
The qcmetrics infrastructure for

quality control and automatic

reporting

Laurent Gatto∗

Computational Proteomics Unit

Cambridge Center for Proteomics

University of Cambridge

April 11, 2014

The qcmetrics package is a framework that provides simple data con-

tainers for quality metrics and support for automatic report genera-

tion. This document briefly illustrates the core data structures and then

demonstrates the generation and automation of quality control reports

for microarray and proteomics data.

Keywords : Bioinformatics, Quality control, reporting, visualisation

∗lg390@cam.ac.uk

1

mailto:lg390@cam.ac.uk

Contents

1 Introduction 2

2 The QC classes 3

2.1 The QcMetric class . 3

2.2 The QcMetrics class . 5

3 Creating QC pipelines 6

3.1 Microarray degradation . 6

3.2 A wrapper function . 10

3.3 Proteomics raw data . 11

3.4 Processed 15N labelling data . 16

4 Report generation 23

4.1 Custom reports . 23

4.2 New report types . 27

5 QC packages 27

5.1 A simple RNA degradation package 27

5.2 A QC pipeline repository . 28

6 Conclusions 28

1 Introduction

Quality control (QC) is an essential step in any analytical process. Data of poor

quality can at best lead to the absence of positive results or, much worse, false

positives that stem from uncaught faulty and noisy data and much wasted resources

in pursuing red herrings.

Quality is often a relative concept that depends on the nature of the biological

sample, the experimental settings, the analytical process and other factors. Re-

search and development in the area of QC has generally lead to two types of work

being disseminated. Firstly, the comparison of samples of variable quality and the

identification of metrics that correlate with the quality of the data. These quality

metrics could then, in later experiments, be used to assess their quality. Secondly,

the design of domain-specific software to facilitate the collection, visualisation and

interpretation of various QC metrics is also an area that has seen much development.

QC is a prime example where standardisation and automation are of great benefit.

While a great variety of QC metrics, software and pipelines have been described for

any assay commonly used in modern biology, we present here a different tool for

2

QC, whose main features are flexibility and versatility. The qcmetrics package is a

general framework for QC that can accommodate any type of data. It provides a

flexible framework to implement QC items that store relevant QC metrics with a

specific visualisation mechanism. These individual items can be bundled into higher

level QC containers that can be readily used to generate reports in various formats.

As a result, it becomes easy to develop complete custom pipelines from scratch

and automate the generation of reports. The pipelines can be easily updated to

accommodate new QC items of better visualisation techniques.

Section 2 provides an overview of the framework. In section 3, we use microarray

(subsection 3.1) and proteomics data (subsection 3.3) to demonstrate the elaboration

of QC pipelines: how to create individual QC objects, how to bundle them to create

sets of QC metrics and how to generate reports in multiple formats. We also show

how the above steps can be fully automated through simple wrapper functions in

section 3.2. Although kept simple in the interest of time and space, these examples

are meaningful and relevant. In section 4, we provide more detail about the report

generation process, how reports can be customised and how new exports can be

contributed. We proceed in section 5 to the consolidation of QC pipelines using R

and elaborate on the development of dedicated QC packages with qcmetrics.

2 The QC classes

The package provides two types of QC containers. The QcMetric class stores data

and visualisation functions for single metrics. Several such metrics can be bundled

into QcMetrics instances, that can be used as input for automated report genera-

tion. Below, we will provide a quick overview of how to create respective QcMetric

and QcMetrics instances. More details are available in the corresponding documen-

tations.

2.1 The QcMetric class

A QC metric is composed of a description (name in the code chunk below), some

QC data (qcdata) and a status that defines if the metric is deemed of acceptable

quality (coded as TRUE), bad quality (coded as FALSE) or not yet evaluated (coded

as NA). Individual metrics can be displayed as a short textual summary or plotted.

To do the former, one can use the default show method.

library("qcmetrics")

qc <- QcMetric(name = "A test metric")

qcdata(qc, "x") <- rnorm(100)

3

qcdata(qc) ## all available qcdata

[1] "x"

summary(qcdata(qc, "x")) ## get x

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.210 -0.494 0.114 0.109 0.692 2.400

show(qc) ## or just qc

Object of class "QcMetric"

Name: A test metric

Status: NA

Data: x

status(qc) <- TRUE

qc

Object of class "QcMetric"

Name: A test metric

Status: TRUE

Data: x

Plotting QcMetric instances requires to implement a plotting method that is

relevant to the data at hand. We can use a plot replacement method to define our

custom function. The code inside the plot uses qcdata to extract the relevant QC

data from object that is then passed as argument to plot and uses the adequate

visualisation to present the QC data.

plot(qc)

Warning: No specific plot function defined

plot(qc) <-

function(object, ...) boxplot(qcdata(object, "x"), ...)

plot(qc)

4

−
2

−
1

0
1

2

2.2 The QcMetrics class

A QcMetrics object is essentially just a list of individual QcMetric instances. It

is also possible to set a list of metadata variables to describe the source of the QC

metrics. The metadata can be passed as an QcMetadata object (the way it is stored

in the QcMetrics instance) or directly as a named list. The QcMetadata is itself

a list and can be accessed and set with metadata or mdata. When accessed, it is

returned and displayed as a list.

qcm <- QcMetrics(qcdata = list(qc))

qcm

Object of class "QcMetrics"

containing 1 QC metrics.

and no metadata variables.

metadata(qcm) <- list(author = "Prof. Who",

lab = "Big lab")

qcm

Object of class "QcMetrics"

containing 1 QC metrics.

and 2 metadata variables.

