
Introduction to OLINgui

Matthias E. Futschik
Institute for Theoretical Biology, Humboldt-University

URL: http://itb.biologie.hu-berlin.de/∼futschik/software/R/OLIN/index.html

April 11, 2014

Contents

1 Overview 1

2 Installation requirements 1

3 Functionality 2
3.1 Loading data . 4
3.2 Visualisation . 4
3.3 Statistics . 5
3.4 Normalisation . 6

1 Overview

The package OLINgui provides a graphical user interface for visualisation, normalisation and
quality testing of two-channel microarray data using the functions of the OLIN package. The
graphical interface is based on Tk widgets using the R-TclTk interface by Peter Dalgaard. It
also employs some pre-made widgets from the Bioconductor-package tkWidgets by Jianhua
Zhang for the selection of objects or files to be loaded.

OLINgui provides a convenient interface to most functions of the OLIN package without
restriction of flexibility. An exception is the visualization, where default arguments for plotting
are used. To fine-tune plots, the underlying plotting functions in the OLIN package may be
applied. Usage of OLINgui assumes existing marray objects for the batch of arrays to be
analysed and normalised. (For construction of marray objects using a graphical interface,
the reader is referred to the marrayInput package.) Additionally to the marray object, some
functions require an additional list of X- and Y-coordinates of spots. This list has to be built
by hand yet. However, most functions of the OLIN package do not require this list.

A brief introduction to the functionality of OLINgui will be given in section 3. For more
details about the computational approaches, please refer to the OLIN package documentation
and the reference [1].

2 Installation requirements

Following software is required to run the OLINgui-package:

1

• R (>= 2.0.0). For installation of R, refer to http://www.r-project.org.

• R-packages: methods, stat, locfit, tcltk. For installation of these add-on packages, refer
to http://cran.r-project.org.

• Bioconductor packages: Biobase, marray, OLIN (>= 1.4.0). Refer to http://www.bioconductor.org
for installation.

If all requirements are fulfilled, the OLINgui add-on R-package can be installed. To see how
to install add-on R-packages on your computer system, start R and type in help(INSTALL).
Optionally, you may use the R-function install.packages(). Once the OLINgui package is
installed, you can load the package by

> library(OLINgui)

3 Functionality

To start the graphical interface, type:

> OLINgui()

A TclTk-Widget is launched (fig.1). The use of the interface is intuitive. The GUI is
divided into four sections; the order of these sections reflects the order of a standard analysis
and normalisation procedure for a microarray data set:

1. Loading of data set

2. Visualisation for data inspection

3. Application of statistical tests to identify experimental bias

4. Normalisation and scaling of data

Note that only one data set at a time can be analysed or normalised. To visualise or test
the normalized data set, it is necessary to save/export this data set and reload it.

The general structure of the GUI is straight-forward. Each button corresponds to a
function in the OLIN package. If additional arguments for the function are needed, an input
window is launched. Note that not everything will be checked to be of correct type. While
some checks are implemented (e.g. checks if the loaded data set has the correct class), most
arguments remained unchecked before the underlying function is called (e.g. it will not be
checked if the array index is a positive integer.) If errors are produced, the validity of the
input arguments should be examined. For details about the required types of arguments and
corresponding functions, please refer to the help pages of the OLIN package. In the following
section, a brief introduction to the functionality of OLINgui is given. As an example, the
datasets sw and sw.xy can be loaded in the global environment by

> data(sw)

> data(sw.xy)

and subsequently loaded for analysis using the Browse objects buttons.

2

Figure 1: Screen-shot of OLINgui (version 1.0.1)

3

3.1 Loading data

Marray object

• Browse objects Import of an Marray object of class marrayRaw or marrayNorm from

the global environment (.GlobalEnv). A window produced by the function object-

Browser of the tkWidgets package is generated. Note that, although several objects
can be selected, only the first selected object will be loaded. A check is performed if
the object to be loaded belongs to the correct classes.

