
RMassBank: The workflow by example

Michael Stravs, Emma Schymanski

April 12, 2014

Contents

1 Introduction 2

2 Installation and loading 2

3 Input files 3

3.1 LC/MS data . 3

3.2 Compound list . 4

3.3 Settings . 4

4 The workflow 9

4.1 Mass spectrometry workflow 9

4.2 MassBank record workflow 16

5 Session information 18

1

1 Introduction

RMassBank is a two-part computational mass spectrometry workflow:

� In the first step, MSMS spectra of compounds are extracted from raw
LC-MS data files, the MSMS spectra are recalibrated using assigned
fragment formulas, and effectively denoised by using only annotated
peaks (plus peaks which can be manually added.)

� In the second step, the processed, recalibrated, cleaned data is pre-
pared for submission to a MassBank database. Compounds are first
automatically annotated using information from the Chemical Trans-
lation Service (CTS). After manually checking and fixing the anno-
tations, the information is compiled together with the spectral data
into MassBank records, which can then be uploaded to a MassBank
database.

This vignette describes basic usage with the standard workflow. The package
is flexible and allows for different advanced use cases. Examples of special-
ized applications of RMassBank are available at the RMassBank message
board hosted by the Metabolomics-Forum: http://www.metabolomics-forum.
com/viewforum.php?f=29.

2 Installation and loading

The library is available from Bioconductor (http://www.bioconductor.
org). In addition to the library itself, it is recommended to install the
OpenBabel chemical toolkit, available from http://www.openbabel.org for
various platforms (or via Linux package distribution systems).

The library is loaded as follows

> library(RMassBank)

The data used in the following example is available as a package RMass-
BankData, which must be installed separately and is loaded using

2

http://www.metabolomics-forum.com/viewforum.php?f=29
http://www.metabolomics-forum.com/viewforum.php?f=29
http://www.bioconductor.org
http://www.bioconductor.org
http://www.openbabel.org

> library(RMassBankData)

3 Input files

3.1 LC/MS data

RMassBank handles high-resolution LC/MS spectra in mzML format in cen-
troid1 or in profile mode. Data in the examples was acquired using an LTQ
Orbitrap XL instrument in profile mode, and converted from profile-mode
RAW into centroid-mode mzML using MSConvertGUI from ProteoWizard.
The settings were as shown in the screenshot below (note the ”Peak Picking”
filter.)

Figure 1: ProteoWiz settings for conversion to mzML

In the standard workflow, the file names are used to identify a compound:
file names must be in the format xxxxxxxx_1234_xxx.mzXML, where the xxx
parts denote anything and the 1234 part denotes the compound ID in the
compound list (see below). Advanced and alternative uses can be imple-
mented; consult the implementation of msms_workflow and findMsMsHR for
more information.

1The term ”centroid” here refers to any kind of data which are not in profile mode, i.e.
don’t have continuous m/z data. It does not refer to the (mathematical) centroid peak,
i.e. the area-weighted mass peak.

3

3.2 Compound list

A compound list in CSV format is required to identify all compounds unam-
biguously. The CSV file is required to have at least the following columns,
which are used for further processing and must be named correctly (but
present in any order): ID, Name, SMILES, RT, CAS. The columns ID and
SMILES must be filled, the other columns must be present in the file but
do not need to be filled. ID specifies an (arbitrary) numeric ID code which
must be ≤ 4 digits long; SMILES specifies a SMILES code with the chemical
structure of the compound (and is used to extract the molecular formula,
for calculation of molecular masses, for database searching in CTS etc.) Al-
though the columns Name, RT, CAS have to be present, the information in
the columns is only used if the cells are filled. RT, if present, specifies the
retention time (in minutes; ± a window specified in the RMassBank options,
see below) where a LC/MS file is searched for the compound spectra. CAS

and Name are used as additional information while retrieving annotations
from CTS. The compound list doesn’t have to be ordered in any particular
way. It can contain large numbers of compounds, even compounds which
will not be actively used by the script (Note: Unused compounds don’t
require a SMILES code, since they will not be accessed.)

An example list is provided with the RMassBankData package, and can be
copied into a local folder, viewed and edited:

> file.copy(system.file("list/NarcoticsDataset.csv",

+ package="RMassBankData"), "./Compoundlist.csv")

[1] TRUE

3.3 Settings

A number of different settings influence RMassBank. They are partly pa-
rameters for data processing and partly constants used for annotation.

A settings template file, to be edited by hand, can be generated using

> RmbSettingsTemplate("mysettings.ini")

4

where mysettings.ini is the file that will be generated. This file should
then be edited. Important settings are:

� deprofile: Whether to use a deprofiling algorithm to work with
profile-mode data. Default is NA for use with centroid-mode data.
Allowed settings for profile-mode data include deprofile.fwhm (full-
width half-maximum algorithm), deprofile.spline (cubic spline al-
gorithm), deprofile.localmax (local maximum). See the respective
help pages for detailed information.

