
Creating select Interfaces for custom Annotation resources

Marc Carlson and Valerie Obenchain

April 29, 2014

1 Introduction

The most common interface for retrieving data in Bioconductor is now the select method. The interface
provides a simple way of extracting data.

There are really 4 methods that work together to allow a select interface. The 1st one is columns, which
tells you about what kinds of values you can retrieve as columns in the final result.

library(Homo.sapiens)

Loading required package: OrganismDbi

Loading required package: GenomicFeatures

Loading required package: IRanges

Loading required package: GenomicRanges

Warning: closing unused connection 5 (/private/tmp/RtmpLXXivy/Rinst80f31c871dbc/AnnotationForge/extdata/HG-U95Av2 probe tab.gz)

Loading required package: GO.db

##

Loading required package: TxDb.Hsapiens.UCSC.hg19.knownGene

columns(Homo.sapiens)

[1] "GOID" "TERM" "ONTOLOGY" "DEFINITION" "ENTREZID"

[6] "PFAM" "IPI" "PROSITE" "ACCNUM" "ALIAS"

[11] "CHR" "CHRLOC" "CHRLOCEND" "ENZYME" "MAP"

[16] "PATH" "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[21] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME" "UNIPROT"

[26] "GO" "EVIDENCE" "GOALL" "EVIDENCEALL" "ONTOLOGYALL"

[31] "OMIM" "UCSCKG" "CDSID" "CDSNAME" "CDSCHROM"

[36] "CDSSTRAND" "CDSSTART" "CDSEND" "EXONID" "EXONNAME"

[41] "EXONCHROM" "EXONSTRAND" "EXONSTART" "EXONEND" "GENEID"

[46] "TXID" "EXONRANK" "TXNAME" "TXCHROM" "TXSTRAND"

[51] "TXSTART" "TXEND"

The next method is keytypes which tells you the kinds of things that can be used as keys.

keytypes(Homo.sapiens)

[1] "GOID" "TERM" "ONTOLOGY" "DEFINITION" "ENTREZID"

[6] "PFAM" "IPI" "PROSITE" "ACCNUM" "ALIAS"

1

Creating select Interfaces for custom Annotation resources 2

[11] "CHR" "CHRLOC" "CHRLOCEND" "ENZYME" "MAP"

[16] "PATH" "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[21] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME" "UNIPROT"

[26] "GO" "EVIDENCE" "GOALL" "EVIDENCEALL" "ONTOLOGYALL"

[31] "OMIM" "UCSCKG" "GENEID" "TXID" "TXNAME"

[36] "EXONID" "EXONNAME" "CDSID" "CDSNAME"

The third method is keys which is used to retrieve all the viable keys of a particular type.

k <- head(keys(Homo.sapiens,keytype="ENTREZID"))

k

[1] "1" "10" "100" "1000" "10000" "100008586"

And finally there is select, which extracts data by using values supplied by the other method.

result <- select(Homo.sapiens, keys=k,

columns=c("TXNAME","TXSTART","TXSTRAND"),

keytype="ENTREZID")

Warning: ’select’ resulted in 1:many mapping between keys and return rows

Warning: ’select’ resulted in 1:many mapping between keys and return rows

head(result)

ENTREZID TXNAME TXSTRAND TXSTART

1 1 uc002qsd.4 - 58858172

2 1 uc002qsf.2 - 58859832

3 10 uc003wyw.1 + 18248755

4 100 uc002xmj.3 - 43248163

5 1000 uc010xbn.1 - 25530930

6 1000 uc002kwg.2 - 25530930

But why would we want to implement these specific methods? It’s a fair question. Why would we want to
write a select interface for our annotation data? Why not just save a .rda file to the data directory and be
done with it? There are basically two reasons for this. The 1st reason is convenience for end users. When your
end users can access your data using the same four methods that they use everywhere else, they will have a
more effortless time retrieving their data. And things that benefit your users benefit you.

The second reason is that by enabling a consistent interface across all annotation resources, we allow for things
to be used in a programmatic manner. By implementing a select interface, we are creating a universal API for
the whole project.

Lets look again at the example I described above and think about what is happening. The Homo.sapiens
package is able to integrate data from many different resources largely because the separate resources all im-
plemented a select method. This allows the OrganismDbi package to pull together resources from org.Hs.eg.db,
GO.db and TxDb.Hsapiens.UCSC.hg19.knownGene.

