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1 Introduction

1.1 Overview

The Bioconductor R package multtest implements widely applicable resampling-
based single-step and stepwise multiple testing procedures (MTP) for con-
trolling a broad class of Type I error rates, in testing problems involving
general data generating distributions (with arbitrary dependence structures
among variables), null hypotheses, and test statistics ?????. The current
version of multtest provides MTPs for null hypotheses concerning means,
differences in means, and regression parameters in linear and Cox propor-
tional hazards models. Both bootstrap and permutation estimators of the
test statistics (t- or F -statistics) null distribution are available. Procedures
are provided to control Type I error rates defined as tail probabilities and ex-
pected values of arbitrary functions of the numbers of Type I errors, Vn, and
rejected hypotheses, Rn. These error rates include: the generalized family-
wise error rate, gFWER(k) = Pr(Vn > k), or chance of at least (k + 1)
false positives (the special case k = 0 corresponds to the usual family-wise
error rate, FWER); tail probabilities TPPFP (q) = Pr(Vn/Rn > q) for the
proportion of false positives among the rejected hypotheses; the false dis-
covery rate, FDR = E[Vn/Rn]. Single-step and step-down common-cut-off
(maxT) and common-quantile (minP) procedures, that take into account
the joint distribution of the test statistics, are implemented to control the
FWER. In addition, augmentation procedures are provided to control the
gFWER, TPPFP, and FDR, based on any initial FWER-controlling pro-
cedure. The results of a multiple testing procedure are summarized using
rejection regions for the test statistics, confidence regions for the parame-
ters of interest, and adjusted p-values. The modular design of the multtest
package allows interested users to readily extend the package’s functionality,
by inserting additional functions for test statistics and testing procedures.
The S4 class/method object-oriented programming approach was adopted
to summarize the results of a MTP.

1.2 Motivation

Current statistical inference problems in areas such as genomics, astron-
omy, and marketing routinely involve the simultaneous test of thousands, or
even millions, of null hypotheses. Examples of testing problems in genomics
include:

• the identification of differentially expressed genes in microarray ex-
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periments, i.e., genes whose expression measures are associated with
possibly censored responses or covariates interest;

• tests of association between gene expression measures and Gene On-
tology (GO) annotation (www.geneontology.org);

• the identification of transcription factor binding sites in ChIP-Chip
experiments, where chromatin immunoprecipitation (ChIP) of tran-
scription factor bound DNA is followed by microarray hybridization
(Chip) of the IP-enriched DNA ?;

• the genetic mapping of complex traits using single nucleotide polymor-
phisms (SNP).

The above testing problems share the following general characteristics:

• inference for high-dimensional multivariate distributions, with complex
and unknown dependence structures among variables;

• broad range of parameters of interest, such as, regression coefficients
in model relating patient survival to genome-wide transcript levels
or DNA copy numbers, pairwise gene correlations between transcript
levels;

• many null hypotheses, in the thousands or even millions;

• complex dependence structures among test statistics, e.g., Gene On-
tology directed acyclic graph (DAG).

Motivated by these applications, we have developed resampling-based single-
step and step-down multiple testing procedures (MTP) for controlling a
broad class of Type I error rates, in testing problems involving general data
generating distributions (with arbitrary dependence structures among vari-
ables), null hypotheses, and test statistics ?????. In particular, Dudoit
et al. ? and Pollard & van der Laan ? derive single-step common-cut-
off and common-quantile procedures for controlling arbitrary parameters of
the distribution of the number of Type I errors, such as the generalized
family-wise error rate, gFWER(k), or chance of at least (k + 1) false pos-
itives. van der Laan et al. ? focus on control of the family-wise error
rate, FWER = gFWER(0), and provide step-down common-cut-off and
common-quantile procedures, based on maxima of test statistics (maxT) and
minima of unadjusted p-values (minP), respectively. Dudoit & van der Laan
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? and van der Laan et al. ? propose a general class of augmentation mul-
tiple testing procedures (AMTP), obtained by adding suitably chosen null
hypotheses to the set of null hypotheses already rejected by an initial MTP.
In particular, given any FWER-controlling procedure, they show how one
can trivially obtain procedures controlling tail probabilities for the number
(gFWER) and proportion (TPPFP) of false positives among the rejected
hypotheses.
A key feature of our proposed MTPs is the test statistics null distribution
(rather than data generating null distribution) used to derive rejection re-
gions (i.e., cut-offs) for the test statistics and resulting adjusted p-values
?????. For general null hypotheses, defined in terms of submodels for the
data generating distribution, this null distribution is the asymptotic distribu-
tion of the vector of null value shifted and scaled test statistics. Resampling
procedures (e.g., based on the non-parametric or model-based bootstrap)
are proposed to conveniently obtain consistent estimators of the null distri-
bution and the resulting test statistic cut-offs and adjusted p-values ???.
The Bioconductor R package multtest provides software implementations of
the above multiple testing procedures.

1.3 Outline

The present vignette provides a summary of our proposed multiple test-
ing procedures (?????. Section 2), discusses their software implementa-
tion in the Bioconductor R package multtest (Section 3). The accompany-
ing vignette (MTPALL) describes their application to the ALL dataset of
Chiaretti et al. ?.
Specifically, given a multivariate dataset (stored as a matrix, data.frame, or
microarray object of class exprSet) and user-supplied choices for the test
statistics, Type I error rate and its target level, resampling-based estimator
of the test statistics null distribution, and procedure for error rate control,
the main user-level function MTP returns unadjusted and adjusted p-values,
cut-off vectors for the test statistics, and estimates and confidence regions for
the parameters of interest. Both bootstrap and permutation estimators of
the test statistics null distribution are available and can optionally be output
to the user. The variety of models and hypotheses, test statistics, Type I
error rates, and MTPs currently implemented are discussed in Section 3.2.
The S4 class/method object-oriented programming approach was adopted
to represent the results of a MTP. Several methods are defined to produce
numerical and graphical summaries of these results (Section 3.3). A modular
programming approach, which utilizes function closures, allows interested
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users to readily extend the package’s functionality, by inserting functions
for new test statistics and testing procedures (Section 3.4). Ongoing efforts
are discussed in Section 4.

2 Methods

2.1 Multiple hypothesis testing framework

Hypothesis testing is concerned with using observed data to test hypotheses,
i.e., make decisions, regarding properties of the unknown data generating
distribution. Below, we discuss in turn the main ingredients of a multiple
testing problem, namely: data, null and alternative hypotheses, test statis-
tics, multiple testing procedure (MTP) to define rejection regions for the
test statistics, Type I and Type II errors, and adjusted p-values. The cru-
cial choice of a test statistics null distribution is addressed in Section 2.2.
Specific proposals of MTPs are given in Sections 2.3 – 2.5.

Data. Let X1, . . . , Xn be a random sample of n independent and identically
distributed (i.i.d.) random variables, X ∼ P ∈ M, where the data generat-
ing distribution P is known to be an element of a particular statistical model
M (i.e., a set of possibly non-parametric distributions).