� rtMargin: The deviation allowed for retention times (in minutes) when
extracting spectra from raw data files.

� rtShift: The systematic retention time shift (in minutes) in the LC-
MS data compared to the values in the compound list.

� babeldir: The directory pointing to the OpenBabel binaries.

� use_version: which MassBank data format to use. The default is the
newer version 2; alternatively, the (deprecated) version 1 can be spec-
ified for MassBank servers running old versions of the server software.

� use_rean_peaks: Whether or not peaks from reanalysis should be
used (see below for details.)

� add_annotation: Whether or not fragments should be annotated with
the (tentative) molecular formula in MassBank records.

� annotations: A list of annotation data used in the MassBank records.

– authors, copyright, publication, license, instrument, in-
strument_type, compound_class: values for the corresponding
MassBank fields

– confidence_comment: A commentary field about ”compound con-
fidence” which is added like ”COMMENT: CONFIDENCE stan-
dard compound” in the MassBank record.

– internal_id_fieldname: The name for an internal ID field in
the MassBank record where to store the compound ID (in the
compound list). For internal_id_fieldname = ”MY ID”, the
ID will be stored like ”COMMENT: MY ID 1234”.

– entry_prefix: The (2-letter) prefix for MassBank accession IDs.

5

– ms_type, ionization, lc_*: Annotations for the LC and MS
information fields in the MassBank records.

– ms_dataprocessing: Tags added to describe the data processing.
In addition to the tags specified here, MS$DATA PROCESSING:
WHOLE RMassBank will be added (corresponding to a list(”WHOLE”
= ”RMassBank”) entry for this option.)

� annotator: For advanced users: option to select your own custom
annotator. Check ?annotator.default and the source code for details.

� spectraList: The list of data-dependent scans triggered by a MS1
scan in their order; used for annotation of MassBank records. See the
template file for description.

� accessionNumberShifts: A list defining the starting points for gen-
erating MassBank record accession numbers. RMassBank generates
2-letter + 6-digit accession numbers. The 2-letter code is defined by
annotations$entry_prefix, the first 4 digits are given by the com-
pound ID. The last 2 digits are generated from the position of the spec-
trum in spectraList and the shift given in this option for the selected
ion type. (Example: the compound with ID 2112, processed in ”pNa”
mode ([M+Na]+), will have accession numbers XX211233, XX211234
... etc in for the first, second... spectrum in the data-dependent scan,
if the ”pNa” shift is set to 32.)

� electronicNoise, electronicNoiseWidth: known m/z values of con-
stant electronic noise in the spectral data; and a window (in m/z units)
for exclusion of such peaks from reanalysis. Note that peaks matched
in the first analysis step (see below) are not affected by this (in our
tests, only a very small number of peaks was affected by this.)

� recalibrateBy: Which parameter to use for recalibration: dppm (re-
calibrate the deviation in ppm) or dmz (recalibrate the m/z deviation).

� recalibrateMS1: Whether to recalibrate MS1 data points separately
from MS2 data points ("separate"), with the same recalibration curve
as the MS2 data points ("common") or not at all ("none"). Note that
the MS1 datapoints points will be used to generate the MS2 recal-
ibration curve in all cases (since this makes the recalibration curve
in high-m/z regions better-defined) but may be recalibrated indepen-
dently themselves, if desired.

6

� recalibrator: Sets the functions to use for recalibration. Defaults to
list(MS1="recalibrate.loess", MS2="recalibrate.loess") which
uses a Loess non-parametric fit to generate a recalibration curve. Any
custom function may be specified. The function is expected to accept
a dataset with variables recalfield and mzFound and to return an ob-
ject which can be used with predict(). The input recalfield is the
value to be estimated by recalibration - it will either contain delta ppm
values or absolute mass deviations, depending on the setting for re-

calibrateBy. In addition to recalibrate.loess, recalibrate.MS1
is predefined, which uses a GAM model for recalibration and appears
to work well for pure MS1 datapoints. However, common recalibration
for MS1 and MS2 appears to be the best option in general.

� multiplicityFilter: Define the multiplicity filtering level. Default
is 2, a value of 1 is off (no filtering) and >2 is harsher filtering.

� titleFormat: The title of MassBank records is a mini-summary of
the record, for example ”Dinotefuran; LC-ESI-QFT; MS2; CE: 35%;
R=35000; [M+H]+”. By default, the first compound name CH$NAME,
instrument type AC$INSTRUMENT_TYPE, MS/MS type AC$MASS_SPECTROMETRY:
MS_TYPE, collision energy RECORD_TITLE_CE, resolution AC$MASS_SPECTROMETRY:

RESOLUTION and precursor MS$FOCUSED_ION: PRECURSOR_TYPE are used.
If alternative information is relevant to differentiate acquired spectra,
the title should be adjusted. For example, many TOFs do not have a
resolution setting. See MassBank documentation for more.

� filterSettings: A list of settings that affect the MS/MS processing.

