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A common and important task in microarray experi-
ments is the identification of genes whose expression
values differ substantially between groups or condi-
tions. Finding such differentially expressed genes re-
quires methods that can deal with multiple testing
problems in which thousands or even tens of thou-
sands of hypotheses are tested simultaneously.

Usually, a statistic appropriate for testing if the
expression levels are associated with a covariate of
interest and the corresponding p-value are computed
for each gene. Afterwards, these raw p-values are ad-
justed for multiplicity such that a Type I error rate is
strongly controlled at a pre-specified level of signi-
ficance. The classical example of such an error rate
is the family-wise error rate (FWER), i.e. the proba-
bility of at least one false positive. This error rate,
however, might be too conservative for a situation in
which thousands of hypotheses are tested and seve-
ral tens of genes should be identified. In the analysis
of microarray data, another error rate has, hence, be-
come very popular: The False Discovery Rate (FDR)
which is loosely spoken the expected proportion of
false positives among all rejected null hypotheses, i.e.
identified genes.

There are, however, other ways to adjust for mul-
tiplicity: For example, QQ plots or the Bayesian
framework can be employed for this purpose. If the
observed test statistics are plotted against the values
of the test statistics that would be expected under
the null hypothesis most of the points will appro-
ximately lie on the diagonal. Those points that dif-
fer substantially from this line correspond to genes
that are most likely differentially expressed. The Sig-
nificance Analysis of Microarrays (SAM) proposed
by Tusher et al. (2001) can be used to specify what
“differ substantially" means. While Tusher et al.
(2001) base their analysis on a moderated t statistic,
Schwender et al. (2003) compare this approach with
a SAM version based on Wilcoxon rank sums.

Efron et al. (2001) use an empirical Bayes anal-
ysis (EBAM) to model the distribution of the ob-
served test statistics as a mixture of two components,
one for the differentially expressed genes, and the
other for the not differentially expressed genes. Fol-
lowing their analysis, a gene is called differentially
expressed if the corresponding posterior probability
is larger than 0.9.

Both SAM and EBAM are implemented in the
Bioconductor package siggenes. In this article, we,
however, will concentrate on SAM. In the following,
we briefly describe the SAM procedure, its imple-

mentation in siggenes (for more details, see Schwen-
der et al. (2003)), and the test statistics already avai-
lable in this package. Afterwards, we show how you
can write your own function for other testing situa-
tions. Finally, we will give an example of how sam
can be applied to gene expression data.

Significance Analysis of Microar-
rays

In SAM, a statistic d appropriate for testing if there
is an association between the expression levels and
the covariate of interest is computed for each of the
m genes. These observed test scores are sorted and
plotted against the scores expected under the null
hypothesis, where the expected test scores d̄(i), i =
1, . . . , m, are computed as follows: If the null distri-
bution is known, then d̄(i) is the (i− 0.5)/m quantile
of this null distribution. Otherwise, d̄(i) is assessed
by

– generating B permutations of the group labels,

– computing the m test statistics and sorting
them for each of the B permutations,

– averaging over the B ith-smallest scores,

where typically B = 100 permutations are randomly
chosen (Tibshirani et al. , 2002), or if the total number
of possible permutations is less than B, full permuta-
tion is performed.

Two lines parallel to the diagonal in a distance of
∆ are then drawn into this plot called SAM plot (see
Figure 1). Any gene showing a d value

– larger than or equal to the d value of the gene,
say dup, that corresponds to the left-most point
on the right side of the origin that lies above the
upper ∆ line,

– smaller than or equal to the d value of the gene,
say dlow, that corresponds to the right-most
point on the left side of the origin that lies be-
low the lower ∆ line

is called differentially expressed. Afterwards, the
FDR is estimated by

– counting how many of the mB permuted test
scores are larger than or equal to dup or smaller
than and equal to dlow, and dividing this num-
ber by B,

– dividing this average by the number of identi-
fied genes,
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– multiplying this ratio by the prior probability
that a gene is not differentially expressed (by
default, sam estimates this probability by the
procedure of Storey and Tibshirani (2003)).