5

mdata(qcm)

$author

[1] "Prof. Who"

##

$lab

[1] "Big lab"

The metadata can be updated with the same interface. If new named items are

passed, the metadata is updated by addition of the new elements. If a named item

is already present, its value gets updated.

metadata(qcm) <- list(author = "Prof. Who",

lab = "Cabin lab",

University = "Universe-ity")

mdata(qcm)

$author

[1] "Prof. Who"

##

$lab

[1] "Cabin lab"

##

$University

[1] "Universe-ity"

The QcMetrics can then be passed to the qcReport method to generate reports,

as described in more details below.

3 Creating QC pipelines

3.1 Microarray degradation

We will use the refA Affymetrix arrays from the MAQCsubsetAFX package as an

example data set and investigate the RNA degradation using the AffyRNAdeg from

affy (Gautier et al., 2004) and the actin and GAPDH 3′

5′
ratios, as calculated in the

yaqcaffy package (Gatto). The first code chunk demonstrate how to load the data

and compute the QC data1.

1The pre-computed objects can be directly loaded with load(system.file("extdata/deg.rda",

package = "qcmetrics")) and load(system.file("extdata/deg.rda", package =

"qcmetrics")).

6

library("MAQCsubsetAFX")

data(refA)

library("affy")

deg <- AffyRNAdeg(refA)

library("yaqcaffy")

yqc <- yaqc(refA)

We then create two QcMetric instances, one for each of our quality metrics.

qc1 <- QcMetric(name = "Affy RNA degradation slopes")

qcdata(qc1, "deg") <- deg

plot(qc1) <- function(object, ...) {
x <- qcdata(object, "deg")

nms <- x$sample.names

plotAffyRNAdeg(x, col = 1:length(nms), ...)

legend("topleft", nms, lty = 1, cex = 0.8,

col = 1:length(nms), bty = "n")

}
status(qc1) <- TRUE

qc1

Object of class "QcMetric"

Name: Affy RNA degradation slopes

Status: TRUE

Data: deg

qc2 <- QcMetric(name = "Affy RNA degradation ratios")

qcdata(qc2, "yqc") <- yqc

plot(qc2) <- function(object, ...) {
par(mfrow = c(1, 2))

yaqcaffy:::.plotQCRatios(qcdata(object, "yqc"), "all", ...)

}
status(qc2) <- FALSE

qc2

Object of class "QcMetric"

Name: Affy RNA degradation ratios

Status: FALSE

Data: yqc

7

Then, we combine the individual QC items into a QcMetrics instance.

maqcm <- QcMetrics(qcdata = list(qc1, qc2))

maqcm

Object of class "QcMetrics"

containing 2 QC metrics.

and no metadata variables.

With our QcMetrics data, we can easily generate quality reports in several differ-

ent formats. Below, we create a pdf report, which is the default type. Using type

= "html" would generate the equivalent report in html format. See ?qcReport for

more details.

qcReport(maqcm, reportname = "rnadeg", type = "pdf")

The resulting report is shown below. Each QcMetric item generates a section

named according to the object’s name. A final summary section shows a table with

all the QC items and their status. The report concludes with a detailed session

information section.

In addition to the report, it is of course advised to store the actual QcMetrics

object. This is most easily done with the R save/load and saveRDS/readRDS func-

tions. As the data and visualisation methods are stored together, it is possible to

reproduce the figures from the report or further explore the data at a later stage.

8

Quality control report generated with qcmetrics

biocbuild

April 11, 2014

1 Affy RNA degradation slopes

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

3 QC summary

name status
1 Affy RNA degradation slopes TRUE
2 Affy RNA degradation ratios FALSE

4 Session information

• R version 3.1.0 RC (2014-04-02 r65358), x86_64-apple-darwin10.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: affy 1.42.0, AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0, gcrma 2.36.0,
genefilter 1.46.0, GenomeInfoDb 1.0.0, ggplot2 0.9.3.1, knitr 1.5, MAQCsubsetAFX 1.0.14,
MSnbase 1.12.0, mzR 1.10.0, qcmetrics 1.2.0, Rcpp 0.11.1, RforProteomics 1.0.17, simpleaffy 2.40.0,
xtable 1.7-3, yaqcaffy 1.24.0

• Loaded via a namespace (and not attached): affyio 1.32.0, annotate 1.42.0, BiocInstaller 1.14.0,
Biostrings 2.32.0, codetools 0.2-8, colorspace 1.2-4, DBI 0.2-7, dichromat 2.0-0, digest 0.6.4,
doParallel 1.0.8, evaluate 0.5.3, foreach 1.4.2, formatR 0.10, grid 3.1.0, gtable 0.1.2, highr 0.3,
impute 1.38.0, IRanges 1.21.45, iterators 1.0.7, labeling 0.2, lattice 0.20-29, limma 3.20.0, MASS 7.3-31,
munsell 0.4.2, mzID 1.2.0, Nozzle.R1 1.1-1, pander 0.3.8, pcaMethods 1.54.0, plyr 1.8.1,
preprocessCore 1.26.0, proto 0.3-10, R.methodsS3 1.6.1, R.oo 1.18.0, R.utils 1.29.8,
RColorBrewer 1.0-5, RCurl 1.95-4.1, reshape2 1.2.2, rpx 1.0.0, RSQLite 0.11.4, scales 0.2.3,
splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7, tools 3.1.0, vsn 3.32.0, XML 3.98-1.1,
XVector 0.4.0, zlibbioc 1.10.0

3

3.2 A wrapper function

Once an appropriate set of quality metrics has been identified, the generation of the

QcMetrics instances can be wrapped up for automation.

rnadeg

function (input, status, type, reportname = "rnadegradation")