If these packages all exposed different interfaces for retrieving the data, then it would be a lot more chal-
lenging to retrieve it, and writing general code that retrieved the appropriate data would be a lost cause. So
implementing a set of select methods is a way to convert your package from a data file into an actual resource.

http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/bioc/html/OrganismDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/GO.db.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

Creating select Interfaces for custom Annotation resources 3

Figure 1: Packages and relationships represented by the Homo.sapiens package

2 Creating other kinds of Annotation packages

A few more automated options already exist for generating specific kinds of annotation packages. For users
who seek to make custom chip packages, users should see the SQLForge: An easy way to create a new
annotation package with a standard database schema. in the AnnotationForge package. And, for users who
seek to make a probe package, there is another vignette called Creating probe packages that is also in the
AnnotationForge package. And finally, for custom organism packages users should look at the manual page
for makeOrgPackageFromNCBI. This function will attempt to make you an simplified organism package from
NCBI resources. However, this function is not meant as a way to refresh annotation packages between releases.
It is only meant for people who are working on less popular model organisms (so that annotations can be made
available in this format).

But what if you had another kind of web resource or database and you wanted to expose it to the world using
something like this new select method interface? How could you go about this?

http://bioconductor.org/packages/release/bioc/html/AnnotationForge.html
http://bioconductor.org/packages/release/bioc/html/AnnotationForge.html

Creating select Interfaces for custom Annotation resources 4

3 Retrieving data from a web resource

If you choose to expose a web resource, then you will need to learn some skills for retrieving that data from
the web. The R programming language has tools that can help you interact with web resources, pulling down
files that are tab delimited or formatted as XML etc. There are also packages that can help you parse what
you retrieve. In this section we will describe some of these resources in the context of the uniprot web service,
and give examples to demonstrate how you can expose resources like this for your own purposes.

These days many web services are exposed using a representational state transfer or RESTful interface. An
example of this are the services offered at Uniprot. Starting with the uniprot base URI you can add details to
simply indicate what it is that you wish to retrieve.

So in the case of Uniprot the base URI for the service we want today is this:

http://www.uniprot.org/uniprot/

This URI can be extended to retrieve individual uniprot records by specifying a query argument like this:

http://www.uniprot.org/uniprot/?query=P13368

We can then request multiple records like this:

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4

And we can ask that the records be returned to us in tabular form by adding another argument like this.

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=tab

As you might guess, each RESTful interface is a little different, but you can easily see how once you read the
documentation for a given RESTful interface, you can start to retrieve the data in R. Here is an example.

uri <- 'http://www.uniprot.org/uniprot/?query='

ids <- c('P13368', 'Q6GZX4')

idStr <- paste(ids, collapse="+or+")

format <- '&format=tab'

fullUri <- paste0(uri,idStr,format)

read.delim(fullUri)

Entry Entry.name Status Protein.names Gene.names

1 Q6GZX4 001R_FRG3G reviewed Putative transcription factor 001R FV3-001R

2 P13368 7LESS_DROME reviewed Protein sevenless (EC 2.7.10.1) sev HD-265 CG18085

Organism Length

1 Frog virus 3 (isolate Goorha) (FV-3) 256

2 Drosophila melanogaster (Fruit fly) 2554

Exercise 1
If you use the columns argument you can also specify which columns you want returned. So for example, you
can choose to only have the sequence and id columns returned like this:

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=tab&columns=id,sequence

Use this detail about the uniprot web service along with what was learned above to write a function that takes
a character vector of uniprot IDs and another character vector of columns arguments and then returns the
appropriate values. Be careful to filter out any extra records that the service returns.

Creating select Interfaces for custom Annotation resources 5

Solution:

getUniprotGoodies <- function(query, columns)

{
query and columns start as a character vectors

qstring <- paste(query, collapse="+or+")

cstring <- paste(columns, collapse=",")

uri <- 'http://www.uniprot.org/uniprot/?query='

fullUri <- paste0(uri,qstring,'&format=tab&columns=',cstring)

dat <- read.delim(fullUri, stringsAsFactors=FALSE)

now remove things that were not in the specific original query...

dat <- dat[dat[,1] %in% query,]

dat

}

3.1 Parsing XML

Data for the previous example were downloaded from Uniprot in tab-delimited format. This is a convienent
output to work with but unfortunately not always available. XML is still very common and it is useful to
have some familiarity with parsing it. In this section we give a brief overview to using the XML package for
navigating XML data.

The XML package provides functions to parse XML in both the tree-based DOM (document object model) or
the event-driven SAX (Simple API for XML). We will use the DOM approach. The XML is first parsed into
a tree-structure where the different elements of the data are nodes. The elements are processed by traversing
the tree and generating a user-level representation of the nodes. XPath syntax is used to traverse the nodes.
A detailed description of XPath can be found at http://www.w3.org/xml.

Retrieve the data: Data will be retrieved for the same id’s as in the previous example. Unlike tab-delimited,
the XML queries cannot be subset by column so the full record will be returned for each id. Details for what
is possible with each type of data retrieval are found at http://www.uniprot.org/faq/28.

