
AnnotationDbi: How to use the ”.db” annotation

packages

Marc Carlson, Herve Pages, Seth Falcon, Nianhua Li

March 8, 2012

1 Introduction

1.0.1 Purpose

AnnotationDbi is used primarily to create mapping objects that allow easy
access from R to underlying annotation databases. As such, it acts as the R
interface for all the standard annotation packages. Underlying each Annota-
tionDbi supported annotation package is at least one (and often two) annota-
tion databases. AnnotationDbi also provides schemas for theses databases.
For each supported model organism, a standard gene centric database is
maintained from public sources and is packaged up as an appropriate organ-
ism or ”org” package.

1.0.2 Database Schemas

For developers, a lot of the benefits of having the information loaded into a
real database will require some knowledge about the database schema. For
this reason the schemas that were used in the creation of each database type
are included in AnnotationDbi. The currently supported schemas are listed
in the DBschemas directory of AnnotationDbi. But it is also possible to
simply print out the schema that a package is currently using by using its
” dbschema” method.

There is one schema/database in each kind of package. These schemas
specify which tables and indices will be present for each package of that type.
The schema that a particular package is using is also listed when you type
the name of the package as a function to obtain quality control information.

The code to make most kinds of the new database packages is also in-
cluded in AnnotationDbi. Please see the vignette on SQLForge for more
details on how to make additional database packages.

1



1.0.3 Internal schema Design of org packages

The current design of the organism packages is deliberately simple and gene
centric. Each table in the database contains a unique kind of information
and also an internal identifier called id. The internal id has no meaning
outside of the context of a single database. But id does connect all the data
within a single database.

As an example if we wanted to connect the values in the genes table with
the values in the kegg table, we could simply join the two tables using the
internal id column. It is very important to note however that id does not
have any absolute significance. That is, it has no meaning outside of the
context of the database where it is used. It is tempting to think that an id
could have such significance because within a single database, it looks and
behaves similarly to an entrez gene ID. But id is definitely NOT an entrez
gene ID. The entrez gene IDs are in another table entirely, and can be con-
nected to using the internal id just like all the other meaningful information
inside these databases. Each organism package is centered around one type
of gene identifier. This identifier is found as the gene id field in the genes
table and is both the central ID for the database as well as the foreign key
that chip packages should join to.

The chip packages are ’lightweight’, and only contain information about
the basic probe to gene mapping. You might wonder how such packages can
provide access to all the other information that they do. This is possible
because all the other data provided by chip packages comes from joins that
are performed by AnnotationDbi behind the scenes at run time. All chip
packages have a dependency on at least one organism package. The name
of the organism package being depended on can be found by looking at
its ”ORGPKG” value. To learn about the schema from the appropriate
organism package, you will need to look at the ” dbschema” method for that
package. In the case of the chip packages, the gene id that in these packages
is mapped to the probe ids, is used as a foreign key to the appropriate
organism package.

Specialized packages like the packages for GO and KEGG, will have
their own schemas but will also adhere to the use of an internal id for joins
between their tables. As with the organism packages, this id is not suitable
for use as a foreign key.

For a complete listing of the different schemas used by various packages,
users can use the available.dbschemas function. This list will also tell you
which model organisms are supported.

> require(org.Hs.eg.db)

2



> available.dbschemas()

2 Examples

2.0.4 Basic information

The AnnotationDbi package provides an interface to SQLite-based annota-
tion packages. Each SQLite-based annotation package (identified by a “.db”
suffix in the package name) contains a number of AnnDbBimap objects in
place of the environment objects found in the old-style environment-based
annotation packages. The API provided by AnnotationDbi allows you to
treat the AnnDbBimap objects like environment instances. For example,
the functions [[, get, mget, and ls all behave the same as they did with
the older environment based annotation packages. In addition, new meth-
ods like [, toTable, subset and others provide some additional flexibility
in accessing the annotation data.

R> library("hgu95av2.db")

The same basic set of objects is provided with the db packages:

R> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2.db"

[3] "hgu95av2ACCNUM" "hgu95av2ALIAS2PROBE"

[5] "hgu95av2CHR" "hgu95av2CHRLENGTHS"

[7] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND"

[9] "hgu95av2ENSEMBL" "hgu95av2ENSEMBL2PROBE"

[11] "hgu95av2ENTREZID" "hgu95av2ENZYME"

[13] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME"

[15] "hgu95av2GO" "hgu95av2GO2ALLPROBES"

[17] "hgu95av2GO2PROBE" "hgu95av2MAP"

[19] "hgu95av2MAPCOUNTS" "hgu95av2OMIM"

[21] "hgu95av2ORGANISM" "hgu95av2ORGPKG"

[23] "hgu95av2PATH" "hgu95av2PATH2PROBE"

[25] "hgu95av2PFAM" "hgu95av2PMID"

[27] "hgu95av2PMID2PROBE" "hgu95av2PROSITE"

[29] "hgu95av2REFSEQ" "hgu95av2SYMBOL"

[31] "hgu95av2UNIGENE" "hgu95av2UNIPROT"

[33] "hgu95av2_dbInfo" "hgu95av2_dbconn"

[35] "hgu95av2_dbfile" "hgu95av2_dbschema"

3



Exercise 1
Start an R session and use the library function to load the hgu95av2.db
software package. Use search() to see that an organism package was also
loaded and then use the approriate ” dbschema” methods to the schema for
the hgu95av2.db and org.Hs.eg.db packages.