• Browse file Loading of an R data set of class marrayRaw or marrayNorm stored in
a file. A window produced by the function fileBrowser of the tkWidgets package is
generated. Note that, although several files can be selected, only the first selected file is
loaded. A check is performed if the object to be loaded belongs to the correct classes.

XY list

• Browse objects Loading of an R object of type list from the global environment (.Glob-

alEnv). A window produced by the function objectBrowser of the tkWidgets package
is generated. Note that, although several objects can be selected, only the first selected
object is loaded. A check is performed if the object is of type list with name attributes
“X” and “Y”. No check is performed if the dimensions of the list elements are correct.

• Browse file Loading of an R object of type list stored in a file. A window produced by
the function fileBrowser of the tkWidgets package is generated. Note that, although
several objects can be selected, only the first selected object is loaded. A check is
performed if the object is of type list with name attributes “X” and “Y”. No check is
performed if the dimensions of the list elements are correct.

The names of the marray object and XY list are shown in the text fields below the buttons.

3.2 Visualisation

• Array index: Selection of the arrays to be visualised. If several arrays are to be visu-
alised, the indeces have to be space delimited. If no array index is given, all arrays of
the data set will be visualised.

• Fgbg.visu Call of the function fgbg.visu. Visualisation of spatial distribution of
foreground and background fluorescence intensities in both channels.

• MA plot Produces MA-plots that display the logged fold change (M = log2(Ch2) −
log2Ch1) with respect to the average logged spot intensity (A = 0.5(log2(Ch1) +
log2Ch2)).

• MXY plot Call of the function mxy.plot. Visualisation of spatial distribution of logged

fold change (M) across the array. The row and column indeces are used as proxies for
the spatial spot coordinates.

• MXY2 plot Call of the function myx2.plot. Visualisation of spatial distribution of

logged fold change (M) across the array. In contrast to mxy.plot, function mxy2.plot

produces MXY-plots based on spatial spot coordinates as stored in the XY-list. There-
fore, this function requires that a XY-list has been loaded.

4

3.3 Statistics

• Array index: Selection of the arrays to be analysed. If several arrays are to be analysed,
their indeces should be space delimited. If no array index is given, all arrays of the data
set will be analysed.

• ANOVA Plate Call of the function anovaplate. An one-factorial ANOVA assessing
plate-dependent bias is performed. If Visualisation of results is ticked, a window with
the results is shown.

• ANOVA Pin Call of the function anovapin. An one-factorial ANOVA assessing pin-
dependent bias is performed. If Visualisation of results is ticked, a window with the
results is shown.

• ANOVA int Call of the function anovaint. An one-factorial ANOVA assessing intensity-
dependent bias is performed. The predictor variable is A; the response variable is M .
The number of intervals along the A-axis has to be chosen. This gives the number of
factors for the ANOVA. If Visualisation of results is ticked, a window with the results
will be shown.

• ANOVA spa Call of the function anovaspatial. An one-factorial ANOVA assessing
spatial bias is performed. The array is spatially divided in a number of rectangular
blocks determining the factors for the ANOVA. The predictor variable is the index of
the spatial blocks; the response variable is M . The number of blocks can be selected
by the input arguments determining the number of intervals in the X and Y direction.
If Visualisation of results is ticked, the results will be shown. Additionally, a plot is
produced showing the significance of blocks based on the ANOVA model.

• FDR int Call of the function fdr.int. This function assesses the intensity-dependent
dye bias using two one-sided permutation tests. The test statistics is the average value
of M in a spot intensity neighourhood of chosen size. The significance (given by the
false discovery rate) indicates the probability of observing the actual average values M̄
assuming A and M are independent. The number of permutations determines how often
the intensity order of spots is permutated for the calculation of the empirical background
distribution. For averaging, mean or median can be chosen. If Visualisation of results
is ticked, a plot is produced showing the false discovery rates for the corresponding
intensity neighbourhoods. Green (red) dots indicate the false discovery rate for negative
(positive) derivations of the test statistics. Low false discovery rates indicate intensity-
dependent bias. Note, however, that the scale of the y-axis is −log10(fdr) in both
directions.