This procedure is repeated for several values of
∆, and the value of ∆ is chosen that provides the best
balance between the number of identified genes and
the estimated FDR, i.e. that allows to simultaneously
attain the two competing goals “As many genes as
possible" and “As low FDR as possible" as well as
possible.

The following test statistics can be called in sam
by setting the argument ‘method’ to

d.stat: Moderated t and F statistics. The “usual" t
or F statistics are computed if the fudge factor
‘s0’ is set to zero (for details, see Tusher et al.
(2001)).

wilc.stat: Wilcoxon rank sums for one and two
class analyses.

cat.stat: Pearson’s χ2-statistic for testing categori-
cal data such as SNP (Single Nucleotide Poly-
morphism) data (Schwender, 2005).

Writing Your Own Test Score Func-
tion

It is also possible to write your own function for an-
other testing situation and use this function in sam.
This function must have as input the two required
arguments

‘data’: A matrix or data frame containing the data.
Each row of this data set should correspond to
one of the m variables, i.e. genes, and each col-
umn to one of the n observations/samples.

‘cl’: A vector consisting of the class labels of the ob-
servations.

The function can also have additional optional argu-
ments that can be called in sam.

The output of this function must be a list consi-
sting of the following objects

‘d’: A numeric vector containing the test scores of the
genes.

‘d.bar’: A numeric vector of length na.exclude(d)
consisting of the sorted test scores expected un-
der the null hypothesis.

‘p.value’: A numeric vector of the same length and
order as ‘d’ containing the p-values of the
genes.

‘vec.false’: A numeric vector of the same length as
‘d’ comprising the under the null hypothesis
expected number of genes that are either larger

than di (if di ≥ 0), or smaller than di (if di < 0)
for each gene i, i = 1, . . . , m (for more details,
see Schwender et al. (2003)).

‘s’: A numeric vector containing the standard errors
of the expression values.

‘s0’: A numeric value specifying the fudge factor.

‘mat.samp’: A B× n matrix containing the permuted
class labels.

‘msg’: A character vector containing messages that
are displayed when the SAM specific S4 meth-
ods print and summary are called.

‘fold’: A numeric vector containing the fold
changes of the genes. Should be set to
numeric(0) if another analysis than a two-class
analysis is performed.

Assume, e.g., that we would like to perform a
SAM analysis with the “usual" t-statistic assuming
equal group variances and normality. The code of a
function t.stat for such an analysis is given by

t.stat <- function(data, cl){
require(genefilter) ||

stop("genefilter required.")
row.out <- rowttests(data, cl)
d <- row.out$statistic
m <- length(na.exclude(d))
d.bar <- qt(((1:m) - 0.5)/m, row.out$df)
p.value <- row.out$p.value
vec.false <- m * p.value/2
s <- row.out$dm/d
# dm: differences in group means
msg <- paste("SAM Two-Class Analysis",

"Assuming Normality\n\n")
list(d=-d, d.bar=d.bar, p.value=p.value,

vec.false=vec.false, s=s, s0=0,
mat.samp=matrix(numeric(0)),
msg=msg, fold=numeric(0))

}

Please note that in the output of t.stat ‘d’ is set to
-d since in rowttests the mean of group 2 is sub-
tracted from the mean of group 1, whereas in sam the
difference is taken the other way around.

Now t.stat can be used in sam by setting
method=t.stat.

Example: ALL Data

As example we here employ one of the data sets used
in Gentleman et al. (2005). The package ALL contai-
ning this data set can be downloaded by

> source("http://www.bioconductor.org/getBioC.R")
> getBioC("ALL")
> library(ALL)
> data(ALL)
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As described in Scholtens and von Heydebreck
(2005), we filter the genes showing low expression
values or an IQR of less than 0.5, and select a subset
of the samples.

> library(genefilter)
> subALL <- filterALL()

(The code of filterALL can be found in the Ap-
pendix 1.) This leads to an exprSet object containing
gene expression data of 2,391 probe sets and 79 sam-
ples.