– ppmHighMass, ppmLowMass: values for pre-processing, prior to re-
calibration. The default settings (for e.g. Orbitrap) is 10 ppm for
high mass range, 15 ppm for low mass range (defined by mass-

RangeDivision)

– massRangeDivision: The m/z value defining the split between
ppmHighMass and ppmLowMass above. The default m/z 120 is
recommended for Orbitraps.

– ppmFine: This defines the ppm cut-off post recalibration. The
default value of 5 ppm is recommended for Orbitraps.

– prelimCut, prelimCutRatio: Intensity cut-off and cut-off ratio
(in % of the most intense peak) for pre-processing. Affects peak
selection for the recalibration only. Careful: the default 1e4 for

7

Orbitrap LTQ positive could remove all peaks for TOF data and
will remove too many peaks for Orbitrap LTQ negative mode
spectra!

– specOKLimit: MS/MS must have at least one peak above this
limit present to be processed.

– dbeMinLimit: The minimum allowable ring and double bond
equivalent (DBE) allowed for assigned formulas. Assumes maxi-
mum valences for elements with multiple possible valences. De-
fault is -0.5 (accounting for fragment peaks being ions).

– satelliteMzLimit, satelliteIntLimit: Cut-off m/z and inten-
sity values for satellite peak removal. All peaks within the m/z
(default 0.5) and intensity ratio (default 0.05 or 5 %) of the re-
spective peak will be removed. Applicable to Fourier Transform
instruments (e.g. Orbitrap).

� findMsMsRawSettings: Parameters for adjusting the raw data re-
trieval.

– ppmFine: The ppm error to look for the precursor in the MS1
(parent) spectrum. Default is 10 ppm for Orbitrap.

– mzCoarse: The error to search for the precursor specification in
the MS2 spectrum. This is often only saved to 2 decimal places
and thus inaccurate and may also depend on the isolation window.
The default settings (for e.g. Orbitrap) is m/z=0.5 for mzCoarse.

– fillPrecursorScan: The default value (FALSE) assumes all nec-
essary precursor information was available in the mzML file. A
setting of TRUE tries to fill in the precursor data scan number if
it is missing. Only tested on one case-study so far.

See also the manpage ?RmbSettings for a description of all RMassBank
settings.

8

4 The workflow

4.1 Mass spectrometry workflow

In the first part of the workflow, spectra are extracted from the files and
processed. In the following example, we will process the narcotics spectra
from the RMassBankData package.

For the workflow to work correctly, a settings file (generated as above and
edited accordingly) before must be loaded first.

> loadRmbSettings("mysettings.ini")

(Note: the template file generated by RmbSettingsTemplate() has no Open-
Babel directory specified. Correspondingly, RMassBank will use the CAC-
TUS service instead to generate MOL files. For your actual use, it is strongly
recommended to install OpenBabel and specify its install directory in the
settings! The CACTUS structures are visually less appealing since they have
all hydrogen atoms explicit, and CACTUS is only a backup solution.)

First, create a workspace for the msmsWorkflow:

> w <- newMsmsWorkspace()

Temporary deposit for the script using msmsRead. Build into actual vi-
gnette!

> #####SCRIPT

> library(RMassBank)

> loadRmbSettings("settings_comrecal_QEx_EX.INI")

> loadList("QEx_10_compoundlist.csv")

> msmsmzR <- newMsmsWorkspace()

> msmsXCMS <- newMsmsWorkspace()

> Args <- list(method="centWave", ppm = 5, snthresh = 1.5,

+ peakwidth = c(20,60), integrate = 1, mzdiff = -0.001, mzCenterFun = "meanApex3")

> msmsmzR <- msmsRead(msmsmzR, filetable = "Filelist_QEx.csv", readMethod="mzR", mode="pH", Args=Args)

> datadir <- "/vol/data_extern/emma.schymanski@ufz.de/Qexactive/10_centroided_mzMLs"

9

> files <- list.files(datadir, pattern=".mzML", full.names=TRUE)

> cpdid <- c(3035,2845,3040,3041,139,3046,297,3050,2856,3052)

> msmsXCMS <- msmsRead(msmsXCMS, files=files, cpdids = cpdid, readMethod="xcms",mode="pH",Args=Args)

The full paths of the files must be loaded into the container in the array
files:

> files <- list.files(system.file("spectra", package="RMassBankData"),

+ ".mzML", full.names = TRUE)

> basename(files)

[1] "1_3_Chlorophenyl_piperazin_2818_pos.mzML"

[2] "1_3_Trifluoromethylphenyl_piperazin_2819_pos.mzML"

[3] "1_Benzylpiperazin_2820_pos.mzML"

[4] "Amitriptylin_2821_pos.mzML"

[5] "Amphetamin_2822_pos.mzML"

[6] "Benzoylecgonin_2823_pos.mzML"

[7] "Cocain_2817_pos.mzML"

