
The DAVIDQuery package in Bioconductor:

Retrieving data from the DAVID Bioinformatics

Resource

Roger S. Day†‡ , Alex Lisovich†

June 6, 2010

†Department of Biomedical Informatics, ‡Department of Biostatistics
University of Pittsburgh

1 Introduction

DAVID (Database for Annotation, Visualization and Integrated Discovery) is
a bioinformatics resource developed by the National Institute of Allergy and
Infectious Diseases at Frederick in conjunction with the Laboratory of Im-
munopathogenesis and Bioinformatics (LIB), SAIC Frederick. This resource
is described as “a graph theory evidence-based method to agglomerate species-
specific gene/protein identifiers the most popular resources including NCBI, PIR
and Uniprot/SwissProt. It groups tens of millions of identifiers into 1.5 million
unique protein/gene records.” Further information can be found in published
articles [1][2].

As of this time, maintenance of the DAVID resource is supervised by Dr.
Richard Lempicki. The resource is accessed interactively at http://david.

abcc.ncifcrf.gov/. The interactive interface provided there is suitable for
many purposes, but for a bioinformatician using R an automated procedu-
ral solution is needed. The convention for executing queries via formation of
URL attribute-value strings is provided at http://david.abcc.ncifcrf.gov/
content.jsp?file=DAVID_API.html. Although this is described as an applica-
tion program interface (API), the desired query result is not directly provided
by the immediate return page, and two rounds of “screen-scraping” and URL
formulation are required to retrieve the query results from a program.

In Spring 2010, the DAVID interface changed. This package has been modified
to work with the new interface. In particular, the “Gene ID Conversion tool”

1

was excluded from the new DAVID API and required a separate implementation
as outlined at the end of the next session.

2 Types of identifiers and reports

As of this version, there are three important attributes in the URL specification.
The "id" attribute will hold the proband identifiers about which information is
to be retrieved. The id values are combined in a single string joined by commas.
The "type" attribute will hold a string indicating the type of the identifiers. The
list of legitimate values for type has increased from 15 to 37 and includes the
“Not sure”type which causes the DAVID system to infer the type based on the ID
list content. The choices, described as“DAVID’s recognized gene types”, now are
obtained directly from the page http://david.abcc.ncifcrf.gov/tools.jsp.

The legitimate values for type (excluding “Not Sure”) are:

AFFYMETRIX_3PRIME_IVT_ID AFFYMETRIX_EXON_GENE_ID AFFYMETRIX_SNP_ID

AGILENT_CHIP_ID AGILENT_ID AGILENT_OLIGO_ID

ENSEMBL_GENE_ID ENSEMBL_TRANSCRIPT_ID ENTREZ_GENE_ID

FLYBASE_GENE_ID FLYBASE_TRANSCRIPT_ID GENBANK_ACCESSION

GENOMIC_GI_ACCESSION GENPEPT_ACCESSION ILLUMINA_ID

IPI_ID MGI_ID OFFICIAL_GENE_SYMBOL

PFAM_ID PIR_ID PROTEIN_GI_ACCESSION

REFSEQ_GENOMIC REFSEQ_MRNA REFSEQ_PROTEIN

REFSEQ_RNA RGD_ID SGD_ID

TAIR_ID UCSC_GENE_ID UNIGENE

UNIPROT_ACCESSION UNIPROT_ID UNIREF100_ID

WORMBASE_GENE_ID WORMPEP_ID ZFIN_ID

The third attribute is "tool", which refers to the type of report to be gener-
ated. Values which return useful results are the strings "gene2gene", "list",
"geneReport" (the latter two nearly equivalent), "annotationReport", and
"geneReportFull". The other choices for tool, related to DAVID’s Functional
Annotation tools, generate much more complex output and cannot be handled
by this package at this time.

A fourth attribute, the "annot" attribute, is relevant to the "annotationRe-

port", tool. It names the additional columns to appear in the annotation report.
For other tools, "annot" does not appear to affect the returned results, and is
generally set to NULL.