• FDR spa Call of the function fdr.spatial.The function assesses location-dependent
dye bias using one-sided permutation tests. The number of permutations determines
how often the spatial location of spots on an array is permutated for the calculation of
the empirical background distribution. If Visualisation of results is ticked, a MXY plot
is generated showing the false discovery rate for M̄ of spatial spot neighbourhoods for
positive (red) and negative (green) deviations.

• p int Call of the function p.int. This function assesses intensity-dependent dye bias

using a randomisation test. Similarly to fdr.int, the average logged fold change (M̄) in a

5

spot intensity neighourhood is compared to a empirical background distribution based
on randomised intensity orders of spots. The number of samples determines how many
random samples (with replacement) are generated for the construction of an empirical
background distribution. The significance of M̄ is based on Fisher’s test. Several
methods for p-value adjustment can be chosen. If Visualisation of results is ticked,
the significance is plotted along the spot intensity axis. Green (red) dots indicate the
false discovery rate for negative (positive) deviations of the test statistics. Low false
discovery rates indicate intensity-dependent dye bias. Note, however, that the scale of
the y-axis is −log10(fdr).

• p spa Call of the function p.spatial. This function assesses location-dependent dye
bias using a randomisation test. The number of samples determines how many random
samples (with replacement) are generated for the construction of an empirical back-
ground distribution. Note that the difference between number of samples and number
of permutations used for fdr.int. The latter refers to the whole data set. The sig-
nificance of M̄ is based on Fisher’s test. Several methods for p-value adjustment can
be chosen. If Visualisation of results is ticked, a MXY plot is generated showing the
significance of M̄ for spatial spot neighbourhoods.

• Visualisation of results: Results are visualised if checkbutton is ticked.

• Save results The results are stored in a list and saved to a file. Each list elements cor-
responds to the output of the underlying functions that has been used for the statistical
analysis.

• Export results The results are stored in a list and exported to the global environment.
Each list elements corresponds to the output of the underlying functions that has been
used for the statistical analysis.

3.4 Normalisation

• IN, OIN, LIN, OLIN, OSLIN radiobuttons: Selection which normalisation scheme
should be applied. For a description of these methods, see the OLIN help pages.

• Smoothing : Smoothing parameter(s) to be used or tested for normalisation. It can
be any value between 0 and 1. Values close to 0, however, may produce unstable
normalisation results. The input should be a scalar for IN and LIN. This value is then
used for local regression. It can be a space-delimited list for OIN, OLIN and OSLIN.
These values are tested in the GCV procedure with the optimal smoothing parameter
used subsequently for normalisation.

• Scaling : Scaling parameter(s) to be used or tested for location-dependent normalisation.
The scaling parameter determines the amount of smoothing in Y-direction compared to
smoothing in X-direction. It is used for LIN/OLIN/OSLIN. The input can be a single
value for LIN. Alternatively, TRUE or FALSE can be chosen. The input value TRUE
leads to scaling by the standard deviation. No scaling is performed for the value FALSE.
For OLIN or OSLIN, a list of values should be given.

• Iterations: Number of iterations in the LIN/OLIN/OSLIN procedure. Three are usually
sufficient.

6

• Weights: Weighting of spots for local regression. If the checkbutton is ticked, spots are
weighted by the weights stored in maW slot of the marray object.

• BAS : Subsequent between-array normalisation (scaling). If the checkbutton is ticked,
a between-array normalisation is applied. Three methods can be chosen from: Var -
arrays are scaled to have the same variance of M , Mad - arrays are scaled to have
the same median absolute deviation of M and QQ - arrays are scaled using quantile
normalisation.

• Normalise : Call of the function olin.

• Save object : The normalised batch of arrays will be stored as maNorm object and
saved to a file.

• Export object : The normalised batch of arrays will be exported to the global environ-
ment.

To visually inspect and statistically test the results of the normalisation, the normalised
data has to be exported (or saved) and reloaded.

References

[1] M.Futschik and T. Crompton (2004) Model selection and efficiency testing for normali-
sation of cDNA microarray data, Genome Biology, 5:R60

7