Null and alternative hypotheses. In order to cover a broad class of
testing problems, define M null hypotheses in terms of a collection of sub-
models, M(m) ⊆ M, m = 1, . . . ,M , for the data generating distribution
P . The M null hypotheses are defined as H0(m) ≡ I(P ∈ M(m)) and the
corresponding alternative hypotheses as H1(m) ≡ I(P /∈M(m)).
In many testing problems, the submodels concern parameters, i.e., functions
of the data generating distribution P , Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M),
such as means, differences in means, correlations, and parameters in lin-
ear models, generalized linear models, survival models, time-series models,
dose-response models, etc. One distinguishes between two types of testing
problems: one-sided tests, where H0(m) = I(ψ(m) ≤ ψ0(m)), and two-sided
tests, where H0(m) = I(ψ(m) = ψ0(m)). The hypothesized null values,
ψ0(m), are frequently zero.
Let H0 = H0(P ) ≡ {m : H0(m) = 1} = {m : P ∈ M(m)} be the set of
h0 ≡ |H0| true null hypotheses, where we note that H0 depends on the data
generating distribution P . Let H1 = H1(P ) ≡ Hc

0(P ) = {m : H1(m) = 1} =
{m : P /∈ M(m)} be the set of h1 ≡ |H1| = M − h0 false null hypotheses,
i.e., true positives. The goal of a multiple testing procedure is to accurately
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estimate the set H0, and thus its complement H1, while controlling proba-
bilistically the number of false positives at a user-supplied level α.

Test statistics. A testing procedure is a data-driven rule for deciding
whether or not to reject each of the M null hypotheses H0(m), i.e., declare
that H0(m) is false (zero) and hence P /∈M(m). The decisions to reject or
not the null hypotheses are based on an M–vector of test statistics, Tn =
(Tn(m) : m = 1, . . . ,M), that are functions of the data, X1, . . . , Xn. Denote
the typically unknown (finite sample) joint distribution of the test statistics
Tn by Qn = Qn(P ).
Single-parameter null hypotheses are commonly tested using t-statistics, i.e.,
standardized differences,

Tn(m) ≡ Estimator−Null value
Standard error

=
√
n
ψn(m)− ψ0(m)

σn(m)
. (1)

In general, the M–vector ψn = (ψn(m) : m = 1, . . . ,M) denotes an asymp-
totically linear estimator of the parameter M–vector ψ = (ψ(m) : m =
1, . . . ,M) and (σn(m)/

√
n : m = 1, . . . ,M) denote consistent estimators of

the standard errors of the components of ψn. For tests of means, one re-
covers the usual one-sample and two-sample t-statistics, where the ψn(m)
and σn(m) are based on sample means and variances, respectively. In some
settings, it may be appropriate to use (unstandardized) difference statistics,
Tn(m) ≡

√
n(ψn(m) − ψ0(m)) ?. Test statistics for other types of null hy-

potheses include F -statistics, χ2-statistics, and likelihood ratio statistics.

Example: ALL microarray dataset. Suppose that, as in the analysis
of the ALL dataset of Chiaretti et al. ? (See accompanying vignette MT-
PALL), one is interested in identifying genes that are differentially expressed
in two populations of ALL cancer patients, those with normal cytogenetic
test status and those with abnormal test. The data consist of random J–
vectors X, where the first M entries of X are microarray expression mea-
sures on M genes of interest and the last entry, X(J), is an indicator for
cytogenetic test status (1 for normal, 0 for abnormal). Then, the param-
eter of interest is an M–vector of differences in mean expression measures
in the two populations, ψ(m) = E[X(m)|X(J) = 0] − E[X(m)|X(J) = 1],
m = 1, . . . ,M . To identify genes with higher mean expression measures in
the abnormal compared to the normal cytogenetics subjects, one can test
the one-sided null hypotheses H0(m) = I(ψ(m) ≤ 0) vs. the alternative
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hypotheses H1(m) = I(ψ(m) > 0), using two-sample Welch t-statistics

Tn(m) ≡ X̄0,n0(m)− X̄1,n1(m)√
σ2
0,n0

(m)

n0
+

σ2
1,n1

(m)

n1

, (2)

where nk, X̄k,nk
(m), and σ2

k,nk
(m) denote, respectively, the sample size, sam-

ple means, and sample variances, for patients with test status k, k = 0, 1.
The null hypotheses are rejected, i.e., the corresponding genes are declared
differentially expressed, for large values of the test statistics Tn(m).

Multiple testing procedure. A multiple testing procedure (MTP) pro-
vides rejection regions, Cn(m), i.e., sets of values for each test statistic Tn(m)
that lead to the decision to reject the null hypothesis H0(m). In other words,
a MTP produces a random (i.e., data-dependent) subset Rn of rejected hy-
potheses that estimates H1, the set of true positives,

Rn = R(Tn, Q0n, α) ≡ {m : H0(m) is rejected} = {m : Tn(m) ∈ Cn(m)},
(3)

where Cn(m) = C(Tn, Q0n, α)(m), m = 1, . . . ,M , denote possibly random
rejection regions. The long notation R(Tn, Q0n, α) and C(Tn, Q0n, α)(m)
emphasizes that the MTP depends on: (i) the data, X1, . . . , Xn, through
the M–vector of test statistics, Tn = (Tn(m) : m = 1, . . . ,M); (ii) a test
statistics null distribution, Q0n (Section 2.2); and (iii) the nominal level α of
the MTP, i.e., the desired upper bound for a suitably defined false positive
rate.
Unless specified otherwise, it is assumed that large values of the test statistic
Tn(m) provide evidence against the corresponding null hypothesis H0(m),
that is, we consider rejection regions of the form Cn(m) = (cn(m),∞), where
cn(m) are to-be-determined cut-offs, or critical values.

Type I and Type II errors. In any testing situation, two types of er-
rors can be committed: a false positive, or Type I error, is committed by
rejecting a true null hypothesis, and a false negative, or Type II error, is
committed when the test procedure fails to reject a false null hypothesis.
The situation can be summarized by Table 1, below, where the number
of Type I errors is Vn ≡

∑
m∈H0

I(Tn(m) ∈ Cn(m)) = |Rn ∩ H0| and the
number of Type II errors is Un ≡

∑
m∈H1

I(Tn(m) /∈ Cn(m)) = |Rc
n ∩ H1|.

Note that both Un and Vn depend on the unknown data generating distri-
bution P through the unknown set of true null hypotheses H0 = H0(P ).
The numbers h0 = |H0| and h1 = |H1| = M − h0 of true and false null
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hypotheses are unknown parameters, the number of rejected hypotheses
Rn ≡

∑M
m=1 I(Tn(m) ∈ Cn(m)) = |Rn| is an observable random variable,

and the entries in the body of the table, Un, h1 − Un, Vn, and h0 − Vn, are
unobservable random variables (depending on P , through H0(P )).

Table 1: Type I and Type II errors in multiple hypothesis testing.

Null hypotheses
not rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I errors)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II errors)

M −Rn Rn = |Rn| M

Ideally, one would like to simultaneously minimize both the chances of com-
mitting a Type I error and a Type II error. Unfortunately, this is not feasible
and one seeks a trade-off between the two types of errors. A standard ap-
proach is to specify an acceptable level α for the Type I error rate and derive
testing procedures, i.e., rejection regions, that aim to minimize the Type II
error rate, i.e., maximize power, within the class of tests with Type I error
rate at most α.

Type I error rates. When testing multiple hypotheses, there are many
possible definitions for the Type I error rate (and power). Accordingly,
we adopt a general definition of Type I error rates, as parameters, θn =
θ(FVn,Rn), of the joint distribution FVn,Rn of the numbers of Type I errors
Vn and rejected hypotheses Rn. Such a general representation covers the
following commonly-used Type I error rates.