If the query contains tool=list or tool=geneReport, then the result (after
formatting) is a three-column character data frame. If the query contains
tool=geneReportFull, then the result (after formatting) is a list with each
element corresponding to an identifier in the ID list. If the query contains
tool=gene2gene, then the result (after formatting) is a list with each element

2

corresponding to a functional group selected by a DAVID algorithm. The for-
mats are documented in detail in the manual documents for the function for-

matDAVIDResult.

As was mentioned before, the Gene ID Conversion Tool is not included into the
latest version of API and can be accessed only through the online query system.
To overcome this limitation, we introduced the new tool value, "geneIdCon-
version", and implemented the conversion by programmatically reproducing
the Gene ID Conversion Tool workflow as follows. First, the list of IDs to be
converted from the given ID type is submitted to the DAVID online “tools.jsp”
service using the HTTP message post. Second, the DAVID check ’at least 80
percent of samples should be mapped’ turned off by accessing the hidden URL
”submitAnyway.jsp”. This ensures that the input ID list can contain any per-
centage of correct IDs and still be mapped properly. Third, the request for
ID conversion is sent by posting the HTTP message to the DAVID conversion
service. The resulting page is scrapped, the URL of the conversion result file is
obtained and the file is retrieved. As the conversion results file is a well format-
ted table represented by a tab delimited .txt file,no further formatting of the
DAVIDQueryResult is needed. The "annot" attribute values in this case are the
same as for "type", with addition of an extra item, DAVID (the DAVID unique
gene identifier), and define the type of gene ID conversion to be performed.

3 Motivating setting

Our group received results of a proteomic mass spectrometry experiment that
generated over 12,000 protein UNIPROT identifiers, and needed to compare
these results to a microarray experiment that utilized the Affymetrix U133 Plus
2 chip. Therefore the 12,000 identifiers needed to be mapped as well as possible
to Affymetrix probe-sets which could confidently be assigned to protein-coding
genes. There are numerous strategies for accomplishing this mapping, such as
utilizing the Affymetrix NetAffx resource or NCBI Entrez, but each approach
is known to generate an occasional incorrect answer. Utilizing DAVID appears
to be at minimum competitive with the others, and possibly the best approach.

An early version of DAVIDQueryLoop was used to retrieve matching probe-sets.
These results, together with comparisons to alternative mapping methods, are
to be reported in a manuscript in preparation. This work was initially performed
by Kevin McDade at the University of Pittsburgh, later automated by us; he is
continuing with some related innovative sequence-based analysis.

It should be noted that, as of last look, the retrieval of Affymetrix probe-set
IDs via the DAVID API did not allow for restricting the result to a specified
chip. Lists of probe-sets by chip name are available at DAVID. The function
getAffyProbesetList is provided in this package to retrieve the list for the
chip of interest, for intersection with lists of probe-sets retrieved from DAVID

3

via DAVIDQueryLoop. (We caution that there is no guarantee that these probe-
set lists match comparable lists obtained elsewhere.)

4 Launching a single query

A single query is accomplished with the function DAVIDQuery. The mechanics
involve formulating a query URI, launching it and retrieving identifiers from the
returned HTML, formulating and launching a new query, retrieving a result file
name from the returned HTML, and finally retrieving the file itself. Formatting
of the final result is the default option. (The result file remains on the server
for 24 hours.)

4.1 Structured and unstructured

A raw HTML character stream is transmitted by DAVID. By default, an attempt
to structure the results will be made. A structuring function is defined for each
tool. There is no guarantee that the structuring functions will continue to work
if or when the formats of the pages returned by DAVID change. Also, not
all combinations of the query arguments have been tested, and there may be
combinations of ids, type, annot, tool for which the tool’s structuring function
does not work correctly. When a look at the raw stream is desired, for example
if the structuring fails or the result is unexpected, then the call can be made
with the argument assignment: DAVIDQuery(formatIt=FALSE). This allows the
user to receive the raw character table actually returned.