Parse the XML into a tree structure with xmlTreeParse. When useInternalNodes=TRUE and no handlers

are specified the return value is a reference to C-level nodes. This storage mode allows us to traverse the tree
of data in C instead of R objects.

library(XML)

uri <- "http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=xml"

xml <- xmlTreeParse(uri, useInternalNodes=TRUE)

XML namespace: XML pages can have namespaces which facilatate the use of different XML vocabularies
by resolving conflicts arrising from identical tags. Namepaces are represented by a uri pointing to an XML
schema page. When a namespace is defined on a node in an XML document it must be included in the XPath
expression.

Use the xmlNamespaceDefinitions function to check if the XML has a namespace.

http://www.w3.org/xml
http://www.uniprot.org/faq/28

Creating select Interfaces for custom Annotation resources 6

defs <- xmlNamespaceDefinitions(xml, recurisve=TRUE)

defs

[[1]]

$id

[1] ""

##

$uri

[1] "http://uniprot.org/uniprot"

##

$local

[1] TRUE

##

attr(,"class")

[1] "XMLNamespaceDefinition"

##

$xsi

$id

[1] "xsi"

##

$uri

[1] "http://www.w3.org/2001/XMLSchema-instance"

##

$local

[1] TRUE

##

attr(,"class")

[1] "XMLNamespaceDefinition"

##

attr(,"class")

[1] "XMLNamespaceDefinitions"

The presence of uri’s confirm there is a namespace. Alternatively we could have looked at the XML nodes for
declarstions of the form xmlns:myNamespace="http://www.namspace.org". We organize the namespaces
and will use them directly in parsing.

ns <- structure(sapply(defs, function(x) x$uri), names=names(defs))

Parsing with XPath: There are two high level ’entry’ nodes which represent the two id’s requested in the
original query.

entry <- getNodeSet(xml, "//ns:entry", "ns")

xmlSize(entry)

[1] 2

To get an idea of the data structure we first list the attributes of the top nodes and extract the names.

Creating select Interfaces for custom Annotation resources 7

nms <- xpathSApply(xml, "//ns:entry/ns:name", xmlValue, namespaces="ns")

attrs <- xpathApply(xml, "//ns:entry", xmlAttrs, namespaces="ns")

names(attrs) <- nms

attrs

$`001R_FRG3G`

dataset created modified version

"Swiss-Prot" "2011-06-28" "2014-04-16" "26"

##

$`7LESS_DROME`

dataset created modified version

"Swiss-Prot" "1990-01-01" "2014-04-16" "146"

Next, inspect the direct children of each node.

fun1 <- function(elt) unique(names(xmlChildren(elt)))

xpathApply(xml, "//ns:entry", fun1, namespaces="ns")

[[1]]

[1] "accession" "name" "protein" "gene"

[5] "organism" "organismHost" "reference" "comment"

[9] "dbReference" "proteinExistence" "keyword" "feature"

[13] "sequence"

##

[[2]]

[1] "accession" "name" "protein" "gene"

[5] "organism" "reference" "comment" "dbReference"

[9] "proteinExistence" "keyword" "feature" "evidence"

[13] "sequence"

Query Q6GZX4 has 2 ’feature’ nodes and query P13368 has 48.

Q6GZX4 <- "//ns:entry[ns:accession='Q6GZX4']/ns:feature"

xmlSize(getNodeSet(xml, Q6GZX4, namespaces="ns"))

[1] 2

P13368 <- "//ns:entry[ns:accession='P13368']/ns:feature"

xmlSize(getNodeSet(xml, P13368, namespaces="ns"))

[1] 48

List all possible values for the ’type’ attribute of the ’feature’ nodes.

path <- "//ns:feature"

unique(xpathSApply(xml, path, xmlGetAttr, "type", namespaces="ns"))

[1] "chain" "compositionally biased region"

[3] "topological domain" "transmembrane region"

[5] "domain" "repeat"

[7] "nucleotide phosphate-binding region" "active site"

[9] "binding site" "modified residue"

[11] "glycosylation site" "mutagenesis site"

Creating select Interfaces for custom Annotation resources 8

[13] "sequence conflict"

XPath allows the construction of complex queries to pull out specific subsets of data. Here we extract the
features with ‘type=sequence conflict’ for query P13368.

path <- "//ns:entry[ns:accession='P13368']/ns:feature[@type='sequence conflict']"

data.frame(t(xpathSApply(xml, path, xmlAttrs, namespaces="ns")))

type description ref

1 sequence conflict In Ref. 1; AAA28882. 1

2 sequence conflict In Ref. 3; AAF47992. 3

3 sequence conflict In Ref. 3; AAF47992. 3

4 sequence conflict In Ref. 3; AAF47992. 3

5 sequence conflict In Ref. 3; AAF47992. 3

6 sequence conflict In Ref. 2; CAA31960/CAB55310. 2

7 sequence conflict In Ref. 1; AAA28882. 1

Put the sequences in an AAStringSet and add the names.