1. Generalized family-wise error rate (gFWER), or probability of at least
(k + 1) Type I errors, k = 0, . . . , (h0 − 1),

gFWER(k) ≡ Pr(Vn > k) = 1− FVn(k). (4)

When k = 0, the gFWER is the usual family-wise error rate, FWER,
controlled by the classical Bonferroni procedure.
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2. Per-comparison error rate (PCER), or expected proportion of Type I
errors among the M tests,

PCER ≡ 1
M
E[Vn] =

1
M

∫
vdFVn(v). (5)

3. Tail probabilities for the proportion of false positives (TPPFP) among
the rejected hypotheses,

TPPFP (q) ≡ Pr(Vn/Rn > q) = 1− FVn/Rn
(q), q ∈ (0, 1), (6)

with the convention that Vn/Rn ≡ 0, if Rn = 0.

4. False discovery rate (FDR), or expected value of the proportion of false
positives among the rejected hypotheses,

FDR ≡ E[Vn/Rn] =
∫
qdFVn/Rn

(q), (7)

again with the convention that Vn/Rn ≡ 0, if Rn = 0 ?.

Note that while the gFWER is a parameter of only the marginal distribu-
tion FVn for the number of Type I errors Vn (tail probability, or survivor
function, for Vn), the TPPFP is a parameter of the joint distribution of
(Vn, Rn) (tail probability, or survivor function, for Vn/Rn). Error rates
based on the proportion of false positives (e.g., TPPFP and FDR) are es-
pecially appealing for the large-scale testing problems encountered in ge-
nomics, compared to error rates based on the number of false positives (e.g.,
gFWER), as they do not increase exponentially with the number of hy-
potheses. The above four error rates are part of the broad class of Type
I error rates considered in Dudoit & van der Laan ? and defined as tail
probabilities Pr(g(Vn, Rn) > q) and expected values E[g(Vn, Rn)] for an ar-
bitrary function g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn. The gFWER and TPPFP correspond to the special cases
g(Vn, Rn) = Vn and g(Vn, Rn) = Vn/Rn, respectively.

Adjusted p-values. The notion of p-value extends directly to multiple test-
ing problems, as follows. Given a MTP, Rn = R(Tn, Q0n, α), the adjusted
p-value, P̃0n(m) = P̃ (Tn, Q0n)(m), for null hypothesis H0(m), is defined as
the smallest Type I error level α at which one would reject H0(m), that is,

P̃0n(m) ≡ inf {α ∈ [0, 1] : Reject H0(m) at MTP level α} (8)
= inf {α ∈ [0, 1] : m ∈ Rn}
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m)} , m = 1, . . . ,M.
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As in single hypothesis tests, the smaller the adjusted p-value, the stronger
the evidence against the corresponding null hypothesis. The main difference
between unadjusted (i.e., for the test of a single hypothesis) and adjusted
p-values is that the latter are defined in terms of the Type I error rate for
the entire testing procedure, i.e., take into account the multiplicity of tests.
For example, the adjusted p-values for the classical Bonferroni procedure for
FWER control are given by P̃0n(m) = min(MP0n(m), 1), where P0n(m) is
the unadjusted p-value for the test of single hypothesis H0(m).
We now have two representations for a MTP, in terms of rejection regions
for the test statistics and in terms of adjusted p-values

Rn = {m : Tn(m) ∈ Cn(m)} = {m : P̃0n(m) ≤ α}. (9)

Again, as in the single hypothesis case, an advantage of reporting adjusted
p-values, as opposed to only rejection or not of the hypotheses, is that the
level α of the test does not need to be determined in advance, that is, results
of the multiple testing procedure are provided for all α. Adjusted p-values
are convenient and flexible summaries of the strength of the evidence against
each null hypothesis, in terms of the Type I error rate for the entire MTP
(gFWER, TPPFP, FDR, or any other suitably defined error rate).

Stepwise multiple testing procedures. One usually distinguishes be-
tween two main classes of multiple testing procedures, single-step and step-
wise procedures. In single-step procedures, each null hypothesis is evaluated
using a rejection region that is independent of the results of the tests of
other hypotheses. Improvement in power, while preserving Type I error
rate control, may be achieved by stepwise procedures, in which rejection of a
particular null hypothesis depends on the outcome of the tests of other hy-
potheses. That is, the (single-step) test procedure is applied to a sequence of
successively smaller nested random (i.e., data-dependent) subsets of null hy-
potheses, defined by the ordering of the test statistics (common cut-offs) or
unadjusted p-values (common-quantile cut-offs). In step-down procedures,
the hypotheses corresponding to the most significant test statistics (i.e.,
largest absolute test statistics or smallest unadjusted p-values) are consid-
ered successively, with further tests depending on the outcome of earlier
ones. As soon as one fails to reject a null hypothesis, no further hypotheses
are rejected. In contrast, for step-up procedures, the hypotheses correspond-
ing to the least significant test statistics are considered successively, again
with further tests depending on the outcome of earlier ones. As soon as one
hypothesis is rejected, all remaining more significant hypotheses are rejected.
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Confidence regions. For the test of single-parameter null hypotheses and
for any Type I error rate of the form θ(FVn), Dudoit & van der Laan ? and
Pollard & van der Laan ? provide results on the correspondence between
single-step MTPs and θ–specific confidence regions.

2.2 Test statistics null distribution

Test statistics null distribution. One of the main tasks in specify-
ing a MTP is to derive rejection regions for the test statistics such that
the Type I error rate is controlled at a desired level α, i.e., such that
θ(FVn,Rn) ≤ α, for finite sample control, or lim supn θ(FVn,Rn) ≤ α, for
asymptotic control. However, one is immediately faced with the prob-
lem that the true distribution Qn = Qn(P ) of the test statistics Tn is
usually unknown, and hence, so are the distributions of the numbers of
Type I errors, Vn =

∑
m∈H0

I(Tn(m) ∈ Cn(m)), and rejected hypotheses,
Rn =

∑M
m=1 I(Tn(m) ∈ Cn(m)). In practice, the test statistics true distribu-

tion Qn(P ) is replaced by a null distribution Q0 (or estimate thereof, Q0n),
in order to derive rejection regions, C(Tn, Q0, α)(m), and resulting adjusted
p-values, P̃ (Tn, Q0)(m).
The choice of null distribution Q0 is crucial, in order to ensure that (fi-
nite sample or asymptotic) control of the Type I error rate under the as-
sumed null distribution Q0 does indeed provide the required control under
the true distribution Qn(P ). For proper control, the null distribution Q0

must be such that the Type I error rate under this assumed null distribu-
tion dominates the Type I error rate under the true distribution Qn(P ).
That is, one must have θ(FVn,Rn) ≤ θ(FV0,R0), for finite sample control, and
lim supn θ(FVn,Rn) ≤ θ(FV0,R0), for asymptotic control, where V0 and R0

denote, respectively, the numbers of Type I errors and rejected hypotheses
under the assumed null distribution Q0.
For error rates θ(FVn), defined as arbitrary parameters of the distribution of
the number of Type I errors Vn, we propose as null distribution the asymp-
totic distribution Q0 of the vector of null value shifted and scaled test statis-
tics ?????:

Zn(m) ≡

√
min

(
1,

τ0(m)
V ar[Tn(m)]