{

suppressPackageStartupMessages(library("affy"))

suppressPackageStartupMessages(library("yaqcaffy"))

if (is.character(input))

input <- ReadAffy(input)

qc1 <- QcMetric(name = "Affy RNA degradation slopes")

qcdata(qc1, "deg") <- AffyRNAdeg(input)

plot(qc1) <- function(object) {

x <- qcdata(object, "deg")

nms <- x$sample.names

plotAffyRNAdeg(x, cols = 1:length(nms))

legend("topleft", nms, lty = 1, cex = 0.8, col = 1:length(nms),

bty = "n")

}

if (!missing(status))

status(qc1) <- status[1]

qc2 <- QcMetric(name = "Affy RNA degradation ratios")

qcdata(qc2, "yqc") <- yaqc(input)

plot(qc2) <- function(object) {

par(mfrow = c(1, 2))

yaqcaffy:::.plotQCRatios(qcdata(object, "yqc"), "all")

}

if (!missing(status))

status(qc2) <- status[2]

qcm <- QcMetrics(qcdata = list(qc1, qc2))

if (!missing(type))

qcReport(qcm, reportname, type = type, title = "Affymetrix RNA degradation report")

invisible(qcm)

}

<environment: namespace:qcmetrics>

It is now possible to generate a QcMetrics object from a set of CEL files or

directly from an affybatch object. The status argument allows to directly set the

10

statuses of the individual QC items; these can also be set later, as illustrated below.

If a report type is specified, the corresponding report is generated.

maqcm <- rnadeg(refA)

status(maqcm)

[1] NA NA

check the QC data

(status(maqcm) <- c(TRUE, FALSE))

[1] TRUE FALSE

The report can be generated manually with qcReport(maqcm) or directly with

the wrapper function as follows:

maqcm <- rnadeg(refA, type = "pdf")

3.3 Proteomics raw data

To illustrate a simple QC analysis for proteomics data, we will download data set

PXD00001 from the ProteomeXchange repository in the mzXML format (Pedrioli et al.,

2004). The MS2 spectra from that mass-spectrometry run are then read into R 2 and

stored as an MSnExp experiment using the readMSData function from the MSnbase

package (Gatto and Lilley, 2012).

library("RforProteomics")

msfile <- getPXD000001mzXML()

library("MSnbase")

exp <- readMSData(msfile, verbose = FALSE)

The QcMetrics will consist of 3 items, namely a chromatogram constructed with

the MS2 spectra precursor’s intensities, a figure illustrating the precursor charges

in the MS space and an m
z

delta plot illustrating the suitability of MS2 spectra for

identification (see ?plotMzDelta or (Foster et al., 2011)).

2In the interest of time, this code chunk has been pre-computed and a subset (1 in
3) of the exp instance is distributed with the package. The data is loaded with
load(system.file("extdata/exp.rda", package = "qcmetrics")).

11

qc1 <- QcMetric(name = "Chromatogram")

x <- rtime(exp)

y <- precursorIntensity(exp)

o <- order(x)

qcdata(qc1, "x") <- x[o]

qcdata(qc1, "y") <- y[o]

plot(qc1) <- function(object, ...)

plot(qcdata(object, "x"),

qcdata(object, "y"),

col = "darkgrey", type ="l",

xlab = "retention time",

ylab = "precursor intensity")

qc2 <- QcMetric(name = "MS space")

qcdata(qc2, "p2d") <- plot2d(exp, z = "charge", plot = FALSE)

plot(qc2) <- function(object) {
require("ggplot2")

print(qcdata(object, "p2d"))

}

qc3 <- QcMetric(name = "m/z delta plot")

qcdata(qc3, "pmz") <- plotMzDelta(exp, plot = FALSE,

verbose = FALSE)

plot(qc3) <- function(object)

suppressWarnings(print(qcdata(object, "pmz")))

Note that we do not store the raw data in any of the above instances, but al-

ways pre-compute the necessary data or plots that are then stored as qcdata. If

the raw data was to be needed in multiple QcMetric instances, we could re-use

the same qcdata environment to avoid unnecessary copies using qcdata(qc2) <-

qcenv(qc1) and implement different views through custom plot methods.

Let’s now combine the three items into a QcMetrics object, decorate it with cus-

tom metadata using the MIAPE information from the MSnExp object and generate

a report.

12

protqcm <- QcMetrics(qcdata = list(qc1, qc2, qc3))

metadata(protqcm) <- list(

data = "PXD000001",

instrument = experimentData(exp)@instrumentModel,

source = experimentData(exp)@ionSource,

analyser = experimentData(exp)@analyser,

detector = experimentData(exp)@detectorType,

manufacurer = experimentData(exp)@instrumentManufacturer)

The status column of the summary table is empty as we have not set the QC

items statuses yet.

qcReport(protqcm, reportname = "protqc", clean=FALSE, quiet=TRUE)

