MLearn(spsex~., crES, randomForestI, 1:140 )

> rf1

MLInterfaces classification output container

The call was:
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MLearn(formula = spsex ~ ., data = crES, .method = randomForestI,

trainInd = 1:140)

Predicted outcome distribution for test set:

B:F B:M O:F O:M

18 12 17 13

Summary of scores on test set (use testScores() method for details):

B:F B:M O:F O:M

0.2971000 0.2225667 0.2615667 0.2187667

> cm = confuMat(rf1)

> cm

predicted

given B:F B:M O:F O:M

B:F 15 2 0 0

B:M 1 9 0 0

O:F 1 0 15 2

O:M 1 1 2 11

The single split error rate is estimated at 17%.

� Question 10. What is the out-of-bag error rate for rf1? Obtain a cross-validated
estimate of misclassification error using randomForest with an xvalSpec().

2.6.3 Linear discriminants

> ld1 = MLearn(spsex~., crES, ldaI, 1:140 )

> ld1

MLInterfaces classification output container

The call was:

MLearn(formula = spsex ~ ., data = crES, .method = ldaI, trainInd = 1:140)

Predicted outcome distribution for test set:

B:F B:M O:F O:M

18 9 18 15

> confuMat(ld1)

predicted

given B:F B:M O:F O:M

17



B:F 17 0 0 0

B:M 1 9 0 0

O:F 0 0 18 0

O:M 0 0 0 15

> xvld = MLearn( spsex~., crES, ldaI, xvalSpec("LOG", 5, balKfold.xvspec(5)))

> confuMat(xvld)

predicted

given B:F B:M O:F O:M

B:F 48 2 0 0

B:M 6 44 0 0

O:F 0 0 47 3

O:M 0 0 0 50

� Question 11. Use the balKfold function to generate an index set for partitions that is
balanced with respect to class distribution. Check the balance and repeat the cross
validation.

2.6.4 Neural net

> nn1 = MLearn(spsex~., crES, nnetI, 1:140, size=3, decay=.1)

# weights: 34

initial value 208.103465

iter 10 value 193.548280

iter 20 value 174.149517

iter 30 value 125.008569

iter 40 value 100.797930

iter 50 value 38.459482

iter 60 value 35.522037

iter 70 value 35.497140

iter 80 value 35.496789

iter 80 value 35.496789

iter 80 value 35.496789

final value 35.496789

converged

> nn1

MLInterfaces classification output container

The call was:
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MLearn(formula = spsex ~ ., data = crES, .method = nnetI, trainInd = 1:140,

size = 3, decay = 0.1)

Predicted outcome distribution for test set:

B:F B:M O:F O:M

18 9 18 15

Summary of scores on test set (use testScores() method for details):

B:F B:M O:F O:M

0.2808708 0.1724819 0.3048583 0.2417890

> RObject(nn1)

a 5-3-4 network with 34 weights

inputs: FL RW CL CW BD

output(s): spsex

options were - softmax modelling decay=0.1

> confuMat(nn1)

predicted

given B:F B:M O:F O:M

B:F 17 0 0 0

B:M 1 9 0 0

O:F 0 0 18 0

O:M 0 0 0 15

> xvnnBAD = MLearn( spsex~., crES, nnetI,

+ xvalSpec("LOG", 5, function(data, clab, iternum) {

+ which( rep(1:5,each=40) == iternum ) }),

+ size=3, decay=.1 )

> xvnnGOOD = MLearn( spsex~., crES, nnetI,

+ xvalSpec("LOG", 5, balKfold.xvspec(5) ),

+ size=3, decay=.1 )

> confuMat(xvnnBAD)

predicted

given B:F B:M O:F O:M

B:F 48 2 0 0

B:M 6 44 0 0

O:F 0 0 48 2

O:M 0 0 4 46
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> confuMat(xvnnGOOD)

predicted

given B:F B:M O:F O:M

B:F 49 1 0 0

B:M 5 45 0 0

O:F 0 0 49 1

O:M 0 0 1 49

2.6.5 SVM

> sv1 = MLearn(spsex~., crES, svmI, 1:140)

> sv1

MLInterfaces classification output container

The call was:

MLearn(formula = spsex ~ ., data = crES, .method = svmI, trainInd = 1:140)

Predicted outcome distribution for test set:

B:F B:M O:F O:M

23 9 16 12

Summary of scores on test set (use testScores() method for details):

B:M O:M O:F B:F

0.1907741 0.2122442 0.3024126 0.2945691

> RObject(sv1)

Call:

svm(formula = formula, data = data, probability = probability)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1

gamma: 0.2

Number of Support Vectors: 131

> confuMat(sv1)

predicted

given B:F B:M O:F O:M
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B:F 16 0 1 0

B:M 2 8 0 0

O:F 3 0 15 0

O:M 2 1 0 12

> xvsv = MLearn( spsex~., crES, svmI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)))

> confuMat(xvsv)

predicted

given B:F B:M O:F O:M

B:F 44 1 5 0

B:M 11 35 1 3

O:F 8 0 38 4

O:M 4 2 0 44

3 Learning with expression arrays

Here we will concentrate on ALL: acute lymphocytic leukemia, B-cell type.