library(Biostrings)

Loading required package: XVector

path <- "//ns:entry/ns:sequence"

seqs <- xpathSApply(xml, path, xmlValue, namespaces="ns")

aa <- AAStringSet(unlist(lapply(seqs, function(elt) gsub("\n", "", elt)),

use.names=FALSE))

names(aa) <- nms

aa

A AAStringSet instance of length 2

width seq names

[1] 256 MAFSAEDVLKEYDRRRRMEALLLSLYYP...VKTGSKGVLYDDSFRKIYTDLGWKFTPL 001R_FRG3G

[2] 2554 MTMFWQQNVDHQSDEQDKQAKGAAPTKR...RPEDENLTLREVPLKDKQLYANEGVSRL 7LESS_DROME

4 Setting up a package to expose a web service

In order to expose a web service using select, you will need to create an object that will be loaded at the
time when the package is loaded. Unlike with a database, the purpose of this object is pretty much purely for
dispatch. We just need select and it’s friends to know which select method to call

The first step is to create an object. Creating an object is simple enough:

setClass("uniprot", representation(name="character"),

prototype(name="uniprot"))

Once you have a class defined, all you need is to make an instance of this class. Making an instance is easy
enough:

uniprot <- new("uniprot")

Creating select Interfaces for custom Annotation resources 9

But of course it’s a little more complicated because one of these objects will need to be spawned up whenever
our package loads. This is acclomplished by calling the .onLoad function in the zzz.R file. The following code
will create an object, and then assign it to the package namespace as the package loads.

.onLoad <- function(libname, pkgname)

{
ns <- asNamespace(pkgname)

uniprot <- new("uniprot")

assign("uniprot", uniprot, envir=ns)

namespaceExport(ns, "uniprot")

}

5 Creating package accessors for a web service

At this point you have all that you need to know in order to implement keytype,columns,keys and select

for your package. In this section we will explore how you could implement some of these if you were making a
package that exposed uniprot.

5.1 Example: creating keytypes and columns methods

The keytype and columns methods are always the 1st ones you should implement. They are the easiest, and
their existence is required to be able to use keys or select. In this simple case we only have one value that
can be used as a keytype, and that is a UNIPROT ID.

setMethod("keytypes", "uniprot",function(x){return("UNIPROT")})

[1] "keytypes"

uniprot <- new("uniprot")

keytypes(uniprot)

[1] "UNIPROT"

So what about columns? Well it’s not a whole lot more complicated in this case since we are limited to things
that we can return from the web service. Since this is just an example, lets limit it to the following fields:
”ID”, ”SEQUENCE”, ”ORGANISM”.

setMethod("columns", "uniprot",

function(x){return(c("ID", "SEQUENCE", "ORGANISM"))})

[1] "columns"

columns(uniprot)

[1] "ID" "SEQUENCE" "ORGANISM"

Also, notice how for both keytypes and columns I am using all capital letters. This is a style adopted
throughout the project.

Creating select Interfaces for custom Annotation resources 10

5.2 Example 2: creating a select method

At this point we have enough to be able to make a select method.

Exercise 2
Using what you have learned above, and the helper function from earlier, define a select method. This select
method will have a default keytype of ”UNIPROT”.

Solution:

.select <- function(x, keys, columns){
colsTranslate <- c(id='ID', sequence='SEQUENCE', organism='ORGANISM')

columns <- names(colsTranslate)[colsTranslate %in% columns]

getUniprotGoodies(query=keys, columns=columns)

}
setMethod("select", "uniprot",

function(x, keys, columns, keytype)

{
.select(keys=keys, columns=columns)

})

[1] "select"

select(uniprot, keys=c("P13368","P20806"), columns=c("ID","ORGANISM"))

Entry Organism

1 P20806 Drosophila virilis (Fruit fly)

2 P13368 Drosophila melanogaster (Fruit fly)

6 Retrieving data from a database resource

If your package is retrieving data from a database, then there are some additional skills you will need to be
able to interface with this database from R. This section will introduce you to those skills.