)(
Tn(m) + λ0(m)− E[Tn(m)]

)
. (10)

For the test of single-parameter null hypotheses using t-statistics, the null
values are λ0(m) = 0 and τ0(m) = 1. For testing the equality of K
population means using F -statistics, the null values are λ0(m) = 1 and
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τ0(m) = 2/(K− 1), under the assumption of equal variances in the different
populations. Dudoit et al. ? and van der Laan et al. ? prove that this null
distribution does indeed provide the desired asymptotic control of the Type
I error rate θ(FVn), for general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, F -statistics).
For a broad class of testing problems, such as the test of single-parameter null
hypotheses using t-statistics (as in Equation (1)), the null distribution Q0 is
an M–variate Gaussian distribution with mean vector zero and covariance
matrix Σ∗(P ): Q0 = Q0(P ) ≡ N(0,Σ∗(P )). For tests of means, where the
parameter of interest is the M–dimensional mean vector Ψ(P ) = ψ = E[X],
the estimator ψn is simply the M–vector of sample averages and Σ∗(P ) is the
correlation matrix of X ∼ P , Cor[X]. More generally, for an asymptotically
linear estimator ψn, Σ∗(P ) is the correlation matrix of the vector influence
curve (IC).
Note that the following important points distinguish our approach from
existing approaches to Type I error rate control. Firstly, we are only con-
cerned with Type I error control under the true data generating distribution
P . The notions of weak and strong control (and associated subset pivotal-
ity, Westfall & Young ?, p. 42–43) are therefore irrelevant to our approach.
Secondly, we propose a null distribution for the test statistics (Tn ∼ Q0),
and not a data generating null distribution (X ∼ P0 ∈ ∩M

m=1M(m)). The
latter practice does not necessarily provide proper Type I error control, as
the test statistics’ assumed null distribution Qn(P0) and their true distribu-
tion Qn(P ) may have different dependence structures (in the limit) for the
true null hypotheses H0.

Bootstrap estimation of the test statistics null distribution. In
practice, since the data generating distribution P is unknown, then so is the
proposed null distribution Q0 = Q0(P ). Resampling procedures, such as
bootstrap Procedure 1, below, may be used to conveniently obtain consistent
estimators Q0n of the null distribution Q0 and of the resulting test statistic
cut-offs and adjusted p-values.
Dudoit et al. ? and van der Laan et al. ? show that single-step and step-
down procedures based on consistent estimators of the null distribution Q0

also provide asymptotic control of the Type I error rate. The reader is
referred to these two articles and to Dudoit & van der Laan ? for details
on the choice of null distribution and various approaches for estimating this
null distribution.
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Having selected a suitable test statistics null distribution, there remains
the main task of specifying rejection regions for each null hypothesis, i.e.,
cut-offs for each test statistic. Among the different approaches for defining
rejection regions, we distinguish between single-step vs. stepwise procedures,
and common cut-offs (i.e., the same cut-off c0 is used for each test statis-
tic) vs. common-quantile cut-offs (i.e., the cut-offs are the δ0–quantiles of
the marginal null distributions of the test statistics). The next three sub-
sections discuss three main approaches for deriving rejection regions and
corresponding adjusted p-values: single-step common-cut-off and common-
quantile procedures for control of general Type I error rates θ(FVn) (Section
2.3); step-down common-cut-off (maxT) and common-quantile (minP) pro-
cedures for control of the FWER (Section 2.4); augmentation procedures for
control of the gFWER and TPPFP, based on an initial FWER-controlling
procedure (Section 2.5).
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Procedure 1 [Bootstrap estimation of the null distribution
Q0]

1. Let P ?
n denote an estimator of the data generating distribution

P . For the non-parametric bootstrap, P ?
n is simply the em-

pirical distribution Pn, that is, samples of size n are drawn at
random, with replacement from the observed data X1, . . . , Xn.
For the model-based bootstrap, P ?

n is based on a model M for
the data generating distribution P , such as the family of M–
variate Gaussian distributions.

2. Generate B bootstrap samples, each consisting of n i.i.d. real-
izations of a random variable X# ∼ P ?

n .

3. For the bth bootstrap sample, b = 1, . . . , B, compute an M–
vector of test statistics, T#

n (·, b) = (T#
n (m, b) : m = 1, . . . ,M).

Arrange these bootstrap statistics in an M × B matrix, T#
n =(

T#
n (m, b)

)
, with rows corresponding to the M null hypotheses

and columns to the B bootstrap samples.

4. Compute row means, E[Tn
#(m, ·)], and row variances,

V ar[Tn
#(m, ·)], of the matrix T#

n , to yield estimates of the true
means E[Tn(m)] and variances V ar[Tn(m)] of the test statis-
tics, respectively.

5. Obtain an M × B matrix, Z#
n =

(
Z#

n (m, b)
)
, of null value

shifted and scaled bootstrap statistics Z#
n (m, b), by row-shifting

and scaling the matrix T#
n using the bootstrap estimates of

E[Tn(m)] and V ar[Tn(m)] and the user-supplied null values
λ0(m) and τ0(m). That is, compute

Z#
n (m, b) ≡

√
min

(
1,

τ0(m)
V ar[Tn

#(m, ·)]

)
(11)

×
(
T#

n (m, b) + λ0(m)− E[Tn
#(m, ·)]

)
.

6. The bootstrap estimate Q0n of the null distribution Q0 is the
empirical distribution of the B columns Z#

n (·, b) of matrix Z#
n .
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2.3 Single-step procedures for control of general Type I error
rates θ(FVn)

Dudoit et al. ? and Pollard & van der Laan ? propose single-step common-
cut-off and common-quantile procedures for controlling arbitrary parameters
θ(FVn) of the distribution of the number of Type I errors. The main idea is
to substitute control of the parameter θ(FVn), for the unknown, true distri-
bution FVn of the number of Type I errors, by control of the corresponding
parameter θ(FR0), for the known, null distribution FR0 of the number of
rejected hypotheses. That is, consider single-step procedures of the form
Rn ≡ {m : Tn(m) > cn(m)}, where the cut-offs cn(m) are chosen so that
θ(FR0) ≤ α, for R0 ≡

∑M
m=1 I(Z(m) > cn(m)) and Z ∼ Q0. Among the

class of MTPs that satisfy θ(FR0) ≤ α, Dudoit et al. ? and Pollard & van
der Laan ? propose two procedures, based on common cut-offs and common-
quantile cut-offs, respectively. The procedures are summarized below and
the reader is referred to the articles for proofs and details on the derivation
of cut-offs and adjusted p-values.

Single-step common-cut-off procedure. The set of rejected hypotheses
for the θ–controlling single-step common-cut-off procedure is of the form
Rn ≡ {m : Tn(m) > c0}, where the common cut-off c0 is the smallest (i.e.,
least conservative) value for which θ(FR0) ≤ α.
For gFWER(k) control (special case θ(FVn) = 1 − FVn(k)), the procedure
is based on the (k + 1)st ordered test statistic. Specifically, the adjusted
p-values are given by

p̃0n(m) = PrQ0 (Z◦(k + 1) ≥ tn(m)) , m = 1, . . . ,M, (12)

where Z◦(m) denotes the mth ordered component of Z = (Z(m) : m =
1, . . . ,M) ∼ Q0, so that Z◦(1) ≥ . . . ≥ Z◦(M). For FWER control (k = 0),
the procedure reduces to the single-step maxT procedure, based on the max-
imum test statistic, Z◦(1).

