
Using the SRAdb Package to Query the Sequence Read
Archive

Jack Zhu∗and Sean Davis†

Genetics Branch, Center for Cancer Research,
National Cancer Institute,

National Institutes of Health

April 14, 2011

1 Introduction

High throughput sequencing technologies have very rapidly become standard tools in biology.
The data that these machines generate are large, extremely rich. As such, the Sequence
Read Archives (SRA) have been set up at NCBI in the United States, EMBL in Europe,
and DDBJ in Japan to capture these data in public repositories in much the same spirit as
MIAME-compliant microarray databases like NCBI GEO and EBI ArrayExpress.

Accessing data in SRA requires finding it first. This R package provides a convenient and
powerful framework to do just that. In addition, SRAdb features functionality to determine
availability of sequence files and to download files of interest.

SRA does not currently store aligned reads or any other processed data that might rely
on alignment to a reference genome. However, NCBI GEO does often contain aligned reads
for sequencing experiments and the SRAdb package can help to provide links to these data
as well. In combination with the GEOmetadb and GEOquery packages, these data are also,
then, accessible.

2 Getting Started

Since SRA is a continuously growing repository, the SRAdb SQLite file is updated regularly.
The first step, then, is to get the SRAdb SQLite file from the online location. The download
and uncompress steps are done automatically with a single command, getSRAdbFile.

∗zhujack@mail.nih.gov
†sdavis2@mail.nih.gov

1

> library(SRAdb)

> sqlfile <- getSRAdbFile()

The default storage location is in the current working directory and the default filename
is “SRAmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it. Since this SQLite file is of key importance in SRAdb, it is perhaps of
some interest to know some details about the file itself.

> file.info("SRAmetadb.sqlite")

size isdir mode

SRAmetadb.sqlite 704382976 FALSE 644

mtime

SRAmetadb.sqlite 2011-04-14 00:41:37

ctime

SRAmetadb.sqlite 2011-04-14 00:41:37

atime uid gid

SRAmetadb.sqlite 2011-04-14 00:41:37 691 692

uname grname

SRAmetadb.sqlite biocbuild compbio

Then, create a connection for later queries. The standard DBI functionality as imple-
mented in RSQLite function dbConnect makes the connection to the database. The dbDis-

connect function disconnects the connection.

> sra_con <- dbConnect(SQLite(), sqlfile)

For further details, at this time see help(’SRAdb-package’).

3 Using the SRAdb package

3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful. Again, we connect
to the database.

> sra_con <- dbConnect(SQLite(), "SRAmetadb.sqlite")

The dbListTables function lists all the tables in the SQLite database handled by the
connection object sra_con.

> sra_tables <- dbListTables(sra_con)

> sra_tables

2

[1] "col_desc" "data_block"

[3] "experiment" "metaInfo"

[5] "run" "sample"

[7] "sra" "sra_ft"

[9] "sra_ft_content" "sra_ft_segdir"

[11] "sra_ft_segments" "study"

[13] "submission"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(sra_con, "study")

[1] "study_ID" "study_alias"

[3] "study_accession" "study_title"

[5] "study_type" "study_abstract"

[7] "center_name" "center_project_name"

[9] "project_id" "study_description"

[11] "study_url_link" "study_entrez_link"

[13] "study_attribute" "submission_accession"

[15] "sradb_updated"

Sometimes it is useful to get the actual SQL schema associated with a table. As an
example of doing this and using an RSQLite shortcut function, sqliteQuickSQL, we can get
the table schema for the study table.

> sqliteQuickSQL(sra_con, "PRAGMA TABLE_INFO(study)")

cid name type notnull

1 0 study_ID REAL 0

2 1 study_alias TEXT 0

3 2 study_accession TEXT 0

4 3 study_title TEXT 0

5 4 study_type TEXT 0

6 5 study_abstract TEXT 0

7 6 center_name TEXT 0

8 7 center_project_name TEXT 0

9 8 project_id INTEGER 0

10 9 study_description TEXT 0

11 10 study_url_link TEXT 0

12 11 study_entrez_link TEXT 0

13 12 study_attribute TEXT 0

14 13 submission_accession TEXT 0

15 14 sradb_updated TEXT 0

3

dflt_value pk

1 <NA> 0

2 <NA> 0

3 <NA> 0

4 <NA> 0

5 <NA> 0

6 <NA> 0

7 <NA> 0

8 <NA> 0

9 <NA> 0

10 <NA> 0

11 <NA> 0

12 <NA> 0

13 <NA> 0

14 <NA> 0

15 <NA> 0

3.2 Writing SQL queries and getting results

Select 3 records from the study table and show the first 5 columns:

> rs <- dbGetQuery(sra_con, "select * from study limit 3")