13

Quality control report generated with qcmetrics

biocbuild

April 11, 2014

1 Metadata

data PXD000001

instrument LTQ Orbitrap Velos

source nanoelectrospray

analyser orbitrap

detector inductive detector

manufacurer Thermo Scientific

1

2 Chromatogram

Object of class "QcMetric"
Name: Chromatogram
Status: NA
Data: x y

500 1000 1500 2000 2500 3000 3500

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08

retention time

pr
ec

ur
so

r
in

te
ns

ity

2

3 MS space

Object of class "QcMetric"
Name: MS space
Status: NA
Data: p2d

600

900

1200

1500

1000 2000 3000
retention.time

pr
ec

ur
so

r.m
z

charge

2

3

4

5

6

3

4 m/z delta plot

Object of class "QcMetric"
Name: m/z delta plot
Status: NA
Data: pmz

peg A RN
D

C EG HI/L K/Q M FPS T WYV

0.00

0.01

0.02

0.03

50 100 150 200
m/z delta

D
en

si
ty

Histogram of Mass Delta Distribution

4

5 QC summary

name status
1 Chromatogram
2 MS space
3 m/z delta plot

6 Session information

• R version 3.1.0 RC (2014-04-02 r65358), x86_64-apple-darwin10.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: affy 1.42.0, AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0, gcrma 2.36.0,
genefilter 1.46.0, GenomeInfoDb 1.0.0, ggplot2 0.9.3.1, knitr 1.5, MAQCsubsetAFX 1.0.14,
MSnbase 1.12.0, mzR 1.10.0, qcmetrics 1.2.0, Rcpp 0.11.1, RforProteomics 1.0.17, simpleaffy 2.40.0,
xtable 1.7-3, yaqcaffy 1.24.0

• Loaded via a namespace (and not attached): affyio 1.32.0, annotate 1.42.0, BiocInstaller 1.14.0,
Biostrings 2.32.0, codetools 0.2-8, colorspace 1.2-4, DBI 0.2-7, dichromat 2.0-0, digest 0.6.4,
doParallel 1.0.8, evaluate 0.5.3, foreach 1.4.2, formatR 0.10, grid 3.1.0, gtable 0.1.2, highr 0.3,
impute 1.38.0, IRanges 1.21.45, iterators 1.0.7, labeling 0.2, lattice 0.20-29, limma 3.20.0, MASS 7.3-31,
munsell 0.4.2, mzID 1.2.0, Nozzle.R1 1.1-1, pander 0.3.8, pcaMethods 1.54.0, plyr 1.8.1,
preprocessCore 1.26.0, proto 0.3-10, R.methodsS3 1.6.1, R.oo 1.18.0, R.utils 1.29.8,
RColorBrewer 1.0-5, RCurl 1.95-4.1, reshape2 1.2.2, rpx 1.0.0, RSQLite 0.11.4, scales 0.2.3,
splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7, tools 3.1.0, vsn 3.32.0, XML 3.98-1.1,
XVector 0.4.0, zlibbioc 1.10.0

5

3.4 Processed 15N labelling data

In this section, we describe a set of 15N metabolic labelling QC metrics (Krijgsveld

et al., 2003). The data is a phospho-enriched 15N labelled Arabidopsis thaliana

sample prepared as described in Groen et al. (2013). The data was processed with in-

house tools and is available as an MSnSet instance. Briefly, MS2 spectra were search

with the Mascot engine and identification scores adjusted with Mascot Percolator.

Heavy and light pairs were then searched in the survey scans and 15N incorporation

was estimated based on the peptide sequence and the isotopic envelope of the heavy

member of the pair (the inc feature variable). Heavy and light peptides isotopic

envelope areas were finally integrated to obtain unlabelled and 15N quantitation

data. The psm object provides such data for PSMs (peptide spectrum matches)

with a posterior error probability <0.05 that can be uniquely matched to proteins.

We first load the MSnbase package (required to support the MSnSet data structure)

and example data that is distributed with the qcmetrics package. We will make use

of the ggplot2 plotting package.

library("ggplot2")

library("MSnbase")

data(n15psm)

psm

MSnSet (storageMode: lockedEnvironment)

assayData: 1772 features, 2 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: 3 5 ... 4499 (1772 total)

fvarLabels: Protein_Accession

Protein_Description ... inc (21 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

pubMedIds: 23681576

Annotation:

- - - Processing information - - -

Subset [22540,2][1999,2] Tue Sep 17 01:34:09 2013

Removed features with more than 0 NAs: Tue Sep 17 01:34:09 2013

Dropped featureData's levels Tue Sep 17 01:34:09 2013

MSnbase version: 1.9.7

16

The first QC item examines the 15N incorporation rate, available in the inc feature

variable. We also defined a median incorporation rate threshold tr equal to 97.5

that is used to set the QC status.

incorporation rate QC metric

qcinc <- QcMetric(name = "15N incorporation rate")

qcdata(qcinc, "inc") <- fData(psm)$inc

qcdata(qcinc, "tr") <- 97.5

status(qcinc) <- median(qcdata(qcinc, "inc")) > qcdata(qcinc, "tr")

Next, we implement a custom show method, that prints 5 summary values of the

variable’s distribution.

show(qcinc) <- function(object) {
qcshow(object, qcdata = FALSE)

cat(" QC threshold:", qcdata(object, "tr"), "\n")
cat(" Incorporation rate\n")
print(summary(qcdata(object, "inc")))

invisible(NULL)

}

We then define the metric’s plot function that represent the distribution of the

PSM’s incorporation rates as a boxplot, shows all the individual rates as jittered

dots and represents the tr threshold as a dotted red line.

plot(qcinc) <- function(object) {
inc <- qcdata(object, "inc")

tr <- qcdata(object, "tr")

lab <- "Incorporation rate"

dd <- data.frame(inc = qcdata(qcinc, "inc"))

p <- ggplot(dd, aes(factor(""), inc)) +

geom_jitter(colour = "#4582B370", size = 3) +

geom_boxplot(fill = "#FFFFFFD0", colour = "#000000",

outlier.size = 0) +

geom_hline(yintercept = tr, colour = "red",

linetype = "dotted", size = 1) +

labs(x = "", y = "Incorporation rate")

p

}

17

15N experiments of good quality are characterised by high incorporation rates,

which allow to deconvolute the heavy and light peptide isotopic envelopes and ac-

curate quantification.