4.2 Examples

> library("DAVIDQuery")

This is DAVIDQuery Version 1.24.0 2010-06-10

> result = DAVIDQuery(type="UNIPROT_ACCESSION", annot=NULL, tool="geneReportFull")

> names(result)

[1] "ids" "firstURL" "firstStageResult"

[4] "DAVIDaction" "secondURL" "secondStageResult"

[7] "hasSessionEnded" "downloadFileName" "downloadURL"

[10] "DAVIDQueryResult"

>

4

The result has been structured into a list of lists. Printing is suppressed due to
the size of the output. The code DAVIDQuery(testMe=TRUE) is the equivalent
of the DAVIDQuery call above.

The result of the simpler query using tool="geneReport" is a matrix:

> Sys.sleep(10) ### Assure that queries are not too close in time.

> result = DAVIDQuery(type="UNIPROT_ACCESSION", annot=NULL, tool="geneReport")

> result$firstURL

[1] "http://david.abcc.ncifcrf.gov/api.jsp?type=UNIPROT_ACCESSION&ids=O00161,O75396&tool=geneReport"

> result$secondURL

[1] "http://david.abcc.ncifcrf.gov/geneReport.jsp?rowids=814170,803794&annot=814170,803794"

> result$downloadURL

[1] "http://david.abcc.ncifcrf.gov/data/download/gr_D6CF85F4F2711397279328628.txt"

> result$DAVIDQueryResult

ID Gene.Name

2 O75396 SEC22 vesicle trafficking protein homolog B (S. cerevisiae)

3 O00161 synaptosomal-associated protein, 23kDa

Species

2 Homo sapiens

3 Homo sapiens

>

The Gene Functional Classification query is obtained by the query clause tool="gene2gene".
The returned value has a complex structure which we attempt to translate into
a corresponding R object respecting the structure, using the function format-

Gene2Gene.

> Sys.sleep(10) ### Assure that queries are not too close in time.

> result = testGene2Gene(details=FALSE)

> length(result)

[1] 4

> names(result[[1]])

5

[1] "type" "value" "details"

Convenience functions are provided to assist with integrating genomic and pro-
teomic data:

> Sys.sleep(10) ### Assure that queries are not too close in time.

> affyToUniprot(details=FALSE)

From To Species Gene.Name

1 88736_AT O00161 Homo sapiens synaptosomal-associated protein, 23kDa

2 88736_AT Q13602 Homo sapiens synaptosomal-associated protein, 23kDa

3 88736_AT O00162 Homo sapiens synaptosomal-associated protein, 23kDa

4 88736_AT Q6IAE3 Homo sapiens synaptosomal-associated protein, 23kDa

5 88736_AT A8K287 Homo sapiens synaptosomal-associated protein, 23kDa

> Sys.sleep(10) ### Assure that queries are not too close in time.

> uniprotToAffy(details=FALSE)