It is possible to call the package name as a function to get some QC
information about it.

R> qcdata = capture.output(hgu95av2())

R> head(qcdata, 20)

[1] "Quality control information for hgu95av2:"

[2] ""

[3] ""

[4] "This package has the following mappings:"

[5] ""

[6] "hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)"

[7] "hgu95av2ALIAS2PROBE has 39405 mapped keys (of 110701 keys)"

[8] "hgu95av2CHR has 11751 mapped keys (of 12625 keys)"

[9] "hgu95av2CHRLENGTHS has 93 mapped keys (of 93 keys)"

[10] "hgu95av2CHRLOC has 11669 mapped keys (of 12625 keys)"

[11] "hgu95av2CHRLOCEND has 11669 mapped keys (of 12625 keys)"

[12] "hgu95av2ENSEMBL has 11498 mapped keys (of 12625 keys)"

[13] "hgu95av2ENSEMBL2PROBE has 9292 mapped keys (of 20087 keys)"

[14] "hgu95av2ENTREZID has 11755 mapped keys (of 12625 keys)"

[15] "hgu95av2ENZYME has 2153 mapped keys (of 12625 keys)"

[16] "hgu95av2ENZYME2PROBE has 791 mapped keys (of 975 keys)"

[17] "hgu95av2GENENAME has 11755 mapped keys (of 12625 keys)"

[18] "hgu95av2GO has 11347 mapped keys (of 12625 keys)"

[19] "hgu95av2GO2ALLPROBES has 14061 mapped keys (of 15249 keys)"

[20] "hgu95av2GO2PROBE has 10476 mapped keys (of 11765 keys)"

Alternatively, you can get similar information on how many items are in
each of the provided maps by looking at the MAPCOUNTs:

R> hgu95av2MAPCOUNTS

To demonstrate the environment API, we’ll start with a random sample
of probe set IDs.

R> all_probes <- ls(hgu95av2ENTREZID)

R> length(all_probes)

4



[1] 12625

R> set.seed(0xa1beef)

R> probes <- sample(all_probes, 5)

R> probes

[1] "31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

The usual ways of accessing annotation data are also available.

R> hgu95av2ENTREZID[[probes[1]]]

[1] "9136"

R> hgu95av2ENTREZID$"31882_at"

[1] "9136"

R> syms <- unlist(mget(probes, hgu95av2SYMBOL))

R> syms

31882_at 38780_at 37033_s_at 1702_at 31610_at

"RRP9" "AKR1A1" "GPX1" "IL2RA" "PDZK1IP1"

The annotation packages provide a huge variety of information in each
package. Some common types of information include gene symbols (SYM-
BOL), GO terms (GO), KEGG pathway IDs (KEGG), ENSEMBL IDs (EN-
SEMBL) and chromosome start and stop locations (CHRLOC and CHRLOCEND).
Each mapping will have a manual page that you can read to describe the
data in the mapping and where it came from.

R> ?hgu95av2CHRLOC

Exercise 2
For the probes in ’probes’ above, use the annotation mappings to find the
chromosome start locations.

2.0.5 Manipulating Bimap Objects

Many filtering operations on the annotation Bimap objects require conver-
sion of the AnnDbBimap into a list . In general, converting to lists will not
be the most efficient way to filter the annotation data when using a SQLite-
based package. Compare the following two examples for how you could get

5



the 1st ten elements of the hgu95av2SYMBOL mapping. In the 1st case we
have to get the entire mapping into list form, but in the second case we first
subset the mapping object itself and this allows us to only convert the ten
elements that we care about.

R> system.time(as.list(hgu95av2SYMBOL)[1:10])

R> ## vs:

R>

R> system.time(as.list(hgu95av2SYMBOL[1:10]))

There are many different kinds of Bimap objects in AnnotationDbi, but
most of them are of class AnnDbBimap. All /RclassBimap objects represent
data as a set of left and right keys. The typical usage of these mappings is to
search for right keys that match a set of left keys that have been supplied by
the user. But sometimes it is also convenient to go in the opposite direction.

The annotation packages provide many reverse maps as objects in the
package name space for backwards compatibility, but the reverse mappings
of almost any map is also available using revmap. Since the data are stored
as tables, no extra disk space is needed to provide reverse mappings.

R> unlist(mget(syms, revmap(hgu95av2SYMBOL)))

RRP9 AKR1A1 GPX1 IL2RA PDZK1IP1

"31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

So now that you know about the revmap function you might try some-
thing like this:

R> as.list(revmap(hgu95av2PATH)["00300"])

$`00300`

[1] "35870_at" "36132_at"

Note that in the case of the PATH map, we don’t need to use revmap(x)
because hgu95av2.db already provides the PATH2PROBE map:

R> x <- hgu95av2PATH

R> ## except for the name, this is exactly revmap(x)

R> revx <- hgu95av2PATH2PROBE

R> revx2 <- revmap(x, objName="PATH2PROBE")

R> revx2

6



PATH2PROBE map for chip hgu95av2 (object of class "ProbeAnnDbBimap")

R> identical(revx, revx2)

[1] TRUE

R> as.list(revx["00300"])

$`00300`

[1] "35870_at" "36132_at"

Note that most maps are reversible with revmap, but some (such as the
more complex GO mappings), are not. Why is this? Because to reverse a
mapping means that there has to be a ”value” that will always become the
”key” on the newly reversed map. And GO mappings have several distinct
possibilities to choose from (GO ID, Evidence code or Ontology). In non-
reversible cases like this, AnnotationDbi will usually provide a pre-defined
reverse map. That way, you will always know what you are getting when
you call revmap

While we are on the subject of GO and GO mappings, there are a series of
special methods for GO mappings that can be called to find out details about
these IDs. Term,GOID, Ontology, Definition,Synonym, and Secondary are
all useful ways of getting additional information about a particular GO ID.
For example:

R> Term("GO:0000018")

GO:0000018

"regulation of DNA recombination"

R> Definition("GO:0000018")

GO:0000018

"Any process that modulates the frequency, rate or extent of DNA recombination, a DNA metabolic process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents."