Single-step common-quantile procedure. The set of rejected hypothe-
ses for the θ–controlling single-step common-quantile procedure is of the form
Rn ≡ {m : Tn(m) > c0(m)}, where c0(m) = Q−1

0,m(δ0) is the δ0–quantile of
the marginal null distribution Q0,m of themth test statistic, i.e., the smallest
value c such that Q0,m(c) = PrQ0(Z(m) ≤ c) ≥ δ0 for Z ∼ Q0. Here, δ0 is
chosen as the smallest (i.e., least conservative) value for which θ(FR0) ≤ α.
For gFWER(k) control, the procedure is based on the (k + 1)st ordered
unadjusted p-value. Specifically, let Q̄0,m ≡ 1 − Q0,m denote the survivor
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functions for the marginal null distributions Q0,m and define unadjusted p-
values P0(m) ≡ Q̄0,m(Z(m)) and P0n(m) ≡ Q̄0,m(Tn(m)), for Z ∼ Q0 and
Tn ∼ Qn, respectively. Then, the adjusted p-values for the common-quantile
procedure are given by

p̃0n(m) = PrQ0 (P ◦
0 (k + 1) ≤ p0n(m)) , m = 1, . . . ,M, (13)

where P ◦
0 (m) denotes the mth ordered component of the M–vector of unad-

justed p-values (P0(m) : m = 1, . . . ,M), so that P ◦
0 (1) ≤ . . . ≤ P ◦

0 (M). For
FWER control (k = 0), one recovers the single-step minP procedure, based
on the minimum unadjusted p-value, P ◦

0 (1).

2.4 Step-down procedures for control of the family-wise er-
ror rate

van der Laan et al. ? propose step-down common-cut-off (maxT) and
common-quantile (minP) procedures for controlling the family-wise error
rate, FWER. These procedures are similar in spirit to their single-step coun-
terparts in Section 2.3 (special case θ(FVn) = 1 − FVn(0)), with the impor-
tant step-down distinction that hypotheses are considered successively, from
most significant to least significant, with further tests depending on the out-
come of earlier ones. That is, the test procedure is applied to a sequence
of successively smaller nested random (i.e., data-dependent) subsets of null
hypotheses, defined by the ordering of the test statistics (common cut-offs)
or unadjusted p-values (common-quantile cut-offs).

Step-down common-cut-off (maxT) procedure. Rather than being
based solely on the distribution of the maximum test statistic over all M
hypotheses, the step-down common cut-offs and corresponding adjusted p-
values are based on the distributions of maxima of test statistics over suc-
cessively smaller nested random subsets of null hypotheses. Specifically,
let On(m) denote the indices for the ordered test statistics Tn(m), so that
Tn(On(1)) ≥ . . . ≥ Tn(On(M)). The step-down common-cut-off procedure
is then based on the distributions of maxima of test statistics over the nested
subsets of ordered hypotheses On(h) ≡ {On(h), . . . , On(M)}. The adjusted
p-values for the step-down maxT procedure are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
max

l∈on(h)
Z(l) ≥ tn(on(h))

)}
, (14)

where Z = (Z(m) : m = 1, . . . ,M) ∼ Q0. Taking maxima of the probabili-
ties over h ∈ {1, . . . ,m} enforces monotonicity of the adjusted p-values and
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ensures that the procedure is indeed step-down, that is, one can only reject
a particular hypothesis provided all hypotheses with more significant (i.e.,
larger) test statistics were rejected beforehand.

Step-down common-quantile (minP) procedure. Likewise, the step-
down common-quantile cut-offs and corresponding adjusted p-values are
based on the distributions of minima of unadjusted p-values over successively
smaller nested random subsets of null hypotheses. Specifically, let On(m)
denote the indices for the ordered unadjusted p-values P0n(m), so that
P0n(On(1)) ≤ . . . ≤ P0n(On(M)). The step-down common-quantile pro-
cedure is then based on the distributions of minima of unadjusted p-values
over the nested subsets of ordered hypothesesOn(h) ≡ {On(h), . . . , On(M)}.
The adjusted p-values for the step-down minP procedure are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
min

l∈on(h)
P0(l) ≤ p0n(on(h))

)}
, (15)

where P0(m) = Q̄0,m(Z(m)) and Z = (Z(m) : m = 1, . . . ,M) ∼ Q0.

2.5 Augmentation multiple testing procedures

Dudoit & van der Laan ? and van der Laan et al. ? discuss augmentation
multiple testing procedures (AMTP), obtained by adding suitably chosen null
hypotheses to the set of null hypotheses already rejected by an initial MTP.
Specifically, given any initial procedure controlling the generalized family-
wise error rate, augmentation procedures are derived for controlling Type
I error rates defined as tail probabilities and expected values for arbitrary
functions g(Vn, Rn) of the numbers of Type I errors and rejected hypotheses
(e.g., proportion g(Vn, Rn) = Vn/Rn of false positives among the rejected hy-
potheses). Adjusted p-values for the AMTP are shown to be simply shifted
versions of the adjusted p-values of the original MTP. The important prac-
tical implication of these results is that any FWER-controlling MTP and its
corresponding adjusted p-values, provide, without additional work, multiple
testing procedures controlling a broad class of Type I error rates and their
adjusted p-values. One can therefore build on the large pool of available
FWER-controlling procedures, such as the single-step and step-down maxT
and minP procedures discussed in Sections 2.3 and 2.4, above.
Augmentation procedures for controlling tail probabilities of the number
(gFWER) and proportion (TPPFP) of false positives, based on an ini-
tial FWER-controlling procedure, are treated in detail in van der Laan
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et al. ? and are summarized below. The gFWER and TPPFP corre-
spond to the special cases g(Vn, Rn) = Vn and g(Vn, Rn) = Vn/Rn, re-
spectively. Denote the adjusted p-values for the initial FWER-controlling
procedure by P̃0n(m). Order the M null hypotheses according to these
p-values, from smallest to largest, that is, define indices On(m), so that
P̃0n(On(1)) ≤ . . . ≤ P̃0n(On(M)). Then, for a nominal level α test, the
initial FWER-controlling procedure rejects the Rn null hypotheses

Rn ≡ {m : P̃0n(m) ≤ α}. (16)

Augmentation procedure for controlling the gFWER. For control
of gFWER(k) at level α, given an initial FWER-controlling procedure,
reject the Rn hypotheses specified by this MTP, as well as the next An =
min{k,M − Rn} most significant null hypotheses. The adjusted p-values
P̃+

0n(On(m)) for the new gFWER-controlling AMTP are simply k–shifted
versions of the adjusted p-values of the initial FWER-controlling MTP:

P̃+
0n(On(m)) =

{
0, if m = 1, . . . , k,
P̃0n(On(m− k)), if m = k + 1, . . . ,M.

(17)

That is, the first k adjusted p-values are set to zero and the remaining p-
values are the adjusted p-values of the FWER-controlling MTP shifted by
k. The AMTP thus guarantees at least k rejected hypotheses.