> rs[, 1:5]

study_ID study_alias

1 1 Natto BEST195

2 2 Resequence B. subtilis 168

3 3 KU_MeDIPseq_2009

study_accession

1 DRP000001

2 DRP000002

3 DRP000030

study_title

1 Whole genome sequencing of Bacillus subtilis subsp. natto BEST195

2 Whole genome resequencing of Bacillus subtilis subsp. subtilis str. 168

3 Whole-genome DNA methylation analysis in human breast cancer cell lines using MeDIP-seq

study_type

1 Whole Genome Sequencing

2 Whole Genome Sequencing

3 Epigenetics

Get the SRA study accessions and titles from SRA study that study type contains “Tran-
scriptome”. The “%” sign is used in combination with the “like” operator to do a “wildcard”
search for the term “Transcriptome” with any number of characters after it.

4

> rs <- dbGetQuery(sra_con, paste("select study_accession,study_title from study where",

+ "study_description like 'Transcriptome%'",
+ sep = " "))

> rs[1:3,]

study_accession

1 SRP000568

2 SRP000714

3 SRP001122

study_title

1 Highly integrated epigenome maps in Arabidopsis - transcriptome sequencing

2 A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome - Chip-Seq component

3 A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome - RNA-Seq component

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

> getTableCounts <- function(tableName,

+ conn) {

+ sql <- sprintf("select count(*) from %s",

+ tableName)

+ return(dbGetQuery(conn, sql)[1, 1])

+ }

> do.call(rbind, sapply(sra_tables, getTableCounts,

+ sra_con, simplify = FALSE))

[,1]

col_desc 102

data_block 4745

experiment 31637

metaInfo 2

run 77607

sample 108296

sra 82998

sra_ft 82998

sra_ft_content 82998

sra_ft_segdir 21

sra_ft_segments 37849

study 3824

submission 25188

3.3 Conversion of SRA entity types

Large-scale consumers of SRA data might want to convert SRA entity type from one to
others, e.g. finding all experiment accessions (SRX, ERX or DRX) and run accessions (SRR,

5

ERR or DRR) associated with ’SRP001007’. Function sraConvert does the conversion with
a very fast mapping between entity types.

Covert ’SRP001007’ to other possible types in the SRAmetadb.sqlite.

> conversion <- sraConvert(c("SRP001007",

+ "SRP000931"), sra_con = sra_con)

> conversion[1:3,]

study submission sample experiment

1 SRP000931 SRA009053 SRS003453 SRX006122

2 SRP000931 SRA009053 SRS003453 SRX006129

3 SRP000931 SRA009053 SRS003453 SRX006130

run

1 SRR018256

2 SRR018263

3 SRR018264

Check what SRA types and how many entities in each type in the conversion.

> apply(conversion, 2, unique)

$study

[1] "SRP000931" "SRP001007"

$submission

[1] "SRA009053" "SRA009276"

$sample

[1] "SRS003453" "SRS003454" "SRS003455"

[4] "SRS003456" "SRS003457" "SRS003458"

[7] "SRS003459" "SRS003460" "SRS003461"

[10] "SRS003462" "SRS003463" "SRS003464"

[13] "SRS004650"

$experiment

[1] "SRX006122" "SRX006129" "SRX006130"

[4] "SRX006123" "SRX006124" "SRX006125"

[7] "SRX006126" "SRX006127" "SRX006128"

[10] "SRX006131" "SRX006132" "SRX006133"

[13] "SRX006134" "SRX006135" "SRX007396"

$run

[1] "SRR018256" "SRR018263" "SRR018264"

[4] "SRR018257" "SRR018258" "SRR018259"

6

[7] "SRR018260" "SRR018261" "SRR018262"

[10] "SRR018265" "SRR018266" "SRR018267"

[13] "SRR018268" "SRR018269" "SRR020739"

[16] "SRR020740"

3.4 Full text search

Searching by regular table and field specific SQL commands can be very powerful and if
you are familiar with SQL language and the table structure. If not, SQLite has a very
handy module called Full text search (fts3), which allow users to do Google like search with
terms and operators. The function getSRA does Full text search against all fields in a fts3
table with terms constructed with the Standard Query Syntax and Enhanced Query Syntax.
Please see http://www.sqlite.org/fts3.html for detail.