6.1 Getting a connection

If all you know is the name of the SQLite database, then to get a DB connection you need to do something
like this:

drv <- SQLite()

library("org.Hs.eg.db")

con_hs <- dbConnect(drv, dbname=system.file("extdata", "org.Hs.eg.sqlite",

package = "org.Hs.eg.db"))

con_hs

dbDisconnect(con_hs)

But in our case the connection has already been created here as part of the object that was generated when
the package was loaded:

Creating select Interfaces for custom Annotation resources 11

require(hom.Hs.inp.db)

Loading required package: hom.Hs.inp.db

str(hom.Hs.inp.db)

Reference class 'InparanoidDb' [package "AnnotationDbi"] with 2 fields

$ conn :Formal class 'SQLiteConnection' [package "RSQLite"] with 1 slots

.. ..@ Id:<externalptr>

$ packageName: chr "hom.Hs.inp.db"

and 12 methods,

So we can do something like below:

hom.Hs.inp.db$conn

<SQLiteConnection: DBI CON (33368, 11)>

or better we can use a helper function to wrap this:

AnnotationDbi:::dbConn(hom.Hs.inp.db)

<SQLiteConnection: DBI CON (33368, 11)>

or we can just call the provided convenience function

from when this package loads:

hom.Hs.inp_dbconn()

<SQLiteConnection: DBI CON (33368, 9)>

6.2 Getting data out

Now we just need to get our data out of the DB. There are several useful functions for doing this. Most
of these come from the RSQLite or DBI packages. For the sake of simplicity, I will only discuss those that
are immediately useful for exploring and extracting data from a database in this vignette. One pair of useful
methods are the dbListTables and dbListFields which are useful for exploring the schema of a database.

con <- AnnotationDbi:::dbConn(hom.Hs.inp.db)

head(dbListTables(con))

[1] "Acyrthosiphon_pisum" "Aedes_aegypti" "Anopheles_gambiae"

[4] "Apis_mellifera" "Arabidopsis_thaliana" "Aspergillus_fumigatus"

dbListFields(con, "Mus_musculus")

[1] "inp_id" "clust_id" "species" "score" "seed_status"

For actually executing SQL to retrieve data, you probably want to use something like dbGetQuery. The only
caveat is that this will actually require you to know a little SQL.

dbGetQuery(con, "SELECT * FROM metadata")

name value

1 INPSOURCEDATE 29-Apr-2009

2 INPSOURCENAME Inparanoid Orthologs

Creating select Interfaces for custom Annotation resources 12

3 INPSOURCEURL http://inparanoid.sbc.su.se/download/current/sqltables/

4 DBSCHEMA INPARANOID_DB

5 ORGANISM Homo sapiens

6 SPECIES Human

7 package AnnotationDbi

8 Db type InparanoidDb

9 DBSCHEMAVERSION 2.1

6.3 Some basic SQL

The good news is that SQL is pretty easy to learn. Especially if you are primarily interested in just retrieving
data from an existing database. Here is a quick run-down to get you started on writing simple SELECT
statements. Consider a table that looks like this:

Table sna
foo bar

1 baz
2 boo

This statement:

SELECT bar FROM sna;

Tells SQL to get the ”bar” field from the ”foo” table. If we wanted the other field called ”sna” in addition to
”bar”, we could have written it like this:

SELECT foo, bar FROM sna;

Or even this (* is a wildcard character here)

SELECT * FROM sna;

Now lets suppose that we wanted to filter the results. We could also have said something like this:

SELECT * FROM sna WHERE bar='boo';

That query will only retrieve records from foo that match the criteria for bar. But there are two other things
to notice. First notice that a single = was used for testing equality. Second notice that I used single quotes to
demarcate the string. I could have also used double quotes, but when working in R this will prove to be less
convenient as the whole SQL statement itself will frequently have to be wrapped as a string.

What if we wanted to be more general? Then you can use LIKE. Like this:

SELECT * FROM sna WHERE bar LIKE 'boo\%';

That query will only return records where bar starts with ”boo”, (the % character is acting as another kind of
wildcard in this context).

You will often find that you need to get things from two or more different tables at once. Or, you may even
find that you need to combine the results from two different queries. Sometimes these two queries may even
come from the same table. In any of these cases, you want to do a join. The simplest and most common kind
of join is an inner join. Lets suppose that we have two tables:

Creating select Interfaces for custom Annotation resources 13

Table sna Table fu
foo bar foo bo
1 baz 1 hi
2 boo 2 ca

And we want to join them where the records match in their corresponding ”foo” columns. We can do this
query to join them:

SELECT * FROM sna,fu WHERE sna.foo=fu.foo;

Something else we can do is tidy this up by using aliases like so:

SELECT * FROM sna AS s,fu AS f WHERE s.foo=f.foo;

This last trick is not very useful in this particular example since the query ended up being longer than we
started with, but is still great for other cases where queries can become really long.