[8] "Dextromethorphan_2824_pos.mzML"

[9] "EDDP_2_Ethyl_1_5_dimethyl_3_3_diphenylpyrrolinium_2825_pos.mzML"

[10] "Ephedrin_2758_pos.mzML"

[11] "Ketamin_2826_pos.mzML"

[12] "Mephedron_4_Methylmethcathinon_2827_pos.mzML"

[13] "Methadon_2828_pos.mzML"

[14] "Methamphetamin_2829_pos.mzML"

[15] "Naltrexon_2830_pos.mzML"

> # To make the workflow faster here, we use only 2 compounds:

> w@files <- files[1:2]

Note the position of the compound IDs in the filenames. Historically, the
”pos” at the end was used to denote the polarity; it is obsolete now, but the
ID must be terminated with an underscore.

Additionally, the compound list must be loaded using loadList (here, using
the formerly copied list from RMassBankData):

> loadList("./Compoundlist.csv")

10

This creates a variable compoundList in the global environment, which
stores the compound data. Now, we can start the complete workflow to
extract [M+H]+ spectral data. The workflow standard workflow consists of
8 steps.

The argument archivename specifies the prefix under which to store the
analyzed result files. The argument mode specifies the processing mode: pH

(positive H) specifies [M+H]+, pNa specifies [M+Na]+, pM specifies [M]+,
mH and mFA specify [M-H]- and [M+FA]-, respectively. (I apologize for the
naming of pH which has absolutely nothing to do with chemical pH values.)

Basically, this runs through the entire workflow, which is explained in more
detail below:

� Step 1: using the function findMsMsHR, all the files in files are
searched for MS2 spectra of their respective compound. The found
spectra are stored in the array specs.

� Step 2: A molecular formula fit is attempted for every peak, using
the molecular formula of the parent compound as limiting formula,
using the function analyzeMsMs. The results are stored in the array
analyzedSpecs.

� Step 3: The analyzed spectra from the array analyzedSpecs are ag-
gregated into the list aggregatedSpecs. This uses the function ag-

gregateSpectra.

� Step 4: Using the function recalibrateSpectra, a recalibration curve
is calculated from the peaks in aggregatedSpecs, and all spectra from
specs are recalibrated using this curve. The result is stored in recal-

ibratedSpecs. The recalibration curve is stored in rc.

� Step 5: The recalibrated spectra (recalibratedSpecs) are re-analyzed
with analyzeMsMs and the results stored in analyzedRcSpecs.

� Step 6: The reanalyzed recalibrated spectra are aggregated with ag-

gregateSpectra into aggregatedRcSpecs. Unmatched peaks in ag-

gregatedRcSpecs are cleaned from known electronic noise using cleanEl-

noise. A backup copy of all present results is saved as archive-

name.RData.

11

� Step 7: Using reanalyzeFailpeaks, all unmatched peaks from spectra
in aggregatedRcSpecs are reanalyzed, allowing N2O as additional
elements (to account for oxidation products and N2 adducts). The
results are stored in reanalyzedRcSpecs. A backup copy of all present
results is saved as archivename_RA.RData

� Step 8: The function filterMultiplicity is applied to the peaks:
Peaks which occur only once in all analyzed spectra of a compound
are eliminated. The filtered list is stored under refilteredSpecs,
and a final version of all results is saved as archivename_RF.RData.
Additionally, filterMultiplicity creates a CSV file with a list of
(relatively) high-intensity unassigned peaks with the name archive-

name_Failpeaks.csv, which should be manually checked. Peaks to
include must be marked with OK = 1.

The steps can be called individually using the steps parameter of msms_workflow.
Using the newRecalibration parameter, one can specify if RMassBank
should do a new recalibration (default, TRUE) or use the recalibration curve
stored in rc (FALSE). This is useful for re-using a recalibration curve in
the reanalysis of the same data in another mode: After the detection and
processing of all [M+H]+ spectra, which will be present for a large num-
ber of compounds, one can rerun the workflow with newRecalibration =

F, mode="pNa" and reuse the same calibration curve for Na adduct spectra
(which on their own would be too few for a sufficiently good recalibration
curve.) The useRtLimit parameter activates or deactivates the usage of
retention time constraints when searching for spectra with findMsMsHR.

It is useful to perform the workflow in two blocks, the first being step 1-4
and the second being 5-8. After step 4, a graph is displayed which allows
the user to visually evaluate the performance of the recalibration. The top
graphs show the distribution of the mass deviation of MS/MS fragments
from the predicted mass and the recalibration curve calculated from them;
the bottom graphs show the mass deviation of MS precursor ions. The
graph to the left is a complete xy plot while the graph to the right is a 2D
histogram (if the package gplots is installed on the user’s computer).

