
Creating a New Annotation Package using

SQLForge

Marc Carlson, Herve Pages, Nianhua Li

March 8, 2012

1 Introduction

The AnnotationDbi package provides a series of functions that can be used
to build annotation packages for supported organisms. This collection of
functions is called SQLForge.

In order to use SQLForge you really only need to have one kind of in-
formation and that is a list of paired IDs. These IDs are to be stored in a
tab delimited file that is formatted in the same way that they used to be
for the older AnnBuilder package. For those who are unfamiliar with the
AnnBuilder package, this just means that there are two columns separated
by a tab where the column on the left contains probe or probeset identifiers
and the column on the right contains some sort of widely accepted gene
accession. This file should NOT contain a header. SQLForge will then use
these IDs along with it’s own support databases to make an AnnotationDbi
package for you. Here is how these IDs should look if you were to read them
into R:

R> library(AnnotationDbi)

R> read.table(system.file("extdata", "hcg110_ID",

package="AnnotationDbi"),

sep = "\t", header = FALSE, as.is = TRUE)[1:5,]

V1 V2

1 1000_at X60188

2 1001_at X60957

3 1002_f_at X65962

4 1003_s_at X68149

5 1004_at X68149

1



In the example above, Genbank IDs are demonstrated. But it is also
possible to use entrez gene IDs, refseq IDs or unigene accessions as the gene
identifiers. If refseq IDs are used, it is preferable to strip off the version
extensions that can sometimes be added on by some vendors. The version
extensions are digits that are sometimes tacked onto the end of a refseq
ID and separated from the accession by a dot. As an example consider
”NM 000193.2” . The ”NM 000193” portion would be the actual accession
number and the ”.2” would be the version number. These version numbers
are not used by these databases and their presence in your input can cause
less than desirable results.

Alternatively, if you have an annotation file for an Affymetrix chip, you
can use a parameter called affy that will automatically parse such a file and
produce a similar mapping from that. It is important to understand however
that despite that rather rich contents of an Affymetrix annotation file, almost
none of these data are used in the making of an annotation package with
SQLForge. Instead, the relevant IDs are stripped out, and then passed along
to SQLForge as if you had created a file like is seen above. The option here
to use such a file is offered purely as a convenience because the platform is
so popular.

If you have additional information about your probes in the form of
other kinds of supported gene IDs, you can pass these in as well by using
the otherSrc parameter. These IDs must be formatted using the same two
column format as described above, and if there are multiple source files, then
you can pass them in as a list of strings that correspond to the file paths for
these files.

Once you have your IDs ready, SQLForge will read them in, and use
the gene IDs to compare to an intermediate database. The data from this
database is what is used to make the specialized database that is placed
inside of an annotation package.

At the present time, it is possible to make annotation packages for the
most common model organisms. For each of these organisms another sup-
port package will be maintained and updated biannually which will include
all the basic data gathered for this organism from sources such as NCBI,
GO, KEGG and Flybase etc. These support packages will each be named
after the organism they are intended for and will each include a large sqlite
database with all the supporting information for that organism. Please note
that support databases are not necessary unless you intend to actually make
a new annotation package for one of the supported organisms. In the case
where you want to make annotation packages, the support databases are
only required for the organism in question. When SQLForge makes a new

2



database, it uses the information supplied by the support database as the
data source to make the annotation package. So the relevant support pack-
ages needs to be updated to the latest version in order to guarantee that
the annotation packages you produce will be made with information from
the last biannual update. These support packages are not meant to be an-
notation packages themselves and they come with no schema of their own.
Instead these are merely a way to distribute the data to those who want to
make custom annotation packages.

To check if your organism is supported simply look in the metadata
packages repository on the bioconductor website for a .db0 package. Only
special organism base packages will end with the .db0 extension. If you
find a package that is named after the organism you are interested in, then
your organism is supported, and you can use that database to make custom
packages. To list all the supported organism .db0 packages directly from R
you can use available.db0pkgs().