6.4 Exploring the SQLite database from R

Now that we know both some SQL and also about some of the methods in DBI and RSQLite we can begin
to explore the underlying database from R. How should we go about this? Well the 1st thing we always want
to know are what tables are present. We already know how to learn this:

head(dbListTables(con))

[1] "Acyrthosiphon_pisum" "Aedes_aegypti" "Anopheles_gambiae"

[4] "Apis_mellifera" "Arabidopsis_thaliana" "Aspergillus_fumigatus"

And we also know that once we have a table we are curious about, we can then look up it’s fields using
dbListFields

dbListFields(con, "Apis_mellifera")

[1] "inp_id" "clust_id" "species" "score" "seed_status"

And once we know something about which fields are present in a table, we can compose a SQL query. perhaps
the most straightforward query is just to get all the results from a given table. We know that the SQL for that
should look like:

SELECT * FROM Apis_mellifera;

So we can now call a query like that from R by using dbGetQuery:

head(dbGetQuery(con, "SELECT * FROM Apis_mellifera"))

inp_id clust_id species score seed_status

1 XP_623957.2 1 APIME 1 100%

2 ENSP00000262442 1 HOMSA 1 99%

3 ENSP00000300671 1 HOMSA 0.095

4 XP_001121322.1 2 APIME 1 100%

5 ENSP00000265104 2 HOMSA 1 100%

6 ENSP00000333363 2 HOMSA 0.236

Creating select Interfaces for custom Annotation resources 14

Exercise 3
Now use what you have learned to explore the hom.Hs.inp.db database. The formal scientific name for one of
the mosquitoes that carry the malaria parasite is Anopheles gambiae. Now find the table for that organism in
the hom.Hs.inp.db database and extract it into R. How many species are present in this table? Inparanoid uses
a five letter designation for each species that is composed of the 1st 2 letters of the genus followed by the 1st
3 letters of the species. Using this fact, write a SQL query that will retrieve only records from this table that
are from humans (Homo sapiens).

Solution:

head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae"))

Then only retrieve human records

Query: SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'

head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'"))

dbDisconnect(con)

7 Setting up a package to expose a SQLite database object

For the sake of simplicity, lets look at an existing example of this in the hom.Hs.inp.db package. If you
download this tarball from the website you can see that it contains a .sqlite database inside of the inst/extdata
directory. There are a couple of important details though about this database. The 1st is that we recommend
that the database have the same name as the package, but end with the extension .sqlite. The second detail
is that we recommend that the metadata table contain some important fields. This is the metadata from the
current hom.Hs.inp.db package.

name value

1 INPSOURCEDATE 29-Apr-2009

2 INPSOURCENAME Inparanoid Orthologs

3 INPSOURCEURL http://inparanoid.sbc.su.se/download/current/sqltables/

4 DBSCHEMA INPARANOID_DB

5 ORGANISM Homo sapiens

6 SPECIES Human

7 package AnnotationDbi

8 Db type InparanoidDb

9 DBSCHEMAVERSION 2.1

As you can see there are a number of very useful fields stored in the metadata table and if you list the equivalent
table for other packages you will find even more useful information than you find here. But the most important
fields here are actually the ones called ”package” and ”Db type”. Those fields specify both the name of the
package with the expected class definition, and also the name of the object that this database is expected to
be represented by in the R session respectively. If you fail to include this information in your metadata table,
then loadDb will not know what to do with the database when it is called. In this case, the class definition
has been stored in the AnnotationDbi package, but it could live anywhere you need it too. By specifying the
metadata field, you enable loadDb to find it.

Once you have set up the metadata you will need to create a class for your package that extends the Annota-
tionDb class. In the case of the hom.Hs.inp.db package, the class is defined to be a InparanoidDb class. This
code is inside of AnnotationDbi .

http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html

Creating select Interfaces for custom Annotation resources 15

.InparanoidDb <-

setRefClass("InparanoidDb", contains="AnnotationDb")

Finally the .onLoad call for your package will have to contain code that will call the loadDb method. This is
what it currently looks like in the hom.Hs.inp.db package.

sPkgname <- sub(".db$","",pkgname)

db <- loadDb(system.file("extdata", paste(sPkgname,

".sqlite",sep=""), package=pkgname, lib.loc=libname),

packageName=pkgname)

dbNewname <- AnnotationDbi:::dbObjectName(pkgname,"InparanoidDb")

ns <- asNamespace(pkgname)

assign(dbNewname, db, envir=ns)

namespaceExport(ns, dbNewname)

When the code above is run (at load time) the name of the package (AKA ”pkgname”, which is a parameter
that will be passed into .onLoad) is then used to derive the name for the object. Then that name, is used by
onload to create an InparanoidDb object. This object is then assigned to the namespace for this package so
that it will be loaded for the user.

8 Creating package accessors for databases

At this point, all that remains is to create the means for accessing the data in the database. This should prove
a lot less difficult than it may initially sound. For the new interface, only the four methods that were described
earlier are really required: columns,keytypes,keys and select.