3.1 Phenotype reduction

We will identify expression patterns that discriminate individuals with BCR/ABL fusion
in B-cell leukemia.

> library("ALL")

> data("ALL")

> bALL = ALL[, substr(ALL$BT,1,1) == "B"]

> fus = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]

> fus$mol.biol = factor(fus$mol.biol)

> fus

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 79 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... 84004 (79 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none
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experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

3.2 Nonspecific filtering

We can nonspecifically filter to 300 genes (to save computing time) with largest measures
of robust variation across all samples:

> mads = apply(exprs(fus),1,mad)

> fusk = fus[ mads > sort(mads,decr=TRUE)[300], ]

> fcol = ifelse(fusk$mol.biol=="NEG", "green", "red")

3.3 Exploratory work

For exploratory data analysis, a heatmap is customary.

> heatmap(exprs(fusk), ColSideColors=fcol)
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Principal components and a biplot may be more revealing. How many principal com-
ponents are likely to be important?

> PCg = prcomp(t(exprs(fusk)))

> plot(PCg)
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> pairs(PCg$x[,1:5],col=fcol,pch=19)
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� Question 12. Modify the biplot so that instead of plotting sample ID, the symbol
”O” is plotted for a NEG sample and ”+” is plotted for a BCR/ABL sample.

� Question 13. Consider the following code

chkT = function (x, eset=fusk) {

t.test(exprs(eset)[x, eset$mol.b == "NEG"], exprs(eset)[x, eset$mol.b ==

"BCR/ABL"]) }

Use it in conjunction with the biplot to interpret expression patterns of genes that
appear to be important in defining the PCs.
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3.4 Classifier construction

3.4.1 Demonstrations

Diagonal LDA has a good reputation. Let’s try it first, followed by neural net and random
forests. We will not attend to tuning the latter two, defaults or guesses for key parameters
are used.

> dld1 = MLearn( mol.biol~., fusk, dldaI, 1:40 )

> dld1

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, .method = dldaI,

trainInd = 1:40)

Predicted outcome distribution for test set:

BCR/ABL NEG

27 12

> confuMat(dld1)

predicted

given BCR/ABL NEG

BCR/ABL 15 1

NEG 12 11

> nnALL = MLearn( mol.biol~., fusk, nnetI, 1:40, size=5, decay=.01,

+ MaxNWts=2000 )

# weights: 1506

initial value 31.462773

iter 10 value 23.931967

iter 20 value 10.212301

iter 30 value 5.078508

iter 40 value 4.966160

iter 50 value 4.576494

iter 60 value 2.016984

iter 70 value 0.986367

iter 80 value 0.890341

iter 90 value 0.771982

iter 100 value 0.661578

final value 0.661578

stopped after 100 iterations
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> confuMat(nnALL)

predicted

given BCR/ABL NEG

BCR/ABL 15 1

NEG 8 15

> rfALL = MLearn( mol.biol~., fusk, randomForestI, 1:40 )

> rfALL

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, .method = randomForestI,

trainInd = 1:40)

Predicted outcome distribution for test set:

BCR/ABL NEG

25 14

Summary of scores on test set (use testScores() method for details):

BCR/ABL NEG

0.5402051 0.4597949

> confuMat(rfALL)

predicted

given BCR/ABL NEG

BCR/ABL 15 1

NEG 10 13

None of these are extremely impressive, but the problem may just be very hard. An
interesting proposal is RDA, regularized discriminant analysis (package rda, Guo, Hastie,
Tibshirani 2007 Biostatistics). This algorithm recognizes the fact that covariance matrix
estimation in high dimensional data is very inaccurate, so the estimator is shrunk towards
the identity. We have a rudimentary interface, in which the key parameters are chosen by
native cross-validation (in rda.cv) and then applied once to get the final object.