The second metric inspects the log2 fold-changes of the PSMs, unique peptides

with modifications, unique peptide sequences (not taking modifications into account)

and proteins. These respective data sets are computed with the combineFeatures

function (see ?combineFeatures for details).

fData(psm)$modseq <- ## pep seq + PTM

paste(fData(psm)$Peptide_Sequence,

fData(psm)$Variable_Modifications, sep = "+")

pep <- combineFeatures(psm,

as.character(fData(psm)$Peptide_Sequence),

"median", verbose = FALSE)

modpep <- combineFeatures(psm,

fData(psm)$modseq,

"median", verbose = FALSE)

prot <- combineFeatures(psm,

as.character(fData(psm)$Protein_Accession),

"median", verbose = FALSE)

The log2 fold-changes for all the features are then computed and stored as QC

data of our next QC item. We also store a pair of values explfc that defined an

interval in which we expect our median PSM log2 fold-change to be.

calculate log fold-change

qclfc <- QcMetric(name = "Log2 fold-changes")

qcdata(qclfc, "lfc.psm") <-

log2(exprs(psm)[,"unlabelled"] / exprs(psm)[, "N15"])

qcdata(qclfc, "lfc.pep") <-

log2(exprs(pep)[,"unlabelled"] / exprs(pep)[, "N15"])

qcdata(qclfc, "lfc.modpep") <-

log2(exprs(modpep)[,"unlabelled"] / exprs(modpep)[, "N15"])

qcdata(qclfc, "lfc.prot") <-

log2(exprs(prot)[,"unlabelled"] / exprs(prot)[, "N15"])

qcdata(qclfc, "explfc") <- c(-0.5, 0.5)

status(qclfc) <-

median(qcdata(qclfc, "lfc.psm")) > qcdata(qclfc, "explfc")[1] &

18

median(qcdata(qclfc, "lfc.psm")) < qcdata(qclfc, "explfc")[2]

As previously, we provide a custom show method that displays summary values

for the four fold-changes. The plot function illustrates the respective log2 fold-

change densities and the expected median PSM fold-change range (red rectangle).

The expected 0 log2 fold-change is shown as a dotted black vertical line and the

observed median PSM value is shown as a blue dashed line.

show(qclfc) <- function(object) {
qcshow(object, qcdata = FALSE) ## default

cat(" QC thresholds:", qcdata(object, "explfc"), "\n")
cat(" * PSM log2 fold-changes\n")
print(summary(qcdata(object, "lfc.psm")))

cat(" * Modified peptide log2 fold-changes\n")
print(summary(qcdata(object, "lfc.modpep")))

cat(" * Peptide log2 fold-changes\n")
print(summary(qcdata(object, "lfc.pep")))

cat(" * Protein log2 fold-changes\n")
print(summary(qcdata(object, "lfc.prot")))

invisible(NULL)

}
plot(qclfc) <- function(object) {

x <- qcdata(object, "explfc")

plot(density(qcdata(object, "lfc.psm")),

main = "", sub = "", col = "red",

ylab = "", lwd = 2,

xlab = expression(log[2]~fold-change))

lines(density(qcdata(object, "lfc.modpep")),

col = "steelblue", lwd = 2)

lines(density(qcdata(object, "lfc.pep")),

col = "blue", lwd = 2)

lines(density(qcdata(object, "lfc.prot")),

col = "orange")

abline(h = 0, col = "grey")

abline(v = 0, lty = "dotted")

rect(x[1], -1, x[2], 1, col = "#EE000030",

border = NA)

abline(v = median(qcdata(object, "lfc.psm")),

lty = "dashed", col = "blue")

19

legend("topright",

c("PSM", "Peptides", "Modified peptides", "Proteins"),

col = c("red", "steelblue", "blue", "orange"), lwd = 2,

bty = "n")

}

A good quality experiment is expected to have a tight distribution centred around

0. Major deviations would indicate incomplete incorporation, errors in the respective

amounts of light and heavy material used, and a wide distribution would reflect large

variability in the data.

Our last QC item inspects the number of features that have been identified in the

experiment. We also investigate how many peptides (with or without considering

the modification) have been observed at the PSM level and the number of unique

peptides per protein. Here, we do not specify any expected values as the number of

observed features is experiment specific; the QC status is left as NA.

number of features

qcnb <- QcMetric(name = "Number of features")

qcdata(qcnb, "count") <- c(

PSM = nrow(psm),

ModPep = nrow(modpep),

Pep = nrow(pep),

Prot = nrow(prot))

qcdata(qcnb, "peptab") <-

table(fData(psm)$Peptide_Sequence)

qcdata(qcnb, "modpeptab") <-

table(fData(psm)$modseq)

qcdata(qcnb, "upep.per.prot") <-

fData(psm)$Number_Of_Unique_Peptides

The counts are displayed by the new show and plotted as bar charts by the plot

methods.

show(qcnb) <- function(object) {
qcshow(object, qcdata = FALSE)

print(qcdata(object, "count"))

}
plot(qcnb) <- function(object) {

par(mar = c(5, 4, 2, 1))

20

layout(matrix(c(1, 2, 1, 3, 1, 4), ncol = 3))

barplot(qcdata(object, "count"), horiz = TRUE, las = 2)

barplot(table(qcdata(object, "modpeptab")),

xlab = "Modified peptides")

barplot(table(qcdata(object, "peptab")),

xlab = "Peptides")

barplot(table(qcdata(object, "upep.per.prot")),

xlab = "Unique peptides per protein ")

}

In the code chunk below, we combine the 3 QC items into a QcMetrics instance

and generate a report using meta data extracted from the psm MSnSet instance.

n15qcm <- QcMetrics(qcdata = list(qcinc, qclfc, qcnb))

qcReport(n15qcm, reportname = "n15qcreport",

title = expinfo(experimentData(psm))["title"],

author = expinfo(experimentData(psm))["contact"],

clean = FALSE)

Report written to n15qcreport.pdf

We provide with the package the n15qc wrapper function that automates the

above pipeline. The names of the feature variable columns and the thresholds for

the two first QC items are provided as arguments. In case no report name is given,

a custom title with date and time is used, to avoid overwriting existing reports.

