
Introduction to QDNAseq

Ilari Scheinin

June 16, 2014

1 Running QDNAseq

This is a short tutorial on how to use the QDNAseq package. It covers an example
run using the included data set of chromosomes 7–10 of a low grade glioma
(LGG) sample. First step is naturally to load the package.

> library(QDNAseq)

1.1 Bin annotations

Then we need to obtain bin annotations. These are available pre-calculated for
genome build hg19 and bin sizes 1, 5, 10, 15, 30, 50, 100, 500, and 1000 kbp.
They can be downloaded for example with:

> bins <- getBinAnnotations(binSize=15)

Downloading bin annotations for genome hg19, bin size 15kbp,

and experiment type SR50 ...

> bins

QDNAseq bin annotations for Hsapiens, build hg19.

Created by Ilari Scheinin with QDNAseq 0.7.5, 2014-02-06 12:48:04.

An object of class 'AnnotatedDataFrame'

rowNames: 1:1-15000 1:15001-30000 ... Y:59370001-59373566 (206391

total)

varLabels: chromosome start ... use (9 total)

varMetadata: labelDescription

After downloading, the bin annotations can be saved locally with saveRDS,
and in the future be read from the local file with loadRDS instead of relying on
downloading.

If you are working with another genome build (or another species), see the
section on generating the bin annotations.

1.2 Processing bam files

Next step is to load the sequencing data from bam files. This can be done for
example with one of the commands below.

1

> readCounts <- binReadCounts(bins)

> # all files ending in .bam from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, bamfiles='tumor.bam')

> # file 'tumor.bam' from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, path='tumors')

> # all files ending in .bam from the subdirectory 'tumors'

This will return an object of class QDNAseqReadCounts. If the same bam
files will be used as input in future R sessions, option cache=TRUE can be used
to cache intermediate files, which will speed up future analyses. Caching is done
with package R.cache.

For the purpose of this tutorial, we load an example data set of chromosomes
7–10 of low grade glioma sample LGG150.

> data(LGG150)

> readCounts <- LGG150

> readCounts

QDNAseqReadCounts (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: counts

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads used.reads

expected.variance

varMetadata: labelDescription

featureData

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

total)

fvarLabels: chromosome start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

Plot a raw copy number profile (read counts across the genome), and high-
light bins that will be removed with default filtering (Figure 1).

2

> plot(readCounts, logTransform=FALSE, ylim=c(-50, 200))

Plotting sample LGG150 (1 of 1) ...

> highlightFilters(readCounts, logTransform=FALSE,

+ residual=TRUE, blacklist=TRUE)

Highlighted 3,375 bins.

Figure 1: Read counts per bins. Highlighted with red are bins that will be
filtered out.

Apply filters and plot median read counts as a function of GC content and
mappability (Figure 2). As the example data set only contains a subset of the
chromosomes, the distribution looks slithly less smooth than expected for the
entire genome.

> readCountsFiltered <- applyFilters(readCounts,

+ residual=TRUE, blacklist=TRUE)

38,819 total bins

38,819 of which in selected chromosomes

36,722 of which with reference sequence

33,347 final bins

3

> isobarPlot(readCountsFiltered)

Plotting sample LGG150 median read counts

Figure 2: Median read counts per bin shown as a function of GC content and
mappability.

Estimate the correction for GC content and mappability, and make a plot
for the relationship between the observed standard deviation in the data and
its read depth (Figure 3). The theoretical expectation is a linear relationship,
which is shown in the plot with a black line. Samples with low-quality DNA will
be noisier than expected and appear further above the line than good-quality
samples.

> readCountsFiltered <- estimateCorrection(readCountsFiltered)

Calculating correction for GC content and mappability:

Calculating fit for sample LGG150 (1 of 1) ...

Done.

> noisePlot(readCountsFiltered)

4

Figure 3: The relationship between sequence depth and noise.

Next, we apply the correction for GC content and mappability. This will
return a QDNAseqCopyNumbers object, which we then normalize, smooth outliers,
and plot the copy number profile (Figure 4).

> copyNumbers <- correctBins(readCountsFiltered)

> copyNumbers

QDNAseqCopyNumbers (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: copynumber

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

5

total)

fvarLabels: chromosome start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

> copyNumbersNormalized <- normalizeBins(copyNumbers)

Applying median normalization ...

> copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)

Smoothing outliers ...

> plot(copyNumbersSmooth)

Plotting sample LGG150 (1 of 1) ...

Figure 4: Copy number profile after correcting for GC content and mappability.

Data is now ready to be analyzed with a downstream package of choice. For
analysis with an external program or for visualizations in IGV, the data can be
exported to a file.

6

> exportBins(copyNumbersSmooth, file="LGG150.txt")

> exportBins(copyNumbersSmooth, file="LGG150.igv", format="igv")

1.3 Downstream analyses

Segmentation with the CBS algorithm from DNAcopy and calling copy number
aberrations with CGHcall have been implemented for convenience.