From To Species

1 O00161 209130_AT Homo sapiens

2 O00161 214544_S_AT Homo sapiens

3 O00161 G1374812_3P_A_AT Homo sapiens

4 O00161 229773_PM_AT Homo sapiens

5 O00161 42622_AT Homo sapiens

6 O00161 229773_AT Homo sapiens

7 O00161 U55936_AT Homo sapiens

8 O00161 209130_PM_AT Homo sapiens

9 O00161 32179_S_AT Homo sapiens

10 O00161 RC_N25249_AT Homo sapiens

11 O00161 46749_I_AT Homo sapiens

12 O00161 32178_R_AT Homo sapiens

13 O00161 RC_AA342059_S_AT Homo sapiens

14 O00161 209131_PM_S_AT Homo sapiens

15 O00161 88736_AT Homo sapiens

16 O00161 209131_S_AT Homo sapiens

17 O00161 MMUGDNA.23322.1.S1_AT Homo sapiens

18 O00161 HS.122505.0.A1_3P_AT Homo sapiens

19 O00161 RC_H02552_AT Homo sapiens

20 O00161 214544_PM_S_AT Homo sapiens

21 O00161 G13277555_3P_AT Homo sapiens

Gene.Name

1 synaptosomal-associated protein, 23kDa

2 synaptosomal-associated protein, 23kDa

3 synaptosomal-associated protein, 23kDa

6

4 synaptosomal-associated protein, 23kDa

5 synaptosomal-associated protein, 23kDa

6 synaptosomal-associated protein, 23kDa

7 synaptosomal-associated protein, 23kDa

8 synaptosomal-associated protein, 23kDa

9 synaptosomal-associated protein, 23kDa

10 synaptosomal-associated protein, 23kDa

11 synaptosomal-associated protein, 23kDa

12 synaptosomal-associated protein, 23kDa

13 synaptosomal-associated protein, 23kDa

14 synaptosomal-associated protein, 23kDa

15 synaptosomal-associated protein, 23kDa

16 synaptosomal-associated protein, 23kDa

17 synaptosomal-associated protein, 23kDa

18 synaptosomal-associated protein, 23kDa

19 synaptosomal-associated protein, 23kDa

20 synaptosomal-associated protein, 23kDa

21 synaptosomal-associated protein, 23kDa

5 Launching large queries

To control performance of the DAVID website, and to assure that queries
launched by the website can be successfully processed, policy limits are im-
plemented. When a user needs to retrieve answers which would exceed these
limits if a single query is attempted, the function DAVIDQueryLoop can be used.
It attempts to slow successive calls and to reduce the query size, sufficiently to
meet the website policies with a little to spare.

6 Limitations

This package cannot use semantic interoperability, due to the nature of DAVID
API. This entails risk that future modifications to DAVID will cause functions
in this package to fail. In fact, this did occur in the Spring of 2010, entailing a
major refactoring of this package.

7 Future improvements and adaptations

We would like to create a package targeted more generally to data analysis com-
bining protein expression data with mRNA expression data. The main focus,
initially at least, will be to provide support for mapping between protein iden-
tifiers, for example those returned by Sequest from mass spectrometry experi-
mental results, and probe-set identifiers for microarray chips. Multiple mapping

7

methods will be implemented and compared, extending ongoing research in our
group.

Ideally, the information in DAVID would be directly available via a grid ser-
vice. Neither the DAVID team nor we have current plans to implement that,
but note that Martin Morgan’s team working with caBIG has developed exten-
sive tools for bridging between R and the caBIG’s caGRID, using the package
RWebServices from Bioconductor.

8 Session information

This version of DAVIDQuery has been developed with R 2.11.0.

R session information:

> toLatex(sessionInfo())

• R version 3.1.0 RC (2014-04-02 r65358), x86_64-apple-darwin10.8.0

• Locale:
en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: bitops 1.0-6, DAVIDQuery 1.24.0, RCurl 1.95-4.1

• Loaded via a namespace (and not attached): tools 3.1.0

9 Acknowledgements

Brad Sherman and Da Wei Huang of the DAVID project kindly reviewed this
package and documentation. Their corrections and encouragement were invalu-
able.

Thanks are due to Drs. Larry Maxwell and Thomas Conrads for provision of the
data and scientific collaborations that motivated this work, Kevin McDade and
Uma Chandran for discussions on the identifier-mapping problem, and Richard
Boyce for careful review of the package and documentation. Grant support in-
cludes funding from the Gynecologic Diseases Program, a collaboration whose
bioinformatics components include Walter Reed Army Medical Center, Univer-
sity of Pittsburgh, and Windber Research Institute. Additional support came
from the Telemedicine and Advanced Technology Research Center (TATRC).

8

10 References

[1] Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y.,
Stephens R., Baseler M.W., Lane H.C. et al. (2007) DAVID Bioinformatics Re-
sources: expanded annotation database and novel algorithms to better extract
biology from large gene lists. Nucleic Acids Res., 35, W169-W175.

[2] Huang D.W., Sherman B.T. and Lempicki R.A. (2008) Systematic and inte-
grative analysis of large gene lists using DAVID bioinformatics resources. Nat.
Protoc., doi: 10.1038/nprot.2008.211.

9