21

15N labelling experiment

Arnoud Groen

April 11, 2014

1 15N incorporation rate

Object of class "QcMetric"
Name: 15N incorporation rate
Status: TRUE
QC threshold: 97.5
Incorporation rate
Min. 1st Qu. Median Mean 3rd Qu. Max.
50 98 99 97 99 99

50

60

70

80

90

100

In
co

rp
or

at
io

n
ra

te

1

2 Log2 fold-changes

Object of class "QcMetric"
Name: Log2 fold-changes
Status: TRUE
QC thresholds: -0.5 0.5
* PSM log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.760 -0.316 0.209 0.354 0.824 10.400
* Modified peptide log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.760 -0.331 0.195 0.339 0.800 10.400
* Peptide log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.730 -0.328 0.185 0.332 0.793 10.400
* Protein log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.460 -0.327 0.194 0.334 0.790 10.400

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

log2 fold − change

PSM
Peptides
Modified peptides
Proteins

2

3 Number of features

Object of class "QcMetric"
Name: Number of features
Status: NA
PSM ModPep Pep Prot
1772 1522 1335 916

PSM

ModPep

Pep

Prot

0

50
0

10
00

15
00

1 2 3 4

Modified peptides

0
20

0
60

0
10

00

1 3 5 8

Peptides

0
20

0
40

0
60

0
80

0

1 3 5 7 9

Unique peptides per protein

0
20

0
40

0
60

0

3

4 QC summary

name status
1 15N incorporation rate TRUE
2 Log2 fold-changes TRUE
3 Number of features

5 Session information

• R version 3.1.0 RC (2014-04-02 r65358), x86_64-apple-darwin10.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: affy 1.42.0, AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0, gcrma 2.36.0,
genefilter 1.46.0, GenomeInfoDb 1.0.0, ggplot2 0.9.3.1, knitr 1.5, MAQCsubsetAFX 1.0.14,
MSnbase 1.12.0, mzR 1.10.0, qcmetrics 1.2.0, Rcpp 0.11.1, RforProteomics 1.0.17, simpleaffy 2.40.0,
xtable 1.7-3, yaqcaffy 1.24.0

• Loaded via a namespace (and not attached): affyio 1.32.0, annotate 1.42.0, BiocInstaller 1.14.0,
Biostrings 2.32.0, codetools 0.2-8, colorspace 1.2-4, DBI 0.2-7, dichromat 2.0-0, digest 0.6.4,
doParallel 1.0.8, evaluate 0.5.3, foreach 1.4.2, formatR 0.10, grid 3.1.0, gtable 0.1.2, highr 0.3,
impute 1.38.0, IRanges 1.21.45, iterators 1.0.7, labeling 0.2, lattice 0.20-29, limma 3.20.0, MASS 7.3-31,
munsell 0.4.2, mzID 1.2.0, Nozzle.R1 1.1-1, pander 0.3.8, pcaMethods 1.54.0, plyr 1.8.1,
preprocessCore 1.26.0, proto 0.3-10, R.methodsS3 1.6.1, R.oo 1.18.0, R.utils 1.29.8,
RColorBrewer 1.0-5, RCurl 1.95-4.1, reshape2 1.2.2, rpx 1.0.0, RSQLite 0.11.4, scales 0.2.3,
splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7, tools 3.1.0, vsn 3.32.0, XML 3.98-1.1,
XVector 0.4.0, zlibbioc 1.10.0

4

4 Report generation

The report generation is handled by dedicated packages, in particular knitr (Xie,

2013) and markdown (Allaire et al., 2013).

4.1 Custom reports

Templates

It is possible to customise reports for any of the existing types. The generation of

the pdf report is based on a tex template, knitr-template.Rnw, that is available

with the package3. The qcReport method accepts the path to a custom template

as argument.

The template corresponds to a LATEX preamble with the inclusion of two variables

that are passed to the qcReport and used to customise the template: the author’s

name and the title of the report. The former is defaulted to the system username

with Sys.getenv("USER") and the later is a simple character. The qcReport func-

tion also automatically generates summary and session information sections. The

core of the QC report, i.e the sections corresponding the the individual QcMetric

instances bundled in a QcMetrics input (described in more details below) is then

inserted into the template and weaved, or more specifically knit’ted into a tex

document that is (if type=pdf) compiled into a pdf document.

The generation of the html report is enabled by the creation of a R markdown file

(Rmd) that is then converted with knitr and markdown into html. The Rmd syntax

being much simpler, no Rmd template is needed. It is possible to customise the

final html output by providing a css definition as template argument when calling

qcReport.

Initial support for the Nozzle.R1 package (Gehlenborg, 2013) is available with type

nozzle.

QcMetric sections

The generation of the sections for QcMetric instances is controlled by a function

passed to the qcto argument. This function takes care of transforming an instance

of class QcMetric into a character that can be inserted into the report. For the

tex and pdf reports, Qc2Tex is used; the Rmd and html reports make use of Qc2Rmd.

These functions take an instance of class QcMetrics and the index of the QcMetric

to be converted.