> copyNumbersSegmented <- segmentBins(copyNumbersSmooth)

Performing segmentation:

Segmenting: LGG150 (1 of 1) ...

> copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)

> plot(copyNumbersSegmented)

Plotting sample LGG150 (1 of 1) ...

Figure 5: A plot

Tune segmentation parameters and iterate until satisfied. Next, call aberra-
tions, and plot the final results.

7

> copyNumbersCalled <- callBins(copyNumbersSegmented)

[1] "Total number of segments present in the data: 16"

[1] "Number of segments used for fitting the model: 13"

> plot(copyNumbersCalled)

Plotting sample LGG150 (1 of 1) ...

Figure 6: A plot

Finally, for other downstream analyses, such as running CGHregions, it
might be useful to convert to a cghCall object.

> cgh <- makeCgh(copyNumbersCalled)

> cgh

cghCall (storageMode: lockedEnvironment)

assayData: 33347 features, 1 samples

element names: calls, copynumber, probamp, probdloss, probgain, probloss, probnorm, segmented

protocolData: none

phenoData

8

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

featureNames: 7:45001-60000

7:60001-75000 ...

10:135420001-135435000 (33347

total)

fvarLabels: Chromosome Start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

This command can also be used to generate cghRaw or cghSeg objects by
running it before segmentation or calling.

9

2 Generating bin annotations

This section describes how bin annotations have been created for the hg19 build
of the human reference genome, and can be applied for other genome builds
and species. The first step is to create the bins based on chromosome sizes, and
calculate their GC content and proportion of characterized nucletodies (non-N
bases in the reference sequence). For this, the corresponding BSgenome package
is needed.

> # load required packages for human reference genome build hg19

> library(QDNAseq)

> library(Biobase)

> library(BSgenome.Hsapiens.UCSC.hg19)

> # set the bin size

> binSize <- 15

> # create bins from the reference genome

> bins <- createBins(bsgenome=BSgenome.Hsapiens.UCSC.hg19, binSize=binSize)

The result is a data.frame with columns chromosome, start, end, gc, and
bases. Next step is to calculate the average mappabilities, which requires a
mappability file in the bigWig format and the bigWigAverageOverBed binary.
The mappability file can be generated with the GEM library tools from the
reference genome sequence. Or it might be available directly, as was the case for
hg19, and file wgEncodeCrgMapabilityAlign50mer.bigWig downloaded from
ENCODE’s download section of the UCSC Genome Browser. The bigWigAv-

erageOverBed binary can also be downloaded from UCSC Genome Browser’s
Other utilities section.

> # calculate mappabilites per bin from ENCODE mapability tracks

> bins$mappability <- calculateMappability(bins,

+ bigWigFile='/path/to/wgEncodeCrgMapabilityAlign50mer.bigWig',

+ bigWigAverageOverBed='/path/to/bigWigAverageOverBed')

If there are genomic regions that should excluded from analyses, such as EN-
CODE’s Blacklisted Regions, the percentage overlap between these regions can
be calculated for each bin as follows. The regions to be excluded need to be in
the BED format, like files wgEncodeDacMapabilityConsensusExcludable.bed

and wgEncodeDukeMapabilityRegionsExcludable.bed that were downloaded
from ENCODE’s download section of the UCSC Genome Browser for hg19.

> # calculate overlap with ENCODE blacklisted regions

> bins$blacklist <- calculateBlacklist(bins,

+ bedFiles=c('/path/to/wgEncodeDacMapabilityConsensusExcludable.bed',

+ '/path/to/wgEncodeDukeMapabilityRegionsExcludable.bed'))

To calculate median residuals of the LOESS fit from a control dataset, the
following command can be used. For the pre-generated annotations, the control
set used is 38 samples from the 1000 Genomes project. See the next section on
how those were downloaded.

10

http://gemlibrary.sourceforge.net/
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://hgdownload.soe.ucsc.edu/admin/exe/
http://hgdownload.soe.ucsc.edu/admin/exe/
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability

> # load data for the 1000 Genomes (or similar) data set, and generate residuals

> ctrl <- binReadCounts(bins,

+ path='/path/to/control-set/bam/files')

> ctrl <- applyFilters(ctrl, residual=FALSE, blacklist=FALSE,

+ mappability=FALSE, bases=FALSE)

> bins$residual <- iterateResiduals(ctrl)

The column use specifies whether each bin should be used for subsequent
analyses by default. The command applyFilters will change its value accord-
ingly. By default, bins in the sex chromosomes, or with only uncharacterized
nucleotides (N’s) in their reference sequence, are flagged for exlusion.

> # by default, use all autosomal bins that have a reference sequence

> # (i.e. not only N's)

> bins$use <- bins$chromosome %in% as.character(1:22) & bins$bases > 0

Optionally, the resulting data.frame can be converted to an Annotate-

DataFrame and metadata added for the columns.