Exercise 3
Given the following set of RefSeq IDs: c(”NG 005114”,”NG 007432”,”NG 008063”),
Find the Entrez Gene IDs that would correspond to those. Then find the
GO terms that are associated with those entrez gene IDs.

org.Hs.eg.db packages.

7



2.0.6 The Contents and Structure of Bimap Objects

Sometimes you may want to display or subset elements from an individual
map. A Bimap interface is available to access the data in table (data.frame)
format using [ and toTable.

R> head(toTable(hgu95av2GO[probes]))

probe_id go_id Evidence Ontology

1 1702_at GO:0002437 IEA BP

2 1702_at GO:0006915 TAS BP

3 1702_at GO:0006924 IEA BP

4 1702_at GO:0006955 TAS BP

5 1702_at GO:0007166 TAS BP

6 1702_at GO:0008283 TAS BP

The toTable function will display all of the information in a Bimap.
This includes both the left and right values along with any other attributes
that might be attached to those values. The left and right keys of the Bimap
can be extracted using Lkeys and Rkeys. If is is necessary to only display
information that is directly associated with the left to right links in a Bimap,
then the links function can be used. The links returns a data frame with
one row for each link in the bimap that it is applied to. It only reports the
left and right keys along with any attributes that are attached to the edge
between these two values.

Note that the order of the cols returned by toTable does not depend on
the direction of the map. We refer to it as an ’undirected method’:

R> toTable(x)[1:6, ]

probe_id path_id

1 1000_at 04010

2 1000_at 04012

3 1000_at 04062

4 1000_at 04114

5 1000_at 04150

6 1000_at 04270

R> toTable(revx)[1:6, ]

probe_id path_id

1 1000_at 04010

8



2 1000_at 04012

3 1000_at 04062

4 1000_at 04114

5 1000_at 04150

6 1000_at 04270

Notice however that the Lkeys are always on the left (1st col), the Rkeys
always in the 2nd col

There can be more than 2 columns in the returned data frame:
3 cols:

R> toTable(hgu95av2PFAM)[1:6, ] # the right values are tagged

probe_id ipi_id PfamId

1 1000_at IPI00018195 PF00069

2 1000_at IPI00304111 PF00069

3 1000_at IPI00742900 PF00069

4 1000_at IPI00793141 PF00069

5 1000_at IPI00975595 PF00069

6 1000_at IPI00976191 PF00069

R> as.list(hgu95av2PFAM["1000_at"])

$`1000_at`

IPI00018195 IPI00304111 IPI00742900 IPI00793141 IPI00975595 IPI00976191

"PF00069" "PF00069" "PF00069" "PF00069" "PF00069" "PF00069"

IPI00982169 IPI00982739 IPI00983657 IPI00984821 IPI00985374 IPI01015689

"PF00069" "PF00069" "PF00069" "PF00069" "PF00069" "PF00069"

But the Rkeys are ALWAYS in the 2nd col.
For length() and keys(), the result does depend on the direction, hence

we refer to these as ’directed methods’:

R> length(x)

[1] 12625

R> length(revx)

[1] 229

R> allProbeSetIds <- keys(x)

R> allKEGGIds <- keys(revx)

9



There are more ’undirected’ methods listed below:

R> junk <- Lkeys(x) # same for all maps in hgu95av2.db (except pseudo-map

R> # MAPCOUNTS)

R> Llength(x) # nb of Lkeys

[1] 12625

R> junk <- Rkeys(x) # KEGG ids for PATH/PATH2PROBE maps, GO ids for

R> # GO/GO2PROBE/GO2ALLPROBES maps, etc...

R> Rlength(x) # nb of Rkeys

[1] 229

Notice how they give the same result for x and revmap(x)
You might be tempted to think that Lkeys and Llength will tell you all

that you want to know about the left keys. But things are more complex than
this, because not all keys are mapped. Often, you will only want to know
about the keys that are mapped (ie. the ones that have a corresponding
Rkey). To learn this you want to use the mappedkeys or the undirected
variants mappedLkeys and mappedRkeys. Similarily, the count.mappedkeys,
count.mappedLkeys and count.mappedRkeys methods are very fast ways
to determine how many keys are mapped. Accessing keys like this is usually
very fast and so it can be a decent strategy to subset the mapping by 1st
using the mapped keys that you want to find.

R> x = hgu95av2ENTREZID[1:10]

R> ## Directed methods

R> mappedkeys(x) # mapped keys

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

R> count.mappedkeys(x) # nb of mapped keys

[1] 10

R> ## Undirected methods

R> mappedLkeys(x) # mapped left keys

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

10



R> count.mappedLkeys(x) # nb of mapped Lkeys

[1] 10

If you want to find keys that are not mapped to anything, you might
want to use isNA.