> w <- msmsWorkflow(w, mode="pH", steps=c(1:4), archivename =

+ "pH_narcotics")

12

●

●

●
●●

●●●●
●

●

●
●

●

● ●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●
●●

●

●● ●
●

●

●
●

●

●

●

●

● ●●
●●●● ●

●

●

●

●

●●

●●●
●
●

●
●●

●

●● ●

●

●

●

● ●

●

●

●
●●

●
●

●

●

●
●●

●

●

●●
●

●

●
●

●

●
●

●
●●●

●

●
●

●

●●
●

●

●

●
●

●

●●●
●●

●

●

●
●

●

●

●●

●

● ●

●●●●●

●●
●

●

●
●●

●

●●●●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●
●

●●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●
●
●●

●

●●●
●●

●

●

● ●

●

●

●
●

●

●

●
● ●

● ● ●
● ●

●

● ●
●

●

●

● ●● ● ●
●

●

●

●
●●
●

●
●●●●

●●
●

●

●
●

●

●

●
●●

●
●

●

●

●●
●●●●

●●●

●

●●●●●● ●●●
●●●

●●● ●●● ●
●

●

●

●

●
●● ●● ●

●

●

●

●

100 150 200

−
10

−
5

0
5

MS2 scatterplot

m/z

δp
pm

100 150 200

−
5

0
5

MS2 density

m/z

δp
pm

●

●

200 210 220 230

2.
0

2.
5

3.
0

MS1 scatterplot

m/z

δp
pm

200 210 220 230

2.
0

2.
5

3.
0

MS1 density

m/z

δp
pm

The recalibration can also be plotted at a later stage:

> plotRecalibration(w)

If you are experimenting with new datasets which might give errors, it is
advised to run the workflow step by step. This is because if an error occurs,
you will lose all intermediate results from the workflow, which might com-
plicate finding the errors. (E.g., if you process steps 2-4 and an error occurs
in step 3, you will lose the results from step 2.)

> w <- msmsWorkflow(w, mode="pH", steps=1)

> w <- msmsWorkflow(w, mode="pH", steps=2)

> w <- msmsWorkflow(w, mode="pH", steps=3)

> # etc.

It can be useful to check if any data is retrieved at step 1:

13

> lapply(w@specs,function(s) s$foundOK)

To check the progress through the workflow, call e.g.:

> findProgress(w)

Note that usually a recalibration curve should be done which >15 com-
pounds, and it will become smoother with more compounds. To show the
curve found with the full dataset, we can load the preprocessed dataset from
the RMassBankData package in another workflow container.

> # In the really evaluated workflow, we do the following:

> # we run steps 1 through 3, load the recalibration curve from a stored workflow

> # and recalibrate the data using that curve.

> storedW <- loadMsmsWorkspace(system.file("results/pH_narcotics_RF.RData",

+ package="RMassBankData"))

Since this recalibration curve was calculated from a MassBank run of the
whole 15 file-dataset, we can copy it into our workspace and use it to recal-
ibrate our data without making a new recalibration curve:

> # Just to display the recalibration curve as calculated from

> # the complete dataset:

> storedW <- msmsWorkflow(storedW, mode="pH", steps=4)

> # Copy the recalibration to workspace w and apply it

> # (no graph displayed here)

> w@rc <- storedW@rc

> w@rc.ms1 <- storedW@rc.ms1

> w <- msmsWorkflow(w, mode="pH", steps=4, archivename =

+ "pH_narcotics", newRecalibration = FALSE)