> rdaALL = MLearn( mol.biol~., fusk, rdacvI, 1:40 )

> rdaALL

MLInterfaces classification output container

The call was:
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MLearn(formula = mol.biol ~ ., data = fusk, .method = rdacvI,

trainInd = 1:40)

Predicted outcome distribution for test set:

BCR/ABL NEG

16 23

> confuMat(rdaALL)

predicted

given BCR/ABL NEG

BCR/ABL 13 3

NEG 3 20

A by-product of the algorithm is a set of retained genes that were found to play a role in
discrimination. This can be established as follows:

> library(hgu95av2.db)

> psid = RObject(rdaALL)$keptFeatures

> psid = gsub("^X", "", psid) # make.names is run inopportunely

> mget(psid, hgu95av2GENENAME)[1:5]

$`1635_at`

[1] "c-abl oncogene 1, non-receptor tyrosine kinase"

$`1674_at`

[1] "v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1"

$`1915_s_at`

[1] "FBJ murine osteosarcoma viral oncogene homolog"

$`245_at`

[1] "selectin L"

$`296_at`

[1] "tubulin, beta 2A"

� Question 14. How can we assess the relative impacts of regularization (expanding
the covariance model beyond that of DLDA, which was shown above to do poorly,
but without relying on the full covariance) and implicit feature selection conducted
in RDA?
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3.4.2 Gene set appraisal

� Question 15. We can assess the predictive capacity of a set of genes by restricting the
ExpressionSet to that set and using the best classifier appropriate to the problem.
We can also assess the incremental effect of combining gene sets, relative to using
them separately.

One collection of gene sets that is straightforward to use and interpret is provided by
the keggorthology package (see also GSEABase). Here’s how we can define the Ex-
pressionSets for genes annotated by KEGG to Environmental (Genetic) Information
Processing:

> library(keggorthology)

> data(KOgraph)

> adj(KOgraph, nodes(KOgraph)[1])

$KO.Feb10root

[1] "Metabolism"

[2] "Genetic Information Processing"

[3] "Environmental Information Processing"

[4] "Cellular Processes"

[5] "Organismal Systems"

[6] "Human Diseases"

> EIP = getKOprobes("Environmental Information Processing")

> GIP = getKOprobes("Genetic Information Processing")

> length(intersect(EIP, GIP))

[1] 45

> EIPi = setdiff(EIP, GIP)

> GIP = setdiff(GIP, EIP)

> EIP = EIPi

> Efusk = fusk[ featureNames(fusk) %in% EIP, ]

> Gfusk = fusk[ featureNames(fusk) %in% GIP, ]

Obtain and assess the predictive capacity of the genes annotated to ”Cell Growth
and Death”.

� Question 16. How many of the genes identified by RDA as important for discriminat-
ing fusion are annotated to Genetic Information Processing in the KEGG orthology?
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4 Embedding features selection in cross-validation

We provide helper functions to conduct several kinds of feature selection in cross-validation,
see help(fs.absT). Here we pick the top 30 features (ranked by absolute t statistic) for
each cross-validation partition.

> dldFS = MLearn( mol.biol~., fusk, dldaI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5), fs.absT(30) ))

> dldFS

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, .method = dldaI,

trainInd = xvalSpec("LOG", 5, balKfold.xvspec(5), fs.absT(30)))

Predicted outcome distribution for test set:

BCR/ABL NEG

42 37

history of feature selection in cross-validation available; use fsHistory()

> confuMat(dld1)

predicted

given BCR/ABL NEG

BCR/ABL 15 1

NEG 12 11

> confuMat(dldFS)

predicted

given BCR/ABL NEG

BCR/ABL 34 3

NEG 8 34
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5 Session information

> sessionInfo()

R version 2.14.1 (2011-12-22)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] keggorthology_2.6.0 graph_1.32.0 hgu95av2.db_2.6.3

[4] org.Hs.eg.db_2.6.4 RSQLite_0.11.1 DBI_0.2-5

[7] ALL_1.4.11 randomForest_4.6-5 gbm_1.6-3.1

[10] lattice_0.20-0 survival_2.36-10 golubEsets_1.4.9

[13] MLInterfaces_1.34.2 sfsmisc_1.0-19 cluster_1.14.1

[16] annotate_1.32.1 AnnotationDbi_1.16.10 rda_1.0.2

[19] rpart_3.1-50 genefilter_1.36.0 MASS_7.3-16

[22] Biobase_2.14.0

loaded via a namespace (and not attached):

[1] IRanges_1.12.5 Matrix_1.0-2 ada_2.0-2 class_7.3-3 e1071_1.6

[6] gdata_2.8.2 grid_2.14.1 gtools_2.6.2 mboost_2.1-1 nnet_7.3-1

[11] tools_2.14.1 xtable_1.6-0
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