R> y = hgu95av2ENTREZID[isNA(hgu95av2ENTREZID)] # usage like is.na()

R> Lkeys(y)[1:4]

[1] "1047_s_at" "1089_i_at" "108_g_at" "1090_f_at"

Exercise 4
How many probesets do not have a GO mapping for the hgu95av2.db pack-
age? How many have no mapping? Find a probeset that has a GO mapping.
Now look at the GO mappings for this probeset in table form.

2.0.7 Some specific examples

Lets use what we have learned to get information about the probes that are
are not assigned to a chromosome:

R> x <- hgu95av2CHR

R> Rkeys(x)

[1] "19" "12" "8" "14" "3" "2" "17" "16" "9" "X" "6" "1" "7"

[14] "10" "11" "22" "5" "18" "15" "Y" "20" "21" "4" "13" "MT" "Un"

R> chroms <- Rkeys(x)[23:24]

R> chroms

[1] "4" "13"

R> Rkeys(x) <- chroms

R> toTable(x)

probe_id chromosome

1 1029_s_at 4

2 1036_at 4

3 1058_at 13

4 1065_at 13

5 1115_at 4

11



6 1189_at 13

7 1198_at 13

8 1219_at 4

9 1220_g_at 4

10 1249_at 4

11 1285_at 4

12 1303_at 4

13 1325_at 4

14 1348_s_at 13

15 1369_s_at 4

16 1377_at 4

17 1378_g_at 4

18 1451_s_at 13

19 1503_at 13

20 1507_s_at 4

21 1527_s_at 13

22 1528_at 13

23 1529_at 13

24 1530_g_at 13

25 1531_at 13

26 1532_g_at 13

27 1538_s_at 4

28 1542_at 4

29 1545_g_at 13

30 1567_at 13

31 1570_f_at 13

32 1571_f_at 13

33 1593_at 4

34 1597_at 13

35 1598_g_at 13

36 159_at 4

37 1600_at 4

38 1604_at 4

39 1605_g_at 4

40 1616_at 13

41 1624_at 4

42 1629_s_at 4

43 1653_at 4

44 1670_at 13

45 1672_f_at 13

12



46 1679_at 4

47 1708_at 4

48 1709_g_at 4

49 170_at 13

50 1720_at 4

51 1721_g_at 4

52 1731_at 4

53 1732_at 4

54 1819_at 13

55 1828_s_at 4

56 1836_at 4

57 1883_s_at 4

58 1888_s_at 4

59 1900_at 13

60 1905_s_at 13

61 1913_at 4

62 1914_at 13

63 1931_at 13

64 1934_s_at 4

65 1943_at 4

66 1954_at 4

67 1963_at 13

68 1964_g_at 13

69 1987_at 4

70 1988_at 4

71 1989_at 13

72 1990_g_at 13

73 2044_s_at 13

74 2062_at 4

75 2063_at 13

76 2064_g_at 13

77 2092_s_at 4

78 214_at 4

79 215_g_at 4

80 252_at 13

81 253_g_at 13

82 260_at 4

83 281_s_at 4

84 31314_at 4

85 31320_at 13

13



86 31325_at 13

87 31333_at 4

88 31345_at 4

89 31348_at 4

90 31349_at 4

91 31356_at 4

92 31382_f_at 4

93 31387_at 4

94 31404_at 13

95 31408_at 4

96 31464_at 13

97 31465_g_at 13

98 31516_f_at 13

99 31543_at 4

100 31562_at 13

101 31584_at 13

102 31628_at 13

103 31631_f_at 4

104 31639_f_at 13

105 31640_r_at 13

106 31670_s_at 4

107 31684_at 4

108 31686_at 4

109 31706_at 4

110 31744_at 4

111 31790_at 13

112 31792_at 4

113 31805_at 4

114 31811_r_at 4

115 31847_at 13

116 31849_at 13

117 31851_at 13

118 31876_r_at 4

119 31894_at 4

120 31969_i_at 4

121 31970_r_at 4

122 32006_r_at 4

123 32026_s_at 4

124 32080_at 4

125 32102_at 13

14



126 32145_at 4

127 32146_s_at 4

128 32147_at 13

129 32148_at 13

130 32180_s_at 4

131 32220_at 13

132 32299_at 4

133 32337_at 13

134 32349_at 4

135 32353_at 4

136 32357_at 4

137 32368_at 13

138 32393_s_at 4

139 32439_at 13

140 32446_at 4

141 32449_at 4

142 32465_at 4

143 32482_at 13

144 32506_at 4

145 32507_at 4

146 32570_at 4

147 32580_at 4

148 32595_at 4

149 32602_at 4

150 32641_at 13

151 32675_at 4

152 32703_at 4

153 32768_at 13

154 32769_at 4

155 32770_at 4

156 32771_at 4

157 32812_at 4

158 32822_at 4

159 32832_at 4

160 32862_at 13

161 32906_at 13

162 32979_at 4

163 32986_s_at 13

164 32998_at 4

165 33013_at 4

15



166 33050_at 4

167 33068_f_at 4

168 33069_f_at 4

169 33100_at 4

170 33150_at 4

171 33151_s_at 4

172 33155_at 4

173 33156_at 4

174 33168_at 13

175 33171_s_at 4

176 33172_at 4

177 33173_g_at 4

178 33199_at 13

179 33208_at 13

180 33241_at 4

181 33249_at 4

182 33267_at 4

183 33276_at 13

184 33299_at 4

185 33318_at 13

186 33356_at 4

187 33359_at 4

188 33369_at 4

189 33370_r_at 4

190 33382_at 4

191 33483_at 4

192 33488_at 4

193 33490_at 4

194 33494_at 4

195 33519_at 4