In order to do this you need to know a small amount of SQL and a few tricks for accessing the database from
R. The point of providing these 4 accessors is to give users of these packages a more unified experience when
retrieving data from the database. But other kinds of accessors (such as those provided for the TranscriptDb
objects) may also be warranted.

8.1 Examples: creating a columns and keytypes method

Now lets suppose that we want to define a columns method for our hom.Hs.inp.db object. And lets also
suppose that we want is for it to tell us about the actual organisms for which we can extract identifiers. How
could we do that?

.cols <- function(x)

{
con <- AnnotationDbi:::dbConn(x)

list <- dbListTables(con)

drop unwanted tables

unwanted <- c("map_counts","map_metadata","metadata")

list <- list[!list %in% unwanted]

Then just to format things in the usual way

list <- toupper(list)

dbDisconnect(con)

http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html

Creating select Interfaces for custom Annotation resources 16

list

}

Then make this into a method

setMethod("columns", "InparanoidDb", .cols(x))

Then we can call it

columns(hom.Hs.inp.db)

Notice again how I formatted the output to all uppercase characters? This is just done to make the interface
look consistent with what has been done before for the other select interfaces. But doing this means that
we will have to do a tiny bit of extra work when we implement out other methods.

Exercise 4
Now use what you have learned to try and define a method for keytypes on hom.Hs.inp.db. The keytypes
method should return the same results as columns (in this case). What if you needed to translate back to the
lowercase table names? Also write an quick helper function to do that.

Solution:

setMethod("keytypes", "InparanoidDb", .cols(x))

Then we can call it

keytypes(hom.Hs.inp.db)

refactor of .cols

.getLCcolnames <- function(x)

{
con <- AnnotationDbi:::dbConn(x)

list <- dbListTables(con)

drop unwanted tables

unwanted <- c("map_counts","map_metadata","metadata")

list <- list[!list %in% unwanted]

dbDisconnect(con)

list

}
.cols <- function(x)

{
list <- .getLCcolnames(x)

Then just to format things in the usual way

toupper(list)

}
Test:

columns(hom.Hs.inp.db)

new helper function:

.getTableNames <- function(x)

{
LC <- .getLCcolnames(x)

UC <- .cols(x)

Creating select Interfaces for custom Annotation resources 17

names(UC) <- LC

UC

}
.getTableNames(hom.Hs.inp.db)

8.2 Example: creating a keys method

Exercise 5
Now define a method for keys on hom.Hs.inp.db. The keys method should return the keys from a given
organism based on the appropriate keytype. Since each table has rows that correspond to both human and
non-human IDs, it will be necessary to filter out the human rows from the result

Solution:

.keys <- function(x, keytype)

{
translate keytype back to table name

tabNames <- .getTableNames(x)

lckeytype <- names(tabNames[tabNames %in% keytype])

get a connection

con <- AnnotationDbi:::dbConn(x)

sql <- paste("SELECT inp_id FROM",lckeytype, "WHERE species!='HOMSA'")

res <- dbGetQuery(con, sql)

res <- as.vector(t(res))

dbDisconnect(con)

res

}

setMethod("keys", "InparanoidDb", .keys(x, keytype))

Then we can call it

keys(hom.Hs.inp.db, "TRICHOPLAX_ADHAERENS")

9 Creating a database resource from available data

Sometimes you may have a lot of data that you want to organize into a database. Or you may have another
existing database that you wish to convert into a SQLite database. This section will deal with some simple
things you can do to create and import a SQLite database of your own.

9.1 Making a new connection

First, lets close the connection to our other DB:

Creating select Interfaces for custom Annotation resources 18

dbDisconnect(con)

[1] TRUE

Then lets make a new database. Notice that we specify the database name with ”dbname” This allows it to
be written to disc instead of just memory.

drv <- dbDriver("SQLite")

dbname <- file.path(tempdir(), "myNewDb.sqlite")

con <- dbConnect(drv, dbname=dbname)

9.2 Importing data

Imagine that we want to reate a database and then put a table in it called genePheno to store the genes
mutated and a phenotypes associated with each. Plan for genePheno to hold the following gene IDs and
phenotypes (as a toy example):

data = data.frame(id=c(1,2,9),

string=c("Blue",

"Red",

"Green"),

stringsAsFactors=FALSE)

Making the table is very simple, and just involves a create table statement.

CREATE Table genePheno (id INTEGER, string TEXT);

The SQL create table statement just indicates what the table is to be called, as well as the different fields that
will be present and the type of data each field is expected to contain.

dbGetQuery(con, "CREATE Table genePheno (id INTEGER, string TEXT)")

NULL

But putting the data into the database is a little bit more delicate. We want to take control over which columns
we want to insert from our data.frame. Fortunately, the RSQLite package provides these facilities for us.

names(data) <- c("id","string")

sql <- "INSERT INTO genePheno VALUES ($id, $string)"

dbBeginTransaction(con)

[1] TRUE

dbGetPreparedQuery(con, sql, bind.data = data)

NULL

dbCommit(con)

[1] TRUE

Please notice that we want to use strings instead of factors in our data.frame. If you insert the data as factors,
you may not be happy with what ends up in the DB.