As Scholtens and von Heydebreck (2005), we
would like to identify the probe sets whose expres-
sion values differ strongly between the samples for
which

> mol.biol <- pData(subALL)$mol.biol

is equal to "BCR/ABL" and the samples for which
mol.biol=="NEG". Thus, sam is applied to this data
set by specifying the required arguments ‘data’ and
‘cl’, where

‘data’ can either be a matrix, a data frame, or an
exprSet or ExpressionSet object containing
the gene expression data,

‘cl’ is a vector containing the class labels of the sam-
ples. If ‘data’ is an exprSet object, then ‘cl’ can
also be a character string naming the column of
pData(data) that contains the class labels.

So

> library(siggenes)
> clALL <- ifelse(mol.biol=="BCR/ABL", 0, 1)
> dataALL <- exprs(subALL)
> out1 <- sam(dataALL, clALL,
+ var.equal = TRUE, rand = 123456)

leads to the same results as

> out2 <- sam(subALL, "mol.biol",
+ var.equal = TRUE, rand = 123456)

where ‘var.equal’ is set to TRUE since we here would
like to assume that the group variances are equal,
and ‘rand’ is set to 123456 to make the results of this
analysis reproducible.

By default, the number of identified genes and
the estimated FDR is computed for ten values of ∆

equidistantly spaced between 0.1 and maxi |d(i) −
d̄(i)|. The output of our SAM analysis is thus given
by

> out1

SAM Analysis for the Two-Class Unpaired Case
Assuming Equal Variances

Delta p0 False Called FDR

1 0.1 0.63 1900.61 2075 0.57726
2 0.7 0.63 125.07 400 0.19706
3 1.4 0.63 3.86 90 0.02703
4 2.0 0.63 0.1 25 0.00252
5 2.7 0.63 0 6 0
6 3.3 0.63 0 4 0
7 4.0 0.63 0 3 0
8 4.6 0.63 0 2 0
9 5.3 0.63 0 2 0
10 5.9 0.63 0 1 0

where p0 is the estimated prior probability that a
gene is not differentially expressed, False is the
number of falsely called genes (see Tusher et al.
(2001)), Called is the number of identified genes, and
FDR = p0 * False / Called is the estimated FDR.

Please note that the number of falsely called
genes, i.e. the under the null hypothesis expected
number of genes having a test score larger than dup
or smaller than dlow, is not an estimate for the actual
number of false positives.

More information, e.g., the value of the fudge fac-
tor can be obtained using summary. Both summary and
print can also be used to generate the above table for
other values of ∆. For example,

> print(out1, seq(1.4, 2, 0.1))

SAM Analysis for the Two-Class Unpaired Case
Assuming Equal Variances

Delta p0 False Called FDR
1 1.4 0.63 3.86 90 0.02703
2 1.5 0.63 2.36 77 0.01932
3 1.6 0.63 1.45 64 0.01428
4 1.7 0.63 0.80 54 0.00934
5 1.8 0.63 0.41 45 0.00574
6 1.9 0.63 0.26 36 0.00455
7 2.0 0.63 0.10 25 0.00252

Let’s say our goal is to identify about 100 genes
and to control the FDR at a level of about 1.5%. In
this case, ∆ = 1.5 would be a reasonable choice since
little less than 100 genes are detected with an esti-
mated FDR slightly larger than 1.5%. The SAM plot
for this selection shown in Figure 1 is generated by

> plot(out1, 1.5, sig.col = c(3,2), pch = 16,
+ pos.stats = 2, cex = 0.6)

where

‘sig.col’ is a numeric value or vector specifying the
color of the identified down- and up-regulated
genes,

‘pos.stats’ indicates where the statistics are shown
in the SAM plot,

‘cex’ specifies the relative size of the plotting sym-
bols of the genes not identified as differentially
expressed.
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Figure 1: SAM Plot for ∆ = 1.5.