196 33520_at 13

197 33525_at 4

198 33526_at 4

199 33529_at 4

200 33536_at 4

201 33544_at 4

202 33564_at 4

203 33576_at 13

204 33584_at 4

205 33596_at 4

16



206 33657_at 4

207 33672_f_at 4

208 33673_r_at 4

209 33687_at 13

210 33700_at 13

211 33733_at 4

212 33791_at 13

213 33823_at 4

214 33827_at 13

215 33837_at 4

216 33859_at 13

217 33975_at 4

218 33990_at 4

219 33991_g_at 4

220 33992_at 4

221 33997_at 4

222 34021_at 4

223 34022_at 4

224 34029_at 4

225 34048_at 4

226 34051_at 13

227 34058_at 4

228 34075_at 4

229 34122_at 4

230 34131_at 4

231 34144_at 4

232 34145_at 4

233 34149_at 4

234 34170_s_at 4

235 34181_at 4

236 34198_at 4

237 34211_at 13

238 34225_at 4

239 34239_at 13

240 34240_s_at 13

241 34247_at 4

242 34248_at 4

243 34275_s_at 4

244 34284_at 13

245 34307_at 13

17



246 34319_at 4

247 34324_at 13

248 34334_at 13

249 34335_at 13

250 34341_at 4

251 34342_s_at 4

252 34353_at 4

253 34398_at 13

254 34411_at 4

255 34423_at 4

256 34459_at 13

257 34476_r_at 4

258 34482_at 4

259 34512_at 4

260 34551_at 4

261 34564_at 4

262 34565_at 4

263 34578_at 13

264 34583_at 13

265 34596_at 4

266 34637_f_at 4

267 34638_r_at 4

268 34657_at 13

269 34672_at 13

270 34745_at 4

271 34803_at 13

272 34898_at 4

273 34953_i_at 4

274 34954_r_at 4

275 34955_at 13

276 34973_at 4

277 34984_at 4

278 34988_at 4

279 35020_at 4

280 35021_at 4

281 35025_at 4

282 35028_at 4

283 35039_at 4

284 35053_at 4

285 35061_at 4

18



286 35063_at 4

287 35081_at 13

288 35105_at 13

289 35107_at 13

290 35110_at 13

291 35131_at 4

292 35134_at 4

293 35140_at 13

294 35147_at 13

295 35164_at 4

296 35181_at 4

297 35182_f_at 4

298 35193_at 13

299 35213_at 13

300 35214_at 4

301 35215_at 4

302 35220_at 4

303 35285_at 4

304 35306_at 4

305 35344_at 13

306 35356_at 4

307 35357_at 4

308 35371_at 4

309 35372_r_at 4

310 35400_at 13

311 35410_at 4

312 35435_s_at 4

313 35437_at 4

314 35469_at 13

315 35470_at 13

316 35471_g_at 13

317 35481_at 13

318 35507_at 4

319 35523_at 4

320 35554_f_at 13

321 35555_r_at 13

322 35591_at 4

323 35656_at 13

324 35662_at 4

325 35664_at 4

19



326 35678_at 4

327 35689_at 4

328 35698_at 4

329 35725_at 13

330 35730_at 4

331 35777_at 4

332 35793_at 4

333 35827_at 4

334 35837_at 4

335 35845_at 4

336 35871_s_at 4

337 35877_at 13

338 35904_at 13

339 35939_s_at 13

340 35940_at 13

341 35949_at 13

342 35972_at 13

343 35989_at 4

344 35991_at 4

345 36012_at 13

346 36013_at 4

347 36017_at 13

348 36021_at 4

349 36031_at 13

350 36046_at 4

351 36047_at 4

352 36065_at 4

353 36080_at 4

354 36143_at 4

355 36157_at 4

356 36188_at 13

357 36194_at 4

358 36212_at 13

359 36243_at 4

360 36247_f_at 4

361 36269_at 4

362 36274_at 13

363 36358_at 4

364 36363_at 4

365 36433_at 4

20



366 36434_r_at 4

367 36510_at 13

368 36521_at 13

369 36606_at 4

370 36622_at 4

371 36627_at 4

372 36659_at 13

373 36717_at 4

374 36788_at 13

375 367_at 13

376 36814_at 4

377 36830_at 13

378 36913_at 4

379 36914_at 4

380 36915_at 4

381 36918_at 4

382 36939_at 4

383 36968_s_at 13

384 36990_at 4

385 37006_at 4

386 37019_at 4

387 37023_at 13

388 37056_at 4

389 37058_at 4

390 37062_at 4

391 37067_at 13

392 37079_at 13

393 37099_at 13

394 37109_at 13

395 37154_at 13

396 37170_at 4

397 37172_at 13

398 37173_at 4

399 37187_at 4

400 37206_at 4

401 37219_at 4

402 37223_at 4

403 37243_at 4

404 37244_at 13

405 37280_at 4

21



406 37282_at 4

407 37291_r_at 4

408 37303_at 13

409 37322_s_at 4

410 37323_r_at 4

411 37356_r_at 4

412 37366_at 4

413 37404_at 4

414 37416_at 4

415 37472_at 4

416 37518_at 13

417 37520_at 4

418 37521_s_at 4

419 37522_r_at 4

420 37571_at 13

421 37578_at 4

422 37593_at 13

423 37619_at 4

424 37658_at 13

425 37707_i_at 4

426 37708_r_at 4

427 37723_at 4