14

●

●●

●

●

●

●●
●●●

●

●
●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

●●
●
●

●

●●●
●

●

●
●

● ●
●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●●●●●

●

●●
●●

●

●●
●

●
●
●●
●

●

●
●●●●

●
●

●

●

●

●
●●
●

●●
●
●●●

●

●

●

●

●

●
●●

●

●
● ●

●●
● ●

●●

●

●
●● ●●

●
●●

●●
●

● ●●

●

●

●●
●

●
●●
●
●●●

●●●●●
●●●

●

● ●
●

●

●
●

●●
●
●●●●●●●●●●●

●●●
●●

●●

●

●●
●●●●●●●

●● ●

●

●

●

●
●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●
●●

●

●

●

●
●
●

●
●●

●

●

●

●

● ●
●

●
●

●

●

●
●●
●●
●

●

●

●

●
●●

●●
●●
●

●

●●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●●●●●
●

●

●●
●
●●
●●

●

●
●

●
●●●●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●●●
●

●
● ●●

●●

●

●

●● ●
●

●

●●
●

●●●●

●

●●● ●
●

●●

●

● ●●
●
●
●●

●●

●

●●●
●●
●
●●
●
●
●
●●

●

●●
●

●●

●

● ●●

●●

●

●
●●●

●
●

●●●●●●●
●

●●
●
●●●●

●

●

●●●
●●●●●●●●●

●●●●

●
●
●

●
●●●●●●●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●
●

●

●
●

● ● ●●
●
●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●●
● ●

●● ●
●

●

●

●

●

●●●
●

● ●
●●●●●

●

●●●● ●●
●

●

●
●

●

●●●
●

●
●●

● ●●

●

●●●●●●

●

●

●

● ●●

●

●●
●

●●

●
●

●●●●
●●●

●
●●●● ●●

●

●●●
●

●
●
●●

●

●
●●

●

●

●

●
●

●●
●
●

●●●●
●●

●

●

●
●●●

● ●●●●●●
●

●
●●●

●●●●

●●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
● ● ●

●●
●

●

●

● ●
●

●

●●
●

●●
●●●

● ●
●●●●●

●

●●●●
●●

●

●

●●
●

●●
●

●●●●
●

●●

●

●
●

●●●
●●●●●●●

●

●
● ●●

●

●

●
●●
●●
●

●●
●●

●
●

●

●

●●●●

●
●●

●
●●●●

●●●●
●●●●

●

●

●

●
●●
●●
●

●●
●●●●●●

●●●●● ●●●●●●
●●●●●●●●●

●
●

●●●●
●● ● ●●●●

●
●●● ●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●●

●
●

●
●

●

●

●

●

●
●

●

● ●

● ●

●
●

●●
●

●●●

●●
●

●
●

● ●

●●
●
●●

●●●
●
●●●

●●●●
●

●

●
●

●●

●
●
●
●

●
●
●
●
●
●●●

●●●●●
●

● ●

●
●●

●
●
●
●

●●●●●
●
●
●

●
●

●

● ●

●●
●

●

●

●
● ●

●
●
●●

●
●●●

●
● ●

●

●
●●

●●●●
●

●●●
●

●

●●

●
●●

●●
●

●●●
● ● ●

●●

●
●●

●
●

●
●●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●●

●●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●
●●●

●●

●
●●

●●

●

●
●
●●

●●
●

●

●
●
●

●

●

●

●

●●●
●●●

●

●●●●●
●●

●
●●

●

●

●●
●●
●
●●●

●●
●

●

●

●

●
●●

●●

●
●

●●●
●●
●
●●●●

●

●●
●

●●

●

●

●

●

●

●

●● ●●
●

●

●
●

●

●
●

●

● ● ●

●
●●●
●●

●●●●●

●

●

●
●
●

●
● ●

●
●

●
●
●●●
●●

●●●●
●●

●●

●
●●●●

●●
●●●

●

●

●●●
●
●●
●●●

●●●●
●●●

●●
●●

●
●●
●
●●

●●
●●

●

●●
●●

●●●
●●

●●●●●●●
●●●

●●●
● ●●

●

●●●
●●

● ●

● ●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●
●

●
●

●

●

●

●

●

●●●

●

●
●●

●
●●

●

●

●
●

●

●
●

●

●

●●

●
●●

●

●

●●
●●●

●●●●

●

●
●

●

●

●

●

●●

●

●●●
●●●

●

●
●

●●●●●

●
●

●

●

●
●●

●

●
●●

●●

●
●●

●
●

●●
●
●
●

●

●

●●●●

●

●
●●
●●
●
●

●

●

●●

●
●

●
●

●●

●

●

●

●

● ●
●●

●
●

●

●● ●●

●
● ●

●● ●

●

●

●●
●
●
●

●●●●
●●

●

●
●

●●●●●●●
●● ●

●

●●

●
●

●●●

●●●
●●

●

●●●●●●
●
●

●
●●

●

●

●

●●●●
●●●●

●

●

●● ●

●

●●
●●
●

●●
●●

●●●●●●●
●●●

●●●●●●
●
●
●
●●●●●●●●●

●●●●●●●●●●●
●●●
●

●
●●

●
● ●

●●●● ●
●● ●●

●

●

●

●

●●
●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

● ●● ●

●

●●●
●

●

●●

● ●

● ● ●
●● ● ●●

●

●●

●

●

●

●●●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●
●●●

●

●

●●

●

●

●
●

●

●●

●●●

●

●●
● ●●

●

●

●

●

●

●●
●●
●●

●●

●

●

●

●

●
●●

●

●

●●●
●●

●

●

●

●

●

●

●

●●
●
●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●●

●

●

●
●

●●

●

●

●
●

● ●●

●

●
●

●

●

●

●
●

●●
●●●

●

●
● ●

●

●

●
●
●●●

●

●

●●
●

●

●●
●●●●

●●

●

●●●●
●
●●

●●

●●

●
●
●

●

●
●●
●●

●●
●
●

●●

●

●

●

●

●
●
●
●

●●●
●
●●●●●●●

●●●

●

●
●●●●●

●●●●●
●
●●
●

●

●
●●●●●●

●

●
●●
●●●●

●●●●●
●●● ●● ●

●

●
●

●●

●

●
●
●●●●

● ●

●

●

●

●●

●

●
●

●

●

●