R> available.db0pkgs()

[1] "anopheles.db0" "arabidopsis.db0" "bovine.db0"

[4] "canine.db0" "chicken.db0" "chimp.db0"

[7] "ecoliK12.db0" "ecoliSakai.db0" "fly.db0"

[10] "human.db0" "malaria.db0" "mouse.db0"

[13] "pig.db0" "rat.db0" "rhesus.db0"

[16] "worm.db0" "xenopus.db0" "yeast.db0"

[19] "zebrafish.db0"

Once you know the package name, you can then install the appropriate
package with biocLite().

2 How to use SQLForge

To get the latest organism package you should only need to use biocLite.
Lets begin by making sure we have the latest organism package.

R> source("http://bioconductor.org/biocLite.R")

R> biocLite("human.db0")

Since each organism will have different kinds of data available, the schemas
that will be needed for each organism will also change. SQLForge provides
support functions for each of the model organisms that will create a sqlite

3



database that complies with a specified database schema. To make an an-
notation package, these database populating functions are called along with
additional code to wrap the database into a complete annotation package.

For each combination of organism and database schema, there must be a
database populating function. As an example, the schema that defines chip
packages for Homo sapiens is called HUMANCHIP DB and the database
populating function for that schema is called popHUMANCHIPDB(). Most of
the metadata that is required by a database populating function is provided
internally and is ultimately derived from the intermediate databases. But
some information has to be supplied by the user such as the manufacturer
etc. Additionally, the database populating functions have an option to out-
put the schema that they use in the form of the SQL create statements
that were declared internally. This allows the schema definitions to be kept
synchronized with the code that generates the databases.

The following example will not only generate a database, but at the same
time will also output a .sql file that will correspond to the HUMANCHIP DB
database schema. We will begin by getting an example file that we have
included in the AnnotationDbi package and then setting up the metadata
to be passed in to the popHUMANCHIP() function.

R> hcg110_IDs = system.file("extdata",

"hcg110_ID",

package="AnnotationDbi")

R> myMeta = c("DBSCHEMA"="HUMANCHIP_DB",

"ORGANISM"="Homo sapiens",

"SPECIES"="Human",

"MANUFACTURER"="Affymetrix",

"CHIPNAME"="Human Cancer G110 Array ",

"MANUFACTURERURL"="http://www.affymetrix.com")

For illustration purposes I will write this example to put the sqlite
database into a temporary directory. I will also specify the type of the
primary ID that is to be used by the databases populating function with
the baseMapType parameter. In this case, ”gb” is used to indicate genbank
accesssions, but it could also have been ”ug” for unigene, ”eg” for Entrez
gene, or ”refseq” for refseq accessions. Additional details can be found in the
man pages for these functions.

R> tmpout = tempdir()

R> ##To see what chip packages are available:

4



R> available.chipdbschemas()

R> ##Then you can make a DB using that schema.

R> populateDB("HUMANCHIP_DB", affy = FALSE, prefix = "hcg110Test",

fileName = hcg110_IDs, metaDataSrc = myMeta,

baseMapType = "gb", outputDir = tmpout)

The preceeding code has generated a file in the working directory called
hcg110.sqlite, which can be wrapped into an annotation package with the
following:

R> seed <- new("AnnDbPkgSeed",

Package = "hcg110Test.db",

Version = "1.0.0",

PkgTemplate = "HUMANCHIP.DB",

AnnObjPrefix = "hcg110Test")

R> makeAnnDbPkg(seed,

file.path(tmpout, "hcg110Test.sqlite"),

dest_dir = tmpout)

Of course, most of the time you only want to make an annotation package
for a particular chip. So we have made some wrapper functions to combine
all of the previous steps. The following shows how you could make the same
exact package as above but with a lot less hassle:

R> makeDBPackage("HUMANCHIP_DB",

affy=FALSE,

prefix="hcg110",

fileName=hcg110_IDs,

baseMapType="gb",

outputDir = tmpout,

version="1.0.0",

manufacturer = "Affymetrix",

chipName = "Human Cancer G110 Array",

manufacturerUrl = "http://www.affymetrix.com")

Wrapper functions are provided for making all of the different kinds of
chip based package types that are presently defined. These are named after
the schemas that they correspond to. So for example makeHUMANCHIP_DB()

corresponds to the HUMANCHIP DB schema, and is used to produce chip
based annotation packages of that type.