Creating select Interfaces for custom Annotation resources 19

9.3 Attaching other database resources

In SQLite it is possible to attach another database to your session and then query across both resources as if
they were the same DB.

The SQL what we want looks quite simple:

ATTACH "TxDb.Hsapiens.UCSC.hg19.knownGene.sqlite" AS db;

So in R we need to do something similar to this:

db <- system.file("extdata", "TxDb.Hsapiens.UCSC.hg19.knownGene.sqlite",

package="TxDb.Hsapiens.UCSC.hg19.knownGene")

dbGetQuery(con, sprintf("ATTACH '%s' AS db",db))

NULL

Here we have attached a DB from one of the packages that this vignette required you to have installed, but
we could have attached any SQLite database that we provided a path to.

Once we have attached the database, we can join to it’s tables as if they were in our own database. All that is
required is a prefix, and some knowledge about how to do joins in SQL. In the end the SQL to take advantage
of the attached database looks like this:

SELECT * FROM db.gene AS dbg, genePheno AS gp

WHERE dbg.gene_id=gp.id;

Then in R:

sql <- "SELECT * FROM db.gene AS dbg,

genePheno AS gp WHERE dbg.gene_id=gp.id"

res <- dbGetQuery(con, sql)

res

gene_id _tx_id id string

1 1 70455 1 Blue

2 1 70456 1 Blue

3 2 47665 2 Red

4 2 47666 2 Red

5 9 31934 9 Green

6 9 31935 9 Green

7 9 31936 9 Green

8 9 31937 9 Green

9 9 31938 9 Green

10 9 31939 9 Green

11 9 31940 9 Green

12 9 31941 9 Green

13 9 31942 9 Green

The version number of R and packages loaded for generating the vignette were:

R version 3.1.0 (2014-04-10)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

##

Creating select Interfaces for custom Annotation resources 20

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] hom.Hs.inp.db_2.14.0 Biostrings_2.32.0

[3] XVector_0.4.0 XML_3.98-1.1

[5] Homo.sapiens_1.1.2 TxDb.Hsapiens.UCSC.hg19.knownGene_2.14.0

[7] GO.db_2.14.0 OrganismDbi_1.6.0

[9] GenomicFeatures_1.16.0 GenomicRanges_1.16.2

[11] IRanges_1.22.5 knitr_1.5

[13] affy_1.42.2 AnnotationForge_1.6.1

[15] org.Hs.eg.db_2.14.0 RSQLite_0.11.4

[17] DBI_0.2-7 AnnotationDbi_1.26.0

[19] GenomeInfoDb_1.0.2 Biobase_2.24.0

[21] BiocGenerics_0.10.0

##

loaded via a namespace (and not attached):

[1] affyio_1.32.0 BatchJobs_1.2 BBmisc_1.6

[4] BiocInstaller_1.14.2 BiocParallel_0.6.0 BiocStyle_1.2.0

[7] biomaRt_2.20.0 bitops_1.0-6 brew_1.0-6

[10] BSgenome_1.32.0 codetools_0.2-8 digest_0.6.4

[13] evaluate_0.5.3 fail_1.2 foreach_1.4.2

[16] formatR_0.10 GenomicAlignments_1.0.0 graph_1.42.0

[19] highr_0.3 iterators_1.0.7 plyr_1.8.1

[22] preprocessCore_1.26.0 RBGL_1.40.0 Rcpp_0.11.1

[25] RCurl_1.95-4.1 Rsamtools_1.16.0 rtracklayer_1.24.0

[28] sendmailR_1.1-2 stats4_3.1.0 stringr_0.6.2

[31] tools_3.1.0 zlibbioc_1.10.0

	1 Introduction
	2 Creating other kinds of Annotation packages
	3 Retrieving data from a web resource
	3.1 Parsing XML

	4 Setting up a package to expose a web service
	5 Creating package accessors for a web service
	5.1 Example: creating keytypes and columns methods
	5.2 Example 2: creating a select method

	6 Retrieving data from a database resource
	6.1 Getting a connection
	6.2 Getting data out
	6.3 Some basic SQL
	6.4 Exploring the SQLite database from R

	7 Setting up a package to expose a SQLite database object
	8 Creating package accessors for databases
	8.1 Examples: creating a columns and keytypes method
	8.2 Example: creating a keys method

	9 Creating a database resource from available data
	9.1 Making a new connection
	9.2 Importing data
	9.3 Attaching other database resources