Augmentation procedure for controlling the TPPFP. For control of
TPPFP (q) at level α, given an initial FWER-controlling procedure, reject
the Rn hypotheses specified by this MTP, as well as the next An most
significant null hypotheses,

An = max
{
m ∈ {0, . . . ,M −Rn} :

m

m+Rn
≤ q

}
= min

{⌊
qRn

1− q

⌋
,M −Rn

}
, (18)

where the floor bxc denotes the greatest integer less than or equal to x, i.e.,
bxc ≤ x < bxc+ 1. That is, keep rejecting null hypotheses until the ratio of
additional rejections to the total number of rejections reaches the allowed
proportion q of false positives. The adjusted p-values P̃+

0n(On(m)) for the
new TPPFP-controlling AMTP are simply shifted versions of the adjusted
p-values of the initial FWER-controlling MTP, that is,

P̃+
0n(On(m)) = P̃0n(On(d(1− q)me)), m = 1, . . . ,M, (19)
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where the ceiling dxe denotes the least integer greater than or equal to x,
i.e., dxe − 1 < x ≤ dxe.

FDR-controlling procedures. Given any TPPFP-controlling procedure,
van der Laan et al. ? derive two simple (conservative) FDR-controlling
procedures. The more general and conservative procedure controls the FDR
at nominal level α, by controlling TPPFP (α/2) at level α/2. The less
conservative procedure controls the FDR at nominal level α, by controlling
TPPFP (1−

√
1− α) at level 1−

√
1− α. In what follows, we refer to these

two MTPs as ”conservative” and ”restricted”, respectively. The reader is
referred to the original article for details and proofs of FDR control (Section
2.4, Theorem 3).

3 Software implementation: multtest package

3.1 Overview

The MTPs proposed in Sections 2.3 – 2.5 are implemented in the latest ver-
sion of the Bioconductor R package multtest (version 1.5.0, Bioconductor re-
lease 1.5). New features include: expanded class of tests (e.g., for regression
parameters in linear models and in Cox proportional hazards models); con-
trol of a wider selection of Type I error rates (e.g., gFWER, TPPFP, FDR);
bootstrap estimation of the test statistics null distribution; augmentation
multiple testing procedures; confidence regions for the parameter vector of
interest. Because of their general applicability and novelty, we focus in this
section on MTPs that utilize a bootstrap estimated test statistics null distri-
bution and that are available through the package’s main user-level function:
MTP. Note that for many testing problems, MTPs based on permutation
(rather than bootstrap) estimated null distributions are also available in the
present and earlier versions of multtest. In particular, permutation-based
step-down maxT and minP FWER-controlling MTPs are implemented in
the functions mt.maxT and mt.minP, respectively, and can also be applied
directly through a call to the MTP function.
We stress that all the bootstrap-based MTPs implemented in multtest can be
performed using the main user-level function MTP. Most users will therefore
only need to be familiar with this function. Other functions are provided
primarily for the benefit of more advanced users, interested in extending
the package’s functionality (Section 3.4). For greater detail on multtest
functions, the reader is referred to the package documentation, in the form
of help files, e.g., ? MTP, and vignettes, e.g., openVignette("multtest").
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One needs to specify the following main ingredients when applying a MTP:
the data, X1, . . . , Xn; suitably defined test statistics, Tn, for each of the null
hypotheses under consideration (e.g., one-sample t-statistics, robust rank-
based F -statistics, t-statistics for regression coefficients in Cox proportional
hazards model); a choice of Type I error rate, θ(FVn,Rn), providing an ap-
propriate measure of false positives for the particular testing problem (e.g.,
TPPFP (0.10)); a proper joint null distribution, Q0 (or estimate thereof,
Q0n), for the test statistics (e.g., bootstrap null distribution as in Procedure
1); given the previously defined components, a multiple testing procedure,
Rn = R(Tn, Q0n, α), for controlling the error rate θ(FVn,Rn) at a target level
α. Accordingly, the multtest package has adopted a modular and extensi-
ble approach to the implementation of MTPs, with the following four main
types of functions.

• Functions for computing the test statistics, Tn. These are internal
functions (e.g., meanX, coxY), i.e., functions that are generally not
called directly by the user. As shown in Section 3.2, below, the type
of test statistic is specified by the test argument of the main user-
level function MTP. Advanced users, interested in extending the class
of tests available in multtest, can simply add their own test statistic
functions to the existing library of such internal functions (see Section
3.4, below, for a brief discussion of the closure approach for specifying
test statistics).

• Functions for obtaining the test statistics null distribution, Q0, or an
estimate thereof, Q0n. The main function currently available is the
internal function boot.resample, implementing the non-parametric
version of bootstrap Procedure 1 (Section 2.2).

• Functions for implementing the multiple testing procedure,R(Tn, Q0n, α),
i.e., for deriving rejection regions, confidence regions, and adjusted p-
values. The main function is the user-level wrapper function MTP,
which implements the single-step and step-down maxT and minP pro-
cedures for FWER control (Sections 2.3 and 2.4). The functions
fwer2gfwer, fwer2tppfp, and fwer2fdr implement, respectively, gFWER-
, TPPFP-, and FDR-controlling augmentation multiple testing proce-
dures, based on adjusted p-values from any FWER-controlling proce-
dure, and can be called via the typeone argument to MTP (Section
2.5).

• Functions for numerical and graphical summaries of a MTP. As de-
scribed in Section 3.3, below, a number of summary methods are avail-
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able to operate on objects of class MTP, output from the main MTP
function.

3.2 Resampling-based multiple testing procedures: MTP func-
tion

The main user-level function for resampling-based multiple testing is MTP.
Its input/output and usage are described next.

> library(Biobase)

> library(multtest)

> args(MTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE,
standardize = TRUE, alternative = "two.sided", psi0 = 0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "conservative",
alpha = 0.05, smooth.null = FALSE, nulldist = "boot", B = 1000,
method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE, get.adjp = TRUE,
keep.nulldist = TRUE, seed = NULL)

NULL

INPUT.

Data. The data, X, consist of a J–dimensional random vector, observed
on each of n sampling units (patients, cell lines, mice, etc). These
data can be stored in a J × n matrix, data.frame, or exprs slot of an
object of class exprSet. In some settings, a J–vector of weights may
be associated with each observation, and stored in a J ×n weight ma-
trix, W (or an n–vector W, if the weights are the same for each of the
J variables). One may also observe a possibly censored continuous or
polychotomous outcome, Y, for each sampling unit, as obtained, for ex-
ample, from the phenoData slot of an object of class exprSet. In some
studies, L additional covariates may be measured on each sampling
unit and stored in Z, an n × L matrix or data.frame. When the tests
concern parameters in regression models with covariates from Z (e.g.,
values lm.XvsZ, lm.YvsXZ, and coxph.YvsXZ, for the argument test,
described below), the arguments Z.incl and Z.test specify, respec-
tively, which covariates (i.e., which columns of Z, including Z.test)
should be included in the model and which regression parameter is to
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be tested (only when test="lm.XvsZ"). The covariates can be spec-
ified either by a numeric column index or character string. If X is an
instance of the class exprSet, Y can be a column index or character
string referring to the variable in the data.frame pData(X) to use as
outcome. Likewise, Z.incl and Z.test can be column indices or char-
acter strings referring to the variables in pData(X) to use as covariates.
The data components (X, W, Y, Z, Z.incl, and Z.test) are the first
six arguments to the MTP function. Only X is a required argument; the
others are by default NULL. The argument na.rm allows one to control
the treatment of ”Not Available” or NA values. It is set to TRUE, by
default, so that an observation with a missing value in any of the data
objects’ jth component (j = 1, . . . , J) is excluded from computation
of any of the relevant test statistics.