5



2.1 Installing your custom package

To install your package in Unix simply use R CMD INSTALL <package-
Name> at the command line. But if you are on Windows or Mac, you may
have to instead use install.packages from within R. This will work be-
cause this kind of simple annotation package does not contain any code that
has to be compiled. So you can simply call install.packages and set the
repos parameter to NULL and the type parameter to ”source”. The final R
command will look something like this:

R> install.packages("packageNameAndPath", repos=NULL, type="source")

Of course, you still have to type the path to your source directory cor-
rectly as the 1st argument. It is recommended that you use the autocomplete
feature in R as you enter it so that you get the path specified correctly.

3 For Advanced users: How to add extra data into
your packages

Sometimes you may find that you want to add extra supplementary data
into the database for the package that you just created. In these cases, you
will have to begin by using the SQL to add more data into the database.
Before you can do that however, you will have to change the permissions
on the sqlite database. The database will always be in the inst/extdata
directory of your package source after you run SQLForge. Once you can
edit your database, you will have to create a new table, and populate that
table with new information using SQL statements. One good way to do this
would be to use the RSQLite interface that is introduced in portions of the
AnnotationDbi vignette. For a more thorough treatment of the RSQLite
package, please see the vignette for that package at CRAN. Once you are
finished editing the database with SQL, be sure to change the database file
back to being a read only file.

However, adding the content to the database is only the 1st part of what
has to be done. In order for the data to be exposed to the R layer as
a mapping, you will have to also create and document a mapping object.
To do this step we have added a simple utility function to AnnotationDbi
that allows you to make a simple Bimap from a single table. The following
example will make an additional mapping between the gene names and the
gene symbols found in the gene info table for the package hgu95av2.db. For
this particular example, no additional SQL has to be inserted 1st into the

6



database since it is just adding a mapping onto data that already exists in
the database (but is just not normally exposed as a mapping).

R> library(hgu95av2.db)

R> hgu95av2NAMESYMBOL <- createSimpleBimap("gene_info",

"gene_name",

"symbol",

hgu95av2.db:::datacache,

"NAMESYMBOL",

"hgu95av2.db")

R> ##What is the mapping we just made?

R> hgu95av2NAMESYMBOL

NAMESYMBOL map for hgu95av2.db (object of class "AnnDbBimap")

R> ##Display the 1st 4 relationships in this new mapping

R> as.list(hgu95av2NAMESYMBOL)[1:4]

$`alpha-1-B glycoprotein`

[1] "A1BG"

$`alpha-2-macroglobulin`

[1] "A2M"

$`alpha-2-macroglobulin pseudogene 1`

[1] "A2MP1"

$`N-acetyltransferase 1 (arylamine N-acetyltransferase)`

[1] "NAT1"

If instead of creating a mapping on an existing example, you wanted to
add a new mapping to your customized annotation package, you would need
to call this function from zzz.R in your modified annotation package (and
also expose it in the namespace). You will then want to be sure that your
updated database has replaced the one in the inst/extdata directory that
was originally generated by SQLForge. And finally, you will need to also
put a man page into your package so that users will know how to make use
of this new mapping.

7



4 Session Information

The version number of R and packages loaded for generating the vignette
were:

R version 2.14.2 (2012-02-29)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets

[6] methods base

other attached packages:

[1] GO.db_2.6.1 hgu95av2.db_2.6.3

[3] org.Hs.eg.db_2.6.4 RSQLite_0.11.1

[5] DBI_0.2-5 AnnotationDbi_1.16.19

[7] Biobase_2.14.0

loaded via a namespace (and not attached):

[1] IRanges_1.12.6 tools_2.14.2

8