3You can find it with system.file("templates", "knitr-template.Rnw", package =

"qcmetrics").

23

qcmetrics:::Qc2Tex

function (object, i)

{

c(paste0("\\section{", name(object[[i]]), "}"), paste0("<<",

name(object[[i]]), ", echo=FALSE>>="), paste0("show(object[[",

i, "]])"), "@\n", "\\begin{figure}[!hbt]", "<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>=",

paste0("plot(object[[", i, "]])"), "@", "\\end{figure}",

"\\clearpage")

}

<environment: namespace:qcmetrics>

qcmetrics:::Qc2Tex(maqcm, 1)

[1] "\\section{Affy RNA degradation slopes}"

[2] "<<Affy RNA degradation slopes, echo=FALSE>>="

[3] "show(object[[1]])"

[4] "@\n"

[5] "\\begin{figure}[!hbt]"

[6] "<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>="

[7] "plot(object[[1]])"

[8] "@"

[9] "\\end{figure}"

[10] "\\clearpage"

Let’s investigate how to customise these sections depending on the QcMetric

status, the goal being to highlight positive QC results (i.e. when the status is TRUE)

with (or ,), negative results with (or /) and use # if status is NA after the

section title4.

Below, we see that different section headers are composed based on the value of

status(object[[i]]) by appending the appropriate LATEX symbol.

Qc2Tex2

function (object, i)

{

nm <- name(object[[i]])

if (is.na(status(object[[i]]))) {

4The respective symbols are CIRCLE, smiley, frownie and Circle from the LATEX package
wasysym.

24

symb <- "$\\Circle$"

}

else if (status(object[[i]])) {

symb <- "{\\color{green} $\\CIRCLE$}"

}

else {

symb <- "{\\color{red} $\\CIRCLE$}"

}

sec <- paste0("\\section{", nm, "\\hspace{2mm}", symb, "}")

cont <- c(paste0("<<", name(object[[i]]), ", echo=FALSE>>="),

paste0("show(object[[", i, "]])"), "@\n", "\\begin{figure}[!hbt]",

"<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>=",

paste0("plot(object[[", i, "]])"), "@", "\\end{figure}",

"\\clearpage")

c(sec, cont)

}

<environment: namespace:qcmetrics>

To use this specific sectioning code, we pass our new function as qcto when

generating the report. To generate smiley labels, use Qc2Tex3.

qcReport(maqcm, reportname = "rnadeg2", qcto = Qc2Tex2)

25

Quality control report generated with qcmetrics

biocbuild

April 11, 2014

1 Affy RNA degradation slopes

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

Quality control report generated with qcmetrics

biocbuild

April 11, 2014

1 Affy RNA degradation slopes ,

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios /

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

4.2 New report types

A reporting function is a function that

• Converts the appropriate QC item sections (for example the Qc2Tex2 function

described above)

• Optionally includes the QC item sections into addition header and footer,

either by writing these directly or by inserting the sections into an appropriate

template. The reporting functions that are available in qcmetrics can be found

in ?qcReport: reporting tex for type tex, reporting pdf for type pdf,

. . . These functions should use the same arguments as qcReport insofar as

possible.

• Once written to a report source file, the final report type is generated. knit

is used to convert the Rnw source to tex which is compiled into pdf using

tools::texi2pdf. The Rmd content is directly written into a file which is

knitted and converted to html using knit2html (which call markdownTOHTML).

New reporting abc functions can be called directly or passed to qcReport using

the reporter argument.

5 QC packages

5.1 A simple RNA degradation package

While the examples presented in section 3 and in particular the wrapper function

in section 3.2 are flexible and fast ways to design QC pipeline prototypes, a more

robust mechanism is desirable for production pipelines. The R packaging mechanism

is ideally suited for this as it provides versioning, documentation, unit testing and

easy distribution and installation facilities.

While the detailed description of package development is out of the scope of this

document, it is of interest to provide an overview of the development of a QC

package. Taking the wrapper function, it could be used the create the package

structure

package.skeleton("RnaDegQC", list = "rnadeg")

The DESCRIPTION file would need to be updated. The packages qcmetrics, affy

and yaqcaffy would need to be specified as dependencies in the Imports: line and

imported in the NAMESPACE file. The documentation file RnaDegQC/man/rnadeg.Rd

and the (optional) RnaDegQC/man/RnaDegQC-packge.Rd would need to be updated.

27

Alternatively, the rnadeg function could be modularised so that QC items would

be created and returned by dedicated constructors like makeRnaDegSlopes and

makeRnaDegRatios. This would provide other developers with the means to re-use

some components of the pipeline by using the package.

5.2 A QC pipeline repository

The wiki on the qcmetrics github page5 can be edited by any github user and will be

used to cite, document and share QC functions, pipelines and packages, in particular

those that make use of the qcmetrics infrastructure.

6 Conclusions

R and Bioconductor are well suited for the analysis of high throughput biology

data. They provide first class statistical routines, excellent graph capabilities and

an interface of choice to import and manipulate various omics data, as demonstrated

by the wealth of packages6 that provide functionalities for QC.

The qcmetrics package is different than existing R packages and QC systems in

general. It proposes a unique domain-independent framework to design QC pipelines

and is thus suited for any use case. The examples presented in this document il-

lustrated the application of qcmetrics on data containing single or multiple samples

or experimental runs from different technologies. It is also possible to automate the

generation of QC metrics for a set of repeated (and growing) analyses of standard

samples to establish lab memory types of QC reports, that track a set of metrics

for controlled standard samples over time. It can be applied to raw data or pro-

cessed data and tailored to suite precise needs. The popularisation of integrative

approaches that combine multiple types of data in novel ways stresses out the need

for flexible QC development.

qcmetrics is a versatile software that allows rapid and easy QC pipeline proto-

typing and development and supports straightforward migration to production level

systems through its well defined packaging mechanism.