Test statistics.

The test statistics should be chosen based on the parameter of interest
(e.g., location, scale, or regression parameters) and the hypotheses one
wishes to test. In the current implementation of multtest, the following
test statistics are available through the argument test, with default
value t.twosamp.unequalvar, for the two-sample Welch t-statistic.

• t.onesamp: One-sample t-statistic for tests of means.

• t.twosamp.equalvar: Equal variance two-sample t-statistic for
tests of differences in means.

• t.twosamp.unequalvar: Unequal variance two-sample t-statistic
for tests of differences in means (also known as two-sample Welch
t-statistic).

• t.pair: Two-sample paired t-statistic for tests of differences in
means.

• f: Multi-sample F -statistic for tests of equality of population
means.

• f.block: Multi-sample F -statistic for tests of equality of popu-
lation means in a block design.

• lm.XvsZ: t-statistic for tests of regression coefficients for variable
Z.test in linear models each with outcome X[j,] (j = 1, . . . , J),
and possibly additional covariates Z.incl from the matrix Z (in
the case of no covariates, one recovers the one-sample t-statistic,
t.onesamp).
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• lm.YvsXZ: t-statistic for tests of regression coefficients in linear
models with outcome Y and each X[j,] (j = 1, . . . , J) as covariate
of interest, with possibly other covariates Z.incl from the matrix
Z.

• coxph.YvsXZ: t-statistic for tests of regression coefficients in Cox
proportional hazards survival models with outcome Y and each
X[j,] (j = 1, . . . , J) as covariate of interest, with possibly other
covariates Z.incl from the matrix Z.

Robust, rank-based versions of the above test statistics can be specified
by setting the argument robust to TRUE (the default value is FALSE).
Consideration should be given to whether standardized (Equation (1))
or unstandardized difference statistics are most appropriate (see Pol-
lard & van der Laan ? for a comparison). Both options are available
through the argument standardize, by default TRUE. The type of
alternative hypotheses is specified via the alternative argument: de-
fault value of two.sided, for two-sided test, and values of less or
greater, for one-sided tests. The (common) null value for the param-
eters of interest is specified through the psi0 argument, by default
zero.

Type I error rate. The MTP function controls by default the family-wise
error rate (FWER), or chance of at least one false positive (argument
typeone="fwer"). Augmentation procedures (Section 2.5), controlling
other Type I error rates such as the gFWER, TPPFP, and FDR, can be
specified through the argument typeone. Related arguments include
k and q, for the allowed number and proportion of false positives for
control of gFWER(k) and TPPFP (q), respectively, and fdr.method,
for the type of TPPFP-based FDR-controlling procedure (i.e., "con-
servative" or "restricted" methods). The nominal level of the test
is determined by the argument alpha, by default 0.05. Testing can be
performed for a range of nominal Type I error rates by specifying a
vector of levels alpha.

Test statistics null distribution. In the current implementation of MTP,
the test statistics null distribution is estimated by default using the
non-parametric version of bootstrap Procedure 1 (argument nulld-
ist="boot"). The bootstrap procedure is implemented in the internal
function boot.resample, which calls C to compute test statistics for
each bootstrap sample. The values of the shift (λ0) and scale (τ0)
parameters are determined by the type of test statistics (e.g., λ0 = 0

23



and τ0 = 1 for t-statistics). When csnull=TRUE (default), these values
will be used to center and scale the estimated test statistics distribu-
tion, producing a null distribution. One may specify csnull=FALSE
to compute a non-null test statistics distribution. Permutation null
distributions are also available via nulldist="perm". The number of
resampling steps is specified by the argument B, by default 1,000. Since
the upper tail of a the bootstrap distribution may be difficult to esti-
mate, particularly for small values of B, a kernal density estimator may
be used for the tail of the distribution by setting smooth.null=TRUE
(default is FALSE).

Multiple testing procedures. Several methods for controlling the chosen
Type I error rate are available in multtest.

• FWER-controlling procedures. For FWER control, the MTP func-
tion implements the single-step and step-down (common-cut-off)
maxT and (common-quantile) minP MTPs, described in Sec-
tions 2.3 and 2.4, and specified through the argument method (in-
ternal functions ss.maxT, ss.minP, sd.maxT, and sd.minP). The
default MTP is the single-step maxT procedure (method="ss.maxT"),
since it requires the least computation.

• gFWER-, TPPFP-, and FDR-controlling augmentation proce-
dures. As discussed in Section 2.5, any FWER-controlling MTP
can be trivially augmented to control additional Type I error
rates, such as the gFWER and TPPFP. Two FDR-controlling
procedures can then be derived from the TPPFP-controlling AMTP.
The AMTPs are implemented in the functions fwer2gfwer, fwer2tppfp,
and fwer2fdr, that take FWER adjusted p-values as input and
return augmentation adjusted p-values for control of the gFWER,
TPPFP, and FDR, respectively. Note that the aforementioned
AMTPs can be applied directly via the typeone argument of the
main function MTP.

Parallel processing. MTP can be run on a computer cluster with multiple
nodes. This functionality requires the package snow. In addition, the
packages multtest and Biobase must be installed on each node. MTP
will load these packages as long as they are in the library search path.
Else the user must load the packages on each node. When cluster=1,
computations are performed on a single CPU. To implement boot-
strapping in parallel, the user either sets cluster equal to a cluster
object created using the function makeCluster in snow or specifies the
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integer number of nodes to use in a cluster. For the latter approach,
MTP creates a cluster object with the specified number of nodes for the
user. In this case, the type of interface system to use must be specified
in the type argument. MPI and PVM interfaces require the packages
Rmpi and rpvm, respectively. The number or percentage of bootstrap
iterations to dispatch at one time to each node is specified with the
dispatch argument (default is 5%).

The following example illustrates how to load the snow package, make
a cluster consisting of two nodes, and load Biobase and multtest onto
each node of the cluster using clusterEvalQ. The object cl can be
passed to MTP via the cluster argument.

> library(snow)

> cl <- makeCluster(2, "MPI")

> clusterEvalQ(cl, {

+ library(Biobase)

+ library(multtest)

+ })

Output control. Various arguments are available to control output, i.e.,
specify which combination of the following quantities should be re-
turned: confidence regions (argument get.cr); cut-offs for the test
statistics (argument get.cutoff); adjusted p-values (argument get.adjp);
test statistics null distribution (argument keep.nulldist). Note that
parameter estimates and confidence regions only apply to the test of
single-parameter null hypotheses (i.e., not the F -tests). In addition,
in the current implementation of MTP, parameter confidence regions
and test statistic cut-offs are only provided when typeone="fwer", so
that get.cr and get.cutoff should be set to FALSE when using the
error rates gFWER, TPPFP, or FDR.

Note that the multtest package also provides several simple, marginal FWER-
controlling MTPs, such as the Bonferroni, Holm ?, Hochberg ?, and Šidák ?
procedures, and FDR-controlling MTPs, such as the Benjamini & Hochberg
? and Benjamini & Yekutieli ? procedures. These procedures are available
through the mt.rawp2adjp function, which takes a vector of unadjusted p-
values as input and returns the corresponding adjusted p-values.