●

●
● ●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●
●
●●

●

●

●

●
●
●

●

●

●●●●

●
●
●

●
●

●

●●●

●

●

●

●●
●●●●

●

●●●
●●

●

● ●

●

●
●

●●
● ●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●● ●
●●

●●

●

●

●●●●

●
●●●●

●

●●
●

●

●

●
●

●●●
●●

●●●●
●●● ●

● ●

● ●
●

●
●

●

●●
●

●
●

●

●
● ●

●

●

●

●●
●● ● ●

●

●

●
●●

●

●
●●●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●●●
●
●

●

●
●
●●●●

●
●●●

●

●
●

●

●

●
●●

●
●
●●
●●

●●

●

●
●
●
●●●

●
●●
●●●●●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●●●●●●

●
●

●

●
●
●

●

●

●
●
●
●
●
●

●

●
●

●

●●
● ●

●

●

●
●

●

●

● ●

●● ●● ● ●
●

●

●

●
●●●●●

●●●●●●

●

●● ● ●
●

●

●
●●●●●●●●

●
●●●

●●●
●

●●●●●
●
●●●●

●

● ●

●

●

●●●
●
●
●●●●●

●●
●●
●
●
●●●●●●●

●●● ●
●●

●

●

●

●
●

●●
●●●

●●●●●●
●

●

●●●●●●●●●
●●●●●●●●

●

●
● ●

●●

● ●
●

●

● ● ●

●
●

●

●
●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●●

●●

●

●

●
●

●●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

● ●

●●
●●●●

●

●●

●

●

●
●
●

● ●●
●
●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●●
● ●

●

●●

●

●
●●

●

● ●

●

●

●
●●●●

●

●

●●●●

●●

●

●
●●●

●
●

●
●●
●●●●

●
●

●
●●●

●●●

●

●●

●●
●●●

●●●
●●

●
●●●●

●● ●●
●

●●

●
● ●

● ●

●

●

●

●

●

●
●
●

●
●

●
●

●●
● ● ●

●

●
●

●
●●●●

●

●
●

●

●

●

●●

●

●

●

●
●●●

●●
●

●

●● ●

●

●
●

●●

●

●
●

●

●
●●

●

●

●
●

● ●
●
●
●

●

●

●

●

●●
●
●●

●

●

●

●

●

●●
●●●
●

●●●
●
●

●

●

●●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●
●

●
●

●

●
●

●●
●●●

●

●●●
●

●

●
●
●

●

●
●
●●

●

●

●

●●
●
●●●

●

●

●

●

● ●

●
●

●

●
●

●●
●

●
●●

●

●

●● ●
●

●

●

●
●

●●

●

●●●●
●
●●●

●
●

●
●
●

●

●●
●
●

●
●

●
●●●●●●●●●

●

●

●

●

●●●
●

●●
●●
●

●

●
●●●

●●●
●

●●●●
●
●
●

●
●●

●
●
●●●●●

●

●

●

●

●●

●
●

●
●●●

●●●●●●●
●

●
●

●●
●●

●
●●

●

●●
●

●
●
●

●●●

●●

●

●

●●
●●

●
●●●

●●●●●
●●●

●●●●●●●●
●●●●●●

●
●●

●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●●
● ●

●

●

● ●

●

●

●
●●

●

●

●●●
●

●
●

●

●

●

●
●●●

●

●
●

●

●

● ●

●
●

●

●
●●

●

●●

●
● ●

●

●

●●
●● ●

●

●

●

●

●

●
●
●

●

● ●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●●
●

●

●

●

●
● ● ●

●

●
●●

●
● ● ●

●

●●● ●●●●
● ●●●●●● ●●

●
● ●

●

●●●
●

●●●●● ●●●
● ●●

●

●
●●

●●● ● ●●
●●

●●
●

●

●
●

●●● ●●
●

●

●

50 100 200 300

−
15

−
5

0
5

10
MS2 scatterplot

m/z

δp
pm

100 200 300

−
10

0
5

10

MS2 density

m/z

δp
pm

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

150 200 250 300 350

0
1

2
3

4

MS1 scatterplot

m/z

δp
pm

150 200 250 300

0
1

2
3

4
MS1 density

m/z

δp
pm

The second part of the workflow can then be processed:

> w <- msmsWorkflow(w, mode="pH", steps=c(5:8), archivename =

+ "pH_narcotics")

If the workflow is performed manually, the results can be stored at any time
using

> archiveResults(w, filename)

where the former writes the results to a file and the latter duplicates the R
objects with a prefix in front of their names. (Note that during the whole
workflow, the results are stored automatically after steps 6, 7, and 8 if an
archivename is given. So the archivename) parameter is only pro forma
for the steps 1-5, but can be added for consistency.

15

Result files from the workflow on the RMassBankData narcotics spectra
dataset are included in RMassBankData, including a marked Failpeaks.csv

list.

4.2 MassBank record workflow

An analyzed spectral dataset can then be processed to produce MassBank
records. This is done in two major steps: First, annotations for all com-
pounds are retrieved from the Internet, if they are not already present from
previously compiled spectra (e.g. if an Internet annotation has already been
used to create a [M+H]+ spectrum, it can be reused in the [M-H]- spectrum
automatically.)