428 37747_at 4

429 37748_at 4

430 37752_at 4

431 37757_at 13

432 37767_at 4

433 37840_at 4

434 37926_at 13

435 37930_at 13

436 37964_at 4

437 38008_at 4

438 38015_at 4

439 38016_at 4

440 38024_at 4

441 38025_r_at 4

442 38035_at 13

443 38065_at 4

444 38102_at 13

445 38120_at 4

22



446 38168_at 4

447 38254_at 4

448 38304_r_at 13

449 38353_at 13

450 38375_at 13

451 38438_at 4

452 38485_at 4

453 38488_s_at 4

454 38489_at 4

455 38587_at 4

456 38606_at 4

457 38615_at 13

458 38639_at 4

459 38643_at 4

460 38649_at 13

461 38714_at 4

462 38715_at 4

463 38736_at 4

464 38751_i_at 4

465 38752_r_at 4

466 38767_at 4

467 38768_at 4

468 38778_at 4

469 38821_at 4

470 38825_at 4

471 38838_at 4

472 38854_at 4

473 38891_at 4

474 38923_at 4

475 38957_at 13

476 38972_at 13

477 38988_at 4

478 39028_at 13

479 39032_at 13

480 39037_at 4

481 39056_at 4

482 39083_at 4

483 39131_at 13

484 39132_at 4

485 39208_i_at 4

23



486 39209_r_at 4

487 39224_at 4

488 39256_at 13

489 39257_at 13

490 39269_at 13

491 39295_s_at 4

492 39297_at 13

493 39333_at 13

494 39337_at 4

495 39355_at 4

496 39369_at 4

497 39380_at 4

498 39382_at 4

499 39405_at 13

500 39469_s_at 13

501 39475_at 4

502 39481_at 4

503 39488_at 13

504 39489_g_at 13

505 39535_at 4

506 39536_at 4

507 39554_at 4

508 39555_at 4

509 39576_at 4

510 39579_at 13

511 39600_at 4

512 39634_at 4

513 39662_s_at 4

514 39665_at 4

515 39680_at 4

516 39690_at 4

517 39698_at 4

518 39734_at 4

519 39746_at 4

520 39748_at 13

521 39758_f_at 13

522 39777_at 13

523 39786_at 4

524 39847_at 4

525 39850_at 4

24



526 39851_at 4

527 39852_at 13

528 39878_at 13

529 39897_at 4

530 39924_at 13

531 39929_at 4

532 39955_at 13

533 39960_at 4

534 39979_at 13

535 40018_at 13

536 40058_s_at 4

537 40059_r_at 4

538 40060_r_at 4

539 40067_at 13

540 40072_at 13

541 40082_at 4

542 400_at 13

543 40114_at 4

544 40121_at 4

545 40148_at 4

546 40180_at 13

547 40181_f_at 13

548 40199_at 4

549 40217_s_at 4

550 40218_at 4

551 40225_at 4

552 40226_at 4

553 40272_at 4

554 40310_at 4

555 40312_at 13

556 40323_at 4

557 40349_at 4

558 40354_at 4

559 40392_at 13

560 40404_s_at 13

561 40449_at 4

562 40454_at 4

563 40456_at 4

564 40473_at 13

565 40492_at 4

25



566 40530_at 4

567 40570_at 13

568 40576_f_at 4

569 40633_at 13

570 40681_at 13

571 40697_at 4

572 40710_at 4

573 40711_at 4

574 40727_at 4

575 40746_at 4

576 40770_f_at 4

577 40772_at 4

578 40773_at 4

579 40818_at 4

580 40828_at 13

581 40839_at 13

582 40853_at 4

583 40880_r_at 4

584 40893_at 13

585 408_at 4

586 40908_r_at 13

587 40943_at 4

588 40970_at 13

589 40989_at 4

590 40990_at 4

591 40991_at 4

592 40992_s_at 4

593 40993_r_at 4

594 41014_s_at 4

595 41024_f_at 4

596 41025_r_at 4

597 41026_f_at 4

598 41069_at 13

599 41071_at 4

600 41104_at 4

601 41118_at 13

602 41119_f_at 13

603 41145_at 4

604 41148_at 4

605 41182_at 13

26



606 41191_at 4

607 41276_at 13

608 41277_at 13

609 41300_s_at 13

610 41301_at 13

611 41308_at 4

612 41309_g_at 4

613 41317_at 13

614 41318_g_at 13

615 41319_at 13

616 41376_i_at 4

617 41377_f_at 4

618 41391_at 4

619 41392_at 4

620 41402_at 4

621 41434_at 4

622 41436_at 13

623 41456_at 4

624 41459_at 13

625 41470_at 4

626 41491_s_at 13

627 41492_r_at 13

628 41493_at 13

629 41534_at 4

630 41555_at 4

631 41556_s_at 4

632 41585_at 4

633 41667_s_at 13

634 41668_r_at 13

635 41697_at 4

636 41801_at 4

637 41806_at 4

638 41860_at 13

639 431_at 4

640 504_at 4

641 507_s_at 4

642 579_at 4

643 618_at 4

644 630_at 4

645 631_g_at 4

27



646 655_at 4

647 690_s_at 4

648 692_s_at 4

649 764_s_at 4

650 820_at 4

651 886_at 4

652 931_at 13

653 936_s_at 4

654 948_s_at 4

655 963_at 13

656 975_at 4

657 990_at 13

658 991_g_at 13

To get this in the classic named-list format:

R> z <- as.list(revmap(x)[chroms])

R> names(z)

[1] "4" "13"

R> z[["Y"]]

NULL

Many of the common methods for accessing Bimap objects return things
in list format. This can be convenient. But you have to be careful about this
if you want to use unlist(). For example the following will return multiple
probes for each chromosome:

R> chrs = c("12","6")

R> mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA)

$`12`

[1] "1018_at" "1019_g_at" "101_at" "1021_at"

$`6`

[1] "1007_s_at" "1026_s_at" "1027_at"

But look what happens here if we try to unlist that:

R> unlist(mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA))

28



121 122 123 124 61 62

"1018_at" "1019_g_at" "101_at" "1021_at" "1007_s_at" "1026_s_at"

63

"1027_at"

Yuck! One trick that will sometimes help is to use Rfunctionunlist2. But
be careful here too. Depending on what step comes next, Rfunctionunlist2
may not really help you...

R> unlist2(mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA))

12 12 12 12 6 6

"1018_at" "1019_g_at" "101_at" "1021_at" "1007_s_at" "1026_s_at"

6

"1027_at"

Lets ask if the probes in ’pbids’ mapped to cytogenetic location ”18q11.2”?

R> x <- hgu95av2MAP

R> pbids <- c("38912_at", "41654_at", "907_at", "2053_at", "2054_g_at",

"40781_at")

R> x <- subset(x, Lkeys=pbids, Rkeys="18q11.2")

R> toTable(x)

probe_id cytogenetic_location

1 2053_at 18q11.2

2 2054_g_at 18q11.2

To coerce this map to a named vector:

R> pb2cyto <- as.character(x)

R> pb2cyto[pbids]

<NA> <NA> <NA> 2053_at 2054_g_at <NA>

NA NA NA "18q11.2" "18q11.2" NA

The coercion of the reverse map works too but issues a warning because
of the duplicated names for the reasons stated above:

R> cyto2pb <- as.character(revmap(x))

29



2.0.8 Accessing probes that map to multiple targets

In many probe packages, some probes are known to map to multiple genes.
The reasons for this can be biological as happens in the arabidopsis packages,
but usually it is due to the fact that the genome builds that chip platforms
were based on were less stable than desired. Thus what may have originally
been a probe designed to measure one thing can end up measuring many
things. Usually you don’t want to use probes like this, because if they man-
ufacturer doesn’t know what they map to then their usefullness is definitely
suspect. For this reason, by default all chip packages will normally hide such
probes in the standard mappings. But sometimes you may want access to
the answers that the manufacturer says such a probe will map to. In such
cases, you will want to use the toggleProbes method. To use this method,
just call it on a standard mapping and copy the result into a new mapping
(you cannot alter the original mapping). Then treat the new mapping as
you would any other mapping.

R> ## How many probes?

R> dim(hgu95av2ENTREZID)

[1] 11755 2

R> ## Make a mapping with multiple probes exposed

R> multi <- toggleProbes(hgu95av2ENTREZID, "all")

R> ## How many probes?

R> dim(multi)

[1] 12824 2

If you then decide that you want to make a mapping that has only
multiple mappings or you wish to revert one of your maps back to the default
state of only showing the single mappings then you can use toggleProbes

to switch back and forth.

R> ## Make a mapping with ONLY multiple probes exposed

R> multiOnly <- toggleProbes(multi, "multiple")

R> ## How many probes?

R> dim(multiOnly)

[1] 1069 2

30



R> ## Then make a mapping with ONLY single mapping probes

R> singleOnly <- toggleProbes(multiOnly, "single")

R> ## How many probes?

R> dim(singleOnly)

[1] 11755 2

Finally, there are also a pair of test methods hasMultiProbes and has-

SingleProbes that can be used to see what methods a mapping presently
has exposed.

R> ## Test the multiOnly mapping

R> hasMultiProbes(multiOnly)

[1] TRUE

R> hasSingleProbes(multiOnly)

[1] FALSE

R> ## Test the singleOnly mapping

R> hasMultiProbes(singleOnly)

[1] FALSE

R> hasSingleProbes(singleOnly)

[1] TRUE

2.0.9 Using SQL to access things directly

While the mapping objects provide a lot of convenience, sometimes there are
definite benefits to writing a simple SQL query. But in order to do this, it is
necessary to know a few things. The 1st thing you will need to know is some
SQL. Fortunately, it is quite easy to learn enough basic SQL to get stuff out
of a database. Here are 4 basic SQL things that you may find handy:

First, you need to know about SELECT statements. A simple example
would look something like this:

SELECT * FROM genes;
Which would select everything from the genes table.
SELECT gene id FROM genes;
Will select only the gene id field from the genes table.

31



Second you need to know about WHERE clauses:
SELECT gene id, id FROM genes WHERE gene id=1;
Will only get records from the genes table where the gene id is = 1.
Thirdly, you will want to know about an inner join:
SELECT * FROM genes,chromosomes WHERE genes. id=chromosomes. id;
This is only slightly more complicated to understand. Here we want to

get all the records that are in both the ’genes’ and ’chromosomes’ tables,
but we only want ones where the ’ id’ field is identical. This is known as
an inner join because we only want the elements that are in both of these
tables with respect to ’ id’. There are other kinds of joins that are worth
learning about, but most of the time, this is all you will need to do.