> # convert to AnnotatedDataFrame and add metadata

> bins <- AnnotatedDataFrame(bins,

+ varMetadata=data.frame(labelDescription=c(

+ 'Chromosome name',

+ 'Base pair start position',

+ 'Base pair end position',

+ 'Percentage of non-N nucleotides (of full bin size)',

+ 'Percentage of C and G nucleotides (of non-N nucleotides)',

+ 'Average mappability of 50mers with a maximum of 2 mismatches',

+ 'Percent overlap with ENCODE blacklisted regions',

+ 'Median loess residual from 1000 Genomes (50mers)',

+ 'Whether the bin should be used in subsequent analysis steps'),

+ row.names=colnames(bins)))

For the pre-generated annotations, some additional descriptive metadata has
also been added.

> attr(bins, "QDNAseq") <- list(

+ author="Ilari Scheinin",

+ date=Sys.time(),

+ organism="Hsapiens",

+ build="hg19",

+ version=packageVersion("QDNAseq"),

+ url=paste0(

+ "http://cdn.bitbucket.org/ccagc/qdnaseq/downloads/QDNAseq.hg19.",

+ binsize, "kbp.SR50.rds"),

+ md5=digest::digest(bins@data),

+ sessionInfo=sessionInfo())

11

3 Downloading 1000 Genomes Samples

This section defines the criteria that were used to download samples from the
1000 Genomes project for the pre-generated bin annotations.

> # download table of samples

> server <- "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/"

> g1k <- read.table(paste0(server, "sequence.index"),

+ header=TRUE, sep="\t", as.is=TRUE, fill=TRUE)

> # keep cases that are Illumina, low coverage, single-read, and not withdrawn

> g1k <- g1k[g1k$INSTRUMENT_PLATFORM == 'ILLUMINA',]

> g1k <- g1k[g1k$ANALYSIS_GROUP == 'low coverage',]

> g1k <- g1k[g1k$LIBRARY_LAYOUT == 'SINGLE',]

> g1k <- g1k[g1k$WITHDRAWN == 0,]

> # keep cases with read lengths of at least 50 bp

> g1k <- g1k[!g1k$BASE_COUNT %in% c("not available", ""),]

> g1k$BASE_COUNT <- as.numeric(g1k$BASE_COUNT)

> g1k$READ_COUNT <- as.integer(g1k$READ_COUNT)

> g1k$readLength <- g1k$BASE_COUNT / g1k$READ_COUNT

> g1k <- g1k[g1k$readLength > 50,]

> # keep samples with a minimum of one million reads

> readCountPerSample <- aggregate(g1k$READ_COUNT,

+ by=list(sample=g1k$SAMPLE_NAME), sum)

> g1k <- g1k[g1k$SAMPLE_NAME %in%

+ readCountPerSample$sample[readCountPerSample$x >= 1e6],]

> g1k$fileName <- basename(g1k$FASTQ_FILE)

> # download fastq files

> for (i in rownames(g1k)) {

+ sourceFile <- paste0(server, g1k[i, "FASTQ_FILE"])

+ destFile <- g1k[i, "fileName"]

+ if (!file.exists(destFile))

+ download.file(sourceFile, destFile)

+ }

Next, reads were trimmed to 50 bp, and the multiple files for each sample
(as defined by column SAMPLE NAME) were combined by concatenating the
FASTQ together. Finally, they were aligned with BWA allowing two mismatches
and end-trimming of bases with qualities below 40 (options -n 2 -q 40).

4 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 3.1.0 RC (2014-04-02 r65358)

Platform: i386-w64-mingw32/i386 (32-bit)

12

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices

[4] utils datasets methods

[7] base

other attached packages:

[1] QDNAseq_1.0.5

loaded via a namespace (and not attached):

[1] Biobase_2.24.0

[2] BiocGenerics_0.10.0

[3] Biostrings_2.32.0

[4] CGHbase_1.24.0

[5] CGHcall_2.26.0

[6] DNAcopy_1.38.1

[7] GenomeInfoDb_1.0.2

[8] GenomicRanges_1.16.3

[9] IRanges_1.22.9

[10] R.methodsS3_1.6.1

[11] R.oo_1.18.0

[12] R.utils_1.32.4

[13] Rsamtools_1.16.1

[14] XVector_0.4.0

[15] bitops_1.0-6

[16] impute_1.38.1

[17] limma_3.20.5

[18] marray_1.42.0

[19] matrixStats_0.10.0

[20] parallel_3.1.0

[21] stats4_3.1.0

[22] tools_3.1.0

[23] zlibbioc_1.10.0

13

	Running QDNAseq
	Bin annotations
	Processing bam files
	Downstream analyses

	Generating bin annotations
	Downloading 1000 Genomes Samples
	Session Information