Find all run and study combined records in which any given fields has ’breast’ and ’cancer’
words, including ’breast’ and ’cancer’ are not next to each other:

> rs <- getSRA(search_terms = "breast cancer",

+ out_types = c("run", "study"), sra_con = sra_con)

> dim(rs)

[1] 225 22

If you only wants records containing exact phrase of ’breast cancer’, in which ’breast’ and
’cancer’ have other characters between other than a space:

> rs <- getSRA(search_terms = "\"breast cancer\"",

+ out_types = c("run", "study"), sra_con = sra_con)

> dim(rs)

[1] 182 22

Find all sample records containing words of either ’MCF7’ or ’MCF-7’:

> rs <- getSRA(search_terms = "MCF7 OR \"MCF-7\"",

+ out_types = c("sample"), sra_con = sra_con)

> dim(rs)

[1] 107 10

Find all submissions by GEO:

> rs <- getSRA(search_terms = "submission_center: GEO",

+ out_types = c("submission"), sra_con = sra_con)

> dim(rs)

7

[1] 527 7

Find study records containing a word beginning with ’Carcino’:

> rs <- getSRA(search_terms = "Carcino*",

+ out_types = c("study"), sra_con = sra_con)

> dim(rs)

[1] 24 12

3.5 Get sra or sra-lite data file information

List sra-lite data file names including ftp addresses associated with ”SRX000122”:

> listSRAfile("SRX000122", sra_con = sra_con,

+ sraType = "litesra")

The above function does not check file availability, size and date of the sra or sra-lite
data files on the server, but the function getSRAinfo does this, which is good to know if you
are preparing to download them:

> rs <- getSRAinfo(in_acc = c("SRX000122"),

+ sra_con = sra_con)

> rs[1:3,]

Next you might want to download sra or sra-lite data files from the ftp site. The
getSRAfile function will download all available sra or sra-lite data files associated with
”SRR000648” and ”SRR000657” from NCBI SRA ftp site to a new folder in current directory:

> getSRAfile(in_acc = c("SRR000648", "SRR000657"),

+ sra_con = sra_con, destdir = getwd(),

+ sraType = "litesra")

4 Interactive views of sequence data

Working with sequence data is often best done interactively in a genome browser, a task
not easily done from R itself. We have found the Integrative Genomics Viewer (IGV) a
high-performance visualization tool for interactive exploration of large, integrated datasets,
increasing usefully for visualizing sequence alignments. In SRAdb, functions startIGV,
load2IGV and load2newIGV provide convenient functionality for R to interact with IGV.
Note that for some OS, these functions might not work or work well.

Launch IGV with 2 GB maximum usable memory support:

> startIGV("mm")

8

IGV offers a remort control port that allows R to communicate with IGV. The current
command set is fairly limited, but it does allow for some IGV operations to be performed in
the R console. To utilize this functionality, be sure that IGV is set to allow communication via
the “enable port” option in IGV preferences. To load BAM files to IGV and then manipulate
the window:

> exampleBams = file.path(system.file("extdata",

+ package = "SRAdb"), dir(system.file("extdata",

+ package = "SRAdb"), pattern = "bam$"))

> sock <- IGVsocket()

> IGVgenome(sock, "hg18")

> IGVload(sock, exampleBams)

> IGVgoto(sock, "chr1:1-1000")

> IGVsnapshot(sock)

5 Graphic view of SRA entities

Due to the nature of SRA data and its design, sometimes it is hard to get a whole picture of
the relationship between a set of SRA entities. Functions of entityGraph and sraGraph in
this package generate graphNEL objects with edgemode=’directed’ from input data.frame
or directly from search terms, and then the plot function can easily draw a graph.

Create a graphNEL object from SRA accessions, which are full text search results of
terms ’colon cancer’

> acc <- getSRA(search_terms = "colon cancer",

+ out_types = c("sra"), sra_con = sra_con,

+ acc_only = TRUE)

> g <- entityGraph(acc)

> attrs <- getDefaultAttrs(list(node = list(fillcolor = "lightblue",

+ shape = "ellipse")))

> plot(g, attrs = attrs)

Create a graphNEL object directly from full text search results of terms ’colon cancer’

> g <- sraGraph("colon cancer", sra_con)

> library(Rgraphviz)

> attrs <- getDefaultAttrs(list(node = list(fillcolor = "lightblue",

+ shape = "ellipse")))

> plot(g, attrs = attrs)

6 sessionInfo

> toLatex(sessionInfo())

9

• R version 2.13.0 (2011-04-13), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: DBI 0.2-5, RCurl 1.5-0, RSQLite 0.9-4, SRAdb 1.6.0, bitops 1.0-4.1,
graph 1.30.0

• Loaded via a namespace (and not attached): Biobase 2.12.0, GEOquery 2.18.0,
XML 3.2-0, tools 2.13.0

10

	Introduction
	Getting Started
	Using the SRAdb package
	Interacting with the database
	Writing SQL queries and getting results
	Conversion of SRA entity types
	Full text search
	Get sra or sra-lite data file information

	Interactive views of sequence data
	Graphic view of SRA entities
	sessionInfo