Finally, it is worthwhile to learn about the AS keyword which is useful
for making long queries easier to read. For the previous example, we could
have written it this way to save space:

SELECT * FROM genes AS g,chromosomes AS c WHERE g. id=c. id;
In a simple example like this you might not see a lot of savings from

using AS, so lets consider what happens when we want to also specify which
fields we want:

SELECT g.gene id,c.chromosome FROM genes AS g,chromosomes AS c
WHERE g. id=c. id;

Now you are most of the way there to being able to query the databases
directly. The only other thing you need to know is a little bit about how
to access these databases from R. With each package, you will also get a
method that will print the schema for its database, you can view this to see
what sorts of tables are present etc.

R> org.Hs.eg_dbschema()

To access the data in a database, you will need to connect to it. Fortu-
nately, each package will automatically give you a connection object to that
database when it loads.

R> org.Hs.eg_dbconn()

You can use this connection object like this:

R> query <- "SELECT gene_id FROM genes LIMIT 10;"

R> result = dbGetQuery(org.Hs.eg_dbconn(), query)

R> result

Exercise 5
Retrieve the entrez gene ID and chromosome by using a database query.
Show how you could do the same thing by using toTable

32



2.0.10 Combining data from multiple annotation packages at the
SQL level

For a more complex example, consider the task of obtaining all gene symbols
which are probed on a chip that have at least one GO BP ID annotation
with evidence code IMP, IGI, IPI, or IDA. Here is one way to extract this
using the environment-based packages:

R> ## Obtain SYMBOLS with at least one GO BP

R> ## annotation with evidence IMP, IGI, IPI, or IDA.

R> system.time({

bpids <- eapply(hgu95av2GO, function(x) {

if (length(x) == 1 && is.na(x))

NA

else {

sapply(x, function(z) {

if (z$Ontology == "BP")

z$GOID

else

NA

})

}

})

bpids <- unlist(bpids)

bpids <- unique(bpids[!is.na(bpids)])

g2p <- mget(bpids, hgu95av2GO2PROBE)

wantedp <- lapply(g2p, function(x) {

x[names(x) %in% c("IMP", "IGI", "IPI", "IDA")]

})

wantedp <- wantedp[sapply(wantedp, length) > 0]

wantedp <- unique(unlist(wantedp))

ans <- unlist(mget(wantedp, hgu95av2SYMBOL))

})

R> length(ans)

R> ans[1:10]

All of the above code could have been reduced to a single SQL query
with the SQLite-based packages. But to put together this query, you would
need to look 1st at the schema to know what tables are present:

R> hgu95av2_dbschema()

33



This function will give you an output of all the create table statements
that were used to generate the hgu95av2 database. In this case, this is
a chip package, so you will also need to see the schema for the organism
package that it depends on. To learn what package it depends on, look at
the ORGPKG value:

R> hgu95av2ORGPKG

Then you can see that schema by looking at its schema method:

R> org.Hs.eg_dbschema()

So now we can see that we want to connect the data in the go bp, and
symbol tables from the org.Hs.eg.sqlite database along with the probes data
in the hgu95av2.sqlite database. How can we do that?

It turns out that one of the great conveniences of SQLite is that it al-
lows other databases to be ‘ATTACHed’. Thus, we can keep our data in
many differnt databases, and then ’ATTACH’ them to each other in a mod-
ular fashion. The databases for a given build have been built together and
frozen into a single version specifically to allow this sort of behavoir. To
use this feature, the SQLite ATTACH command requires the filename for
the database file on your filesystem. Fortunately, R provides a nice system
independent way of getting that information. Note that the name of the
database is always the same as the name of the package, with the suffix
’.sqlite’.:

R> orgDBLoc = system.file("extdata", "org.Hs.eg.sqlite", package="org.Hs.eg.db")

R> attachSQL = paste("ATTACH '", orgDBLoc, "' AS orgDB;", sep = "")

R> dbGetQuery(hgu95av2_dbconn(), attachSQL)

NULL

Finally, you can assemble a cross-db sql query and use the helper func-
tion as follows. Note that when we want to refer to tables in the attached
database, we have to use the ’orgDB’ prefix that we specified in the ’AT-
TACH’ query above.:

R> system.time({

SQL <- "SELECT DISTINCT probe_id,symbol FROM probes, orgDB.gene_info AS gi, orgDB.genes AS g, orgDB.go_bp AS bp WHERE bp._id=g._id AND gi._id=g._id AND probes.gene_id=g.gene_id AND bp.evidence IN ('IPI', 'IDA', 'IMP', 'IGI')"

zz <- dbGetQuery(hgu95av2_dbconn(), SQL)

})

34



user system elapsed

0.33 0.05 2.48

R> #its a good idea to always DETACH your database when you are finished...

R> dbGetQuery(hgu95av2_dbconn(), "DETACH orgDB" )

NULL

Exercise 6
Retrieve the entrez gene ID, chromosome location information and cytoband
infomration by using a single database query.

Exercise 7
Expand on the example in the text above to combine data from the hgu95av2.db
and org.Hs.eg.db with the GO.db package so as to include the GO ID, and
term definition in the output.

The version number of R and packages loaded for generating the vignette
were:

R version 2.14.2 (2012-02-29)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] GO.db_2.6.1 hgu95av2.db_2.6.3 org.Hs.eg.db_2.6.4

[4] RSQLite_0.11.1 DBI_0.2-5 AnnotationDbi_1.16.19

[7] Biobase_2.14.0

loaded via a namespace (and not attached):

[1] IRanges_1.12.6 tools_2.14.2

35