5https://github.com/lgatto/qcmetrics
6http://bioconductor.org/packages/release/BiocViews.html#___QualityControl

28

https://github.com/lgatto/qcmetrics
http://bioconductor.org/packages/release/BiocViews.html#___QualityControl

Acknowledgements

Many thanks to Arnoud Groen for providing the 15N data and Andrzej Oles for
helpful comments and suggestions about the package and this document.

Session information

All software and respective versions used to produce this document are listed below.

• R version 3.1.0 RC (2014-04-02 r65358), x86_64-apple-darwin10.8.0

• Locale:
en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats,
utils

• Other packages: affy 1.42.0, AnnotationDbi 1.26.0, Biobase 2.24.0,
BiocGenerics 0.10.0, gcrma 2.36.0, genefilter 1.46.0, GenomeInfoDb 1.0.0,
ggplot2 0.9.3.1, knitr 1.5, MAQCsubsetAFX 1.0.14, MSnbase 1.12.0,
mzR 1.10.0, qcmetrics 1.2.0, Rcpp 0.11.1, RforProteomics 1.0.17,
simpleaffy 2.40.0, xtable 1.7-3, yaqcaffy 1.24.0

• Loaded via a namespace (and not attached): affyio 1.32.0, annotate 1.42.0,
BiocInstaller 1.14.0, Biostrings 2.32.0, codetools 0.2-8, colorspace 1.2-4,
DBI 0.2-7, dichromat 2.0-0, digest 0.6.4, doParallel 1.0.8, evaluate 0.5.3,
foreach 1.4.2, formatR 0.10, grid 3.1.0, gtable 0.1.2, highr 0.3, impute 1.38.0,
IRanges 1.21.45, iterators 1.0.7, labeling 0.2, lattice 0.20-29, limma 3.20.0,
MASS 7.3-31, munsell 0.4.2, mzID 1.2.0, Nozzle.R1 1.1-1, pander 0.3.8,
pcaMethods 1.54.0, plyr 1.8.1, preprocessCore 1.26.0, proto 0.3-10,
R.methodsS3 1.6.1, R.oo 1.18.0, R.utils 1.29.8, RColorBrewer 1.0-5,
RCurl 1.95-4.1, reshape2 1.2.2, rpx 1.0.0, RSQLite 0.11.4, scales 0.2.3,
splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7, tools 3.1.0,
vsn 3.32.0, XML 3.98-1.1, XVector 0.4.0, zlibbioc 1.10.0

References

JJ Allaire, J Horner, V Marti, and N Porte. markdown: Markdown rendering for R,
2013. URL http://CRAN.R-project.org/package=markdown. R package version
0.6.3.

K M Foster, S Degroeve, L Gatto, M Visser, R Wang, K Griss, R Apweiler, and
L Martens. A posteriori quality control for the curation and reuse of public
proteomics data. Proteomics, 11(11):2182–94, 2011. doi: 10.1002/pmic.201000602.

L Gatto. yaqcaffy: Affymetrix expression data quality control and reproducibility
analysis. R package version 1.21.0.

L Gatto and K S Lilley. MSnbase – an R/Bioconductor package for isobaric tagged
mass spectrometry data visualization, processing and quantitation. Bioinformat-
ics, 28(2):288–9, Jan 2012. doi: 10.1093/bioinformatics/btr645.

29

http://CRAN.R-project.org/package=markdown

L Gautier, L Cope, B M Bolstad, and R A Irizarry. affy – analysis of affymetrix
genechip data at the probe level. Bioinformatics, 20(3):307–315, 2004. ISSN
1367-4803. doi: http://dx.doi.org/10.1093/bioinformatics/btg405.

N Gehlenborg. Nozzle.R1: Nozzle Reports, 2013. URL http://CRAN.R-project.

org/package=Nozzle.R1. R package version 1.1-1.

A Groen, L Thomas, K Lilley, and C Marondedze. Identification and quantitation
of signal molecule-dependent protein phosphorylation. Methods Mol Biol, 1016:
121–37, 2013. doi: 10.1007/978-1-62703-441-8 9.

J Krijgsveld, R F Ketting, T Mahmoudi, J Johansen, M Artal-Sanz, C P Verrijzer,
R H Plasterk, and A J Heck. Metabolic labeling of c. elegans and d. melanogaster
for quantitative proteomics. Nat Biotechnol, 21(8):927–31, Aug 2003. doi: 10.
1038/nbt848.

P G A Pedrioli et al. A common open representation of mass spectrometry data
and its application to proteomics research. Nat. Biotechnol., 22(11):1459–66, 2004.
doi: 10.1038/nbt1031.

Y Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2013. URL
http://yihui.name/knitr/. ISBN 978-1482203530.

30

http://CRAN.R-project.org/package=Nozzle.R1
http://CRAN.R-project.org/package=Nozzle.R1
http://yihui.name/knitr/

	1 Introduction
	2 The QC classes
	2.1 The QcMetric class
	2.2 The QcMetrics class

	3 Creating QC pipelines
	3.1 Microarray degradation
	3.2 A wrapper function
	3.3 Proteomics raw data
	3.4 Processed 15N labelling data

	4 Report generation
	4.1 Custom reports
	4.2 New report types

	5 QC packages
	5.1 A simple RNA degradation package
	5.2 A QC pipeline repository

	6 Conclusions