First, a workspace for the MassBank results must be created starting from
processed msmsWorkflow results, and potential pre-existing infolists must be
loaded.

To illustrate the workflow, a half-complete annotation list is included in
RMassBankData.

> mb <- newMbWorkspace(w)

> mb <- resetInfolists(mb)

> mb <- loadInfolists(mb, system.file("infolists_incomplete",

+ package="RMassBankData"))

Usually, one would call the function with a personal folder:

> mb <- resetInfolists(mb)

> mb <- loadInfolists(mb, my_folder_with_csv_infolists_inside)

If we checked the Failpeaks.csv from the previous step and found some
important peaks we want to add manually, we can do so and load the peaks
into the additional_peaks array:

> mb <- addPeaks(mb, my_corrected_Failpeaks.csv)

Now, the record generation workflow can be started:

16

> mb <- mbWorkflow(mb, infolist_path="./Narcotics_infolist.csv")

For all the compounds which were not in the infolists in the infolists_incomplete
folder, an entry is fetched and written to Narcotics_infolist.csv (if no
infolist path is specified, the default path is ./infolist.csv.) This file
should then be edited and fixed by hand. The entries don’t have to be com-
plete; mandatory fields are: at least 1 name, the formula, the exact mass,
SMILES code, InChI standard code, InChI standard key. Common errors
which must be fixed by hand: 2 near-identical names in the infolist; a very
high ChemSpider ID where a lower one exists (which is ”better”), a ChEBI
entry saying ”ChEBI” instead of the actual ChEBI code.

CAUTION: At this stage the compound name is taken from the user-provided
compound list and one IUPAC entry from CTS. Please check your compound
list carefully! The original naming system from CTS will be reinstated once
the scoring system is re-included in the new services.

After fixing the CSV infolist, it should be copied into the infolist folder and
the infolist reloaded:

> mb <- resetInfolists(mb)

> mb <- loadInfolists(mb, my_folder_with_csv_infolists_inside)

For simplicity / easy testing, a full list for the narcotics dataset is included
in RMassBankData:

> mb <- resetInfolists(mb)

> mb <- loadInfolists(mb, system.file("infolists", package="RMassBankData"))

When we run the workflow again, the line ”no new data added” means that
the infolists were complete and the workflow can therefore continue.

> mb <- mbWorkflow(mb)

The workflow goes through the following steps:

17

� Step 1: For compound IDs not in a loaded infolist, new data is fetched
from the CTS using the function gather.data and stored in mbdata

in tree-like format.

� Step 2: If new data was retrieved, it is exported to the infolist_path
in flat-table format and the workflow stops, otherwise the workflow
continues.

� Step 3: The infolists loaded with loadInfolists are transformed
into tree-like MassBank compound information with readMbdata and
stored as mbdata_relisted.

� Step 4: Using the function compileRecords, the compound informa-
tion from mbdata_relisted is combined with the spectral data and
peak lists from aggregatedRcSpecs and refilteredRcSpecs to cre-
ate compiled records (stored in compiled). All compiled records with
at least one good spectrum per compound are in compiled_ok.

� Step 5: The function toMassbank converts the records into text-file
arrays, stored in mbfiles.

� Step 6: Molfiles are generated for all compounds using createMolfile

and stored in molfiles.

� Step 7: The data stored in the R variables mbfiles and molfiles is
written to physical files using exportMassbank in a subfolder named
after the MassBank entry prefix.

� Step 8: A list.tsv file is created using makeMollist.

Subsequently, the two folders moldata and recdata can be zipped and up-
loaded. This wasn’t automated because the Windows version of zip needs
additional installed tools.

Note: here, step 6 uses molfile data generated by CACTUS. As stated above,
it is strongly recommended to install OpenBabel and add its path to the
configuration file for use in mbWorkflow step 6.

5 Session information

> sessionInfo()

18

R version 3.1.0 RC (2014-04-02 r65358)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] gplots_2.13.0 RMassBankData_1.0.0 RMassBank_1.6.0

[4] Rcpp_0.11.1

loaded via a namespace (and not attached):

[1] Biobase_2.24.0 BiocGenerics_0.10.0 KernSmooth_2.23-12

[4] RCurl_1.95-4.1 XML_3.98-1.1 bitops_1.0-6

[7] caTools_1.16 codetools_0.2-8 fingerprint_3.5.2

[10] gdata_2.13.3 gtools_3.3.1 iterators_1.0.7

[13] mzR_1.10.0 parallel_3.1.0 png_0.1-7

[16] rJava_0.9-6 rcdk_3.2.3.2 rcdklibs_1.5.4

[19] rjson_0.2.13 tools_3.1.0 yaml_2.1.11

19

	Introduction
	Installation and loading
	Input files
	LC/MS data
	Compound list
	Settings

	The workflow
	Mass spectrometry workflow
	MassBank record workflow

	Session information