OUTPUT.
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The S4 class/method object-oriented programming approach was adopted to
summarize the results of a MTP (Section 3.4). Specifically, the output of the
MTP function is an instance of the class MTP. A brief description of the class
and associated methods is given next. Please consult the documentation for
details, e.g., using class ? MTP and methods ? MTP.

> slotNames("MTP")

[1] "statistic" "estimate" "sampsize" "rawp" "adjp" "conf.reg"
[7] "cutoff" "reject" "nulldist" "call" "seed"

statistic: The numericM–vector of test statistics, specified by the values
of the MTP arguments test, robust, standardize, and psi0. In many
testing problems, M = J = nrow(X).

estimate: For the test of single-parameter null hypotheses using t-statistics
(i.e., not the F -tests), the numeric M–vector of estimated parameters.

sampsize: The sample size, i.e., n = ncol(X).

rawp: The numeric M–vector of unadjusted p-values.

adjp: The numeric M–vector of adjusted p-values (computed only if the
get.adjp argument is TRUE).

conf.reg: For the test of single-parameter null hypotheses using t-statistics
(i.e., not the F -tests), the numeric M × 2× length(alpha) array of
lower and upper simultaneous confidence limits for the parameter vec-
tor, for each value of the nominal Type I error rate alpha (computed
only if the get.cr argument is TRUE).

cutoff: The numeric M× length(alpha) matrix of cut-offs for the test
statistics, for each value of the nominal Type I error rate alpha (com-
puted only if the get.cutoff argument is TRUE).

reject: The M× length(alpha) matrix of rejection indicators (TRUE for
a rejected null hypothesis), for each value of the nominal Type I error
rate alpha.

nulldist: The numeric M×B matrix for the estimated test statistics null
distribution (returned only if keep.nulldist=TRUE; option not cur-
rently available for permutation null distribution, i.e., nulldist="perm").
By default (i.e., for nulldist="boot"), the entries of nulldist are
the null value shifted and scaled bootstrap test statistics, as defined
by Procedure 1.
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call: The call to the function MTP.

seed: An integer for specifying the state of the random number generator
used to create the resampled datasets. The seed can be reused for
reproducibility in a repeat call to MTP. This argument is currently used
only for the bootstrap null distribution (i.e., for nulldist="boot").
See ? set.seed for details.

3.3 Numerical and graphical summaries

The following methods are defined to operate on MTP instances and sum-
marize the results of a MTP.

print: The print method returns a description of an object of class MTP,
including the sample size n, the number M of tested hypotheses, the
type of test performed (value of argument test), the Type I error rate
(value of argument typeone), the nominal level of the test (value of
argument alpha), the name of the MTP (value of argument method),
the call to the function MTP. In addition, this method produces a table
with the class, mode, length, and dimension of each slot of the MTP
instance.

summary: The summary method provides numerical summaries of the results
of a MTP and returns a list with the following three components.

• rejections: A data.frame with the number(s) of rejected hy-
potheses for the nominal Type I error rate(s) specified by the
alpha argument of the function MTP (NULL values are returned
if all three arguments get.cr, get.cutoff, and get.adjp are
FALSE).

• index: A numeric M–vector of indices for ordering the hypothe-
ses according to first adjp, then rawp, and finally the absolute
value of statistic (not printed in the summary).

• summaries: When applicable (i.e., when the corresponding quan-
tities are returned by MTP), a table with six number summaries
of the distributions of the adjusted p-values, unadjusted p-values,
test statistics, and parameter estimates.

plot: The plot method produces the following graphical summaries of the
results of a MTP. The type of display may be specified via the which
argument.
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1. Scatterplot of number of rejected hypotheses vs. nominal Type I
error rate.

2. Plot of ordered adjusted p-values; can be viewed as a plot of Type
I error rate vs. number of rejected hypotheses.

3. Scatterplot of adjusted p-values vs. test statistics (also known as
“volcano plot”).

4. Plot of unordered adjusted p-values.

5. Plot of confidence regions for user-specified parameters, by de-
fault the 10 parameters corresponding to the smallest adjusted
p-values (argument top).

6. Plot of test statistics and corresponding cut-offs (for each value of
alpha) for user-specified hypotheses, by default the 10 hypotheses
corresponding to the smallest adjusted p-values (argument top).

The argument logscale (by default equal to FALSE) allows one to use
the negative decimal logarithms of the adjusted p-values in the second,
third, and fourth graphical displays. Note that some of these plots are
implemented in the older function mt.plot.

[: Subsetting method, which operates selectively on each slot of an MTP
instance to retain only the data related to the specified hypotheses.

as.list: Converts an object of class MTP to an object of class list, with
an entry for each slot.

3.4 Software design

The following features of the programming approach employed in multtest
may be of interest to users, especially those interested in extending the func-
tionality of the package.

Function closures. The use of function closures, in the style of the gene-
filter package, allows uniform data input for all MTPs and facilitates the
extension of the package’s functionality by adding, for example, new types
of test statistics. Specifically, for each value of the MTP argument test, a
closure is defined which consists of a function for computing the test statis-
tic (with only two arguments, a data vector x and a corresponding weight
vector w, with default value of NULL) and its enclosing environment, with
bindings for relevant additional arguments, such as null values psi0, out-
comes Y, and covariates Z. Thus, new test statistics can be added to multtest
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by simply defining a new closure and adding a corresponding value for the
test argument to MTP (existing internal test statistic functions are located
in the file R/statistics.R).

Class/method object-oriented programming. Like many other Bio-
conductor packages, multtest has adopted the S4 class/method object-oriented
programming approach of Chambers ?. In particular, a new class, MTP,
is defined to represent the results of multiple testing procedures, as imple-
mented in the main MTP function. As discussed above, in Section 3.3, several
methods are provided to operate on instances of this class.

Calls to C. Because resampling procedures, such as the non-parametric
bootstrap implemented in multtest, are computationally intensive, care must
be taken to ensure that the resampling steps are not prohibitively slow. The
use of closures for the test statistics, however, prevents writing the entire
program in C. In the current implementation, we have chosen to define the
closure and compute the observed test statistics in R, and then call C (using
the R random number generator) to apply the closure to each bootstrap
resampled dataset. This approach puts the for loops over bootstrap samples
(B) and hypotheses (M) in the C environment, thus speeding up this com-
putationally expensive part of the program. Further optimization for speed
may be investigated for future releases.

4 Discussion

The multtest package implements a broad range of resampling-based multi-
ple testing procedures. Ongoing efforts are as follows.

1. Extending the class of available tests, by adding test statistic closures
for tests of correlations, quantiles, and parameters in generalized linear
models (e.g., logistic regression).

2. Extending the class of resampling-based estimators for the test statis-
tics null distribution (e.g., parametric bootstrap, Bayesian bootstrap).
A closure approach may be considered for this purpose.

3. Providing parameter confidence regions and test statistic cut-offs for
other Type I error rates than the FWER.

4. Implementing the new augmentation multiple testing procedures pro-
posed in Dudoit & van der Laan ? for controlling tail probabilities
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Pr(g(Vn, Rn) > q) for an arbitrary function g(Vn, Rn) of the numbers
of false positives Vn and rejected hypotheses Rn.

5. Providing a formula interface for a symbolic description of the tests to
be performed (cf. model specification in lm).

6. Extending the MTP class to keep track of results for several MTPs.

7. Increasing the computational efficiency of the bootstrap estimation of
the test statistics null distribution.
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