While the relative size of the symbols can be specified
separately for the identified and the not identified
genes, the symbol itself (‘pch’) is the same for both
types of genes. For all arguments of the SAM specific
method plot, see

> help.sam(plot)

Information about the identified genes such as
their d values, the corresponding raw p-values and
the q-values (see Storey and Tibshirani (2003)) can be
obtained by

> summary(out1,1.5)

An excerpt from the output of summary is shown in
Figure 2. This information can also be stored in a csv
file via sam2excel, or in an html file using sam2html.
If ‘data’ is an exprSet object or ‘chipname’ is spe-
cified in sam2html, then the html file will also con-
tain the gene symbols and links to public repositories
such as Entrez, RefSeq and UniGene. If ‘cdfname’ is
specified, additionally, links to the Affymetrix web-
pages of the identified probe sets will be available.
For example, the html file generated by

> sam2html(out1, 1.5, "out1.html", ll = TRUE,
+ cdfname = "HG-U95Av2")

is available at http://www.statistik.
uni-dortmund.de/de/content/einrichtungen/
lehrstuehle/personen/holgers/out1.html.

Finally, we would like to check if
method="t.stat" (see previous section 1) works cor-
rectly.

> out3 <- sam(subALL, "mol.biol",
+ method = "t.stat")
> out3

SAM Two-Class Analysis Assuming Normality

Delta p0 False Called FDR

1 0.1 0.63 1832.197 2050 0.56307
2 0.7 0.63 94.609 347 0.17177
3 1.3 0.63 3.555 100 0.02240
4 1.9 0.63 0.044 19 0.00145
5 2.5 0.63 0.000567 6 5.95e-05
6 3.1 0.63 3.33e-05 4 5.24e-06
7 3.7 0.63 2.92e-07 3 6.14e-08
8 4.4 0.63 5.73e-10 2 1.80e-10
9 5.0 0.63 5.73e-10 2 1.80e-10
10 5.6 0.63 0 0 0

Since in both analyses we have computed the t
statistic assuming equal group variances, the d va-
lues in both analyses should be the same:

> tmp <- sum(round(out1@d, 8) ==
+ round(out3@d, 8))
> tmp == length(out1@d)
[1] TRUE

Summary

The package siggenes contains functions for per-
forming both a Significance Analysis of Microarrays
(SAM) and an Empirical Bayes Analysis of Microar-
rays (EBAM). The function sam provides not only a
set of statistics for standard tests such as t and F test
but also the possibility to employ user-written func-
tions for other testing situations. After identifying a
list of genes, not only statistics of these genes, such
as their test scores and p-values, can be obtained but
also links to public repositories containing biological
information about these genes.

The EBAM functions are currently under revi-
sion to provide more user-friendly and less memory-
consuming versions of these functions having all the
features that the SAM functions already have.
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Appendix

filterALL <- function(){
pdat <- pData(ALL)
subset<-intersect(grep("^B",

as.character(pdat$BT)),
which(pdat$mol %in% c("BCR/ABL",
"NEG")))

eset <- ALL[, subset]
require(genefilter)
f1 <- pOverA(0.25, log2(100))

4

http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html
http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html
http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html


BIBLIOGRAPHY BIBLIOGRAPHY

SAM Analysis for the Two-Class Unpaired Case Assuming Equal Variances

s0 = 0

Number of permutations: 100

MEAN number of falsely called genes is computed.

Delta: 1.5

cutlow: -3.332

cutup: 5.04

p0: 0.63

Significant Genes: 77

Falsely Called Genes: 2.36

FDR: 0.0193

Genes called significant (using Delta = 1.5):

Row d.value stdev rawp q.value R.fold Name

1 134 -9.26 0.1188 0 0 0.457 1636_g_at

2 1787 -8.69 0.1327 0 0 0.442 39730_at

3 133 -7.28 0.1652 0 0 0.420 1635_at

4 1890 -6.18 0.2878 0 0 0.429 40202_at

5 1193 -5.65 0.2388 0 0 0.460 37027_at

Figure 2: An excerpt from the output of summary(out1, 1.5).

f2 <- function(x) IQR(x) > 0.5
selected <- genefilter(eset,

filterfun(f1, f2))
esetSub <- eset[selected, ]
pdat <- pData(esetSub)
esetSub$mol.biol <-

as.character(esetSub$mol.biol)
esetSub

}
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