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1 Overview

The Bioconductor package DEXseq implements a method to test for differential exon usage in
comparative RNA-Seq experiments. By differential exon usage (DEU), we mean changes in the
relative usage of exons caused by the experimental condition. The relative usage of an exon is
defined as

number of transcripts from the gene that contain this exon

number of all transcripts from the gene
. (1)

The statistical method used by DEXSeq was introduced in our paper [1]. The basic concept can
be summarized as follows. For each exon (or part of an exon) and each sample, we count how
many reads map to this exon and how many reads map to any of the other exons of the same gene.
We consider the ratio of these two counts, and how it changes across conditions, to infer changes
in the relative exon usage (1). In the case of an inner exon, a change in relative exon usage is
typically due to a change in the rate with which this exon is spliced into transcripts (alternative
splicing). Note, however, that DEU is a more general concept than alternative splicing, since it
also includes changes in the usage of alternative transcript start sites and polyadenylation sites,
which can cause differential usage of exons at the 5’ and 3’ boundary of transcripts.

Similar as with differential gene expression, we need to make sure that observed differences of
values of the ratio (1) between conditions are statistically significant, i. e., are sufficiently unlikely
to be just due to random fluctuations such as those seen even between samples from the same
condition, i. e., between replicates. To this end, DEXSeq assesses the strength of these fluctuations
(quantified by the so-called dispersion) by comparing replicates before comparing the averages
between the sample groups.

The preceding description is somewhat simplified (and perhaps over-simplified), and we recom-
mend that users consult the paper [1] for a more complete description, as well as Appendix C of
this vignette, which describes how the current implementation of DEXSeq differs from the original
approach described in the paper. Nevertheless, two important aspects should be mentioned already
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here: First, DEXSeq does not actually work on the ratios (1), but on the counts in the numerator
and denominator, to be able to make use of the information that is contained in the magnitude of
count values. (3000 reads versus 1000 reads is the same ratio as 3 reads versus 1 read, but the latter
is a far less reliable estimate of the underlying true value, because of statistical sampling.) Second,
DEXSeq is not limited to simple two-group comparisons; rather, it uses so-called generalized linear
models (GLMs) to permit ANOVA-like analysis of potentially complex experimental designs.

2 Preparations

2.1 Example data

To demonstrate the use of DEXSeq, we use the pasilla dataset, an RNA-Seq dataset generated
by Brooks et al. [2]. They investigated the effect of siRNA knock-down of the gene pasilla on
the transcriptome of fly S2-DRSC cells. The RNA-binding protein pasilla protein is thought to
be involved in the regulation of splicing. (Its mammalian orthologs, NOVA1 and NOVA2, are
well-studied examples of splicing factors.) Brooks et al. prepared seven cell cultures, treated three
with siRNA to knock down pasilla and left four as untreated controls, and performed RNA-Seq on
all samples. They deposited the raw sequencing reads with the NCBI Gene Expression Omnibus
(GEO) under the accession number GSE18508.1

Executability of the code. Usually, Bioconductor vignettes contain automatically executable
code, i. e., you can follow the vignette by directly running the code shown, using functionality and
data provided with the package. However, it would not be practical to include the voluminous
raw data of the pasilla experiment here. Therefore, the code in this section is not automatically
executable. You may download the raw data yourself from GEO, as well as the required extra
tools, and follow the work flow shown here and in the pasilla vignette [3]. From Section 3 on, code
is directly executable, as usual. Therefore, we recommend that you just read this section, and try
following our analysis in R only from the next section onwards. Once you work with your own
data, you will want to come back and adapt the work flow shown here to your data.

2.2 Alignment

The first step of the analysis is to align the reads to a reference genome. It is important to align
them to the genome, not to the transcriptome, and to use a splice-aware aligner (i. e., a short-read
alignment tool that can deal with reads that span across introns) such as TopHat2 [4], GSNAP [5],
or STAR [6]. The explanation of the analysis work-flow presented here starts with the aligned
reads in the SAM format. If you are unfamiliar with the process of aligning reads to obtain SAM
files, you can find a summary how we proceeded in preparing the pasilla data in the vignette for
the pasilla data package [3] and a more extensive explanation, using the same data set, in our
protocol article on differential expression calling [7].

1http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
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2.3 HTSeq

The initial steps of a DEXSeq analysis, described in the following two sections, is typically done
outside R, by using two provided Python scripts. You do not need to know how to use Python;
however you have to install the Python package HTSeq, following the explanations given on the
HTSeq web page:

http://www-huber.embl.de/users/anders/HTSeq/doc/install.html
Once you have installed HTSeq, you can use the two Python scripts, dexseq_prepare_annotation.py

(described in Section 2.4) and dexseq_count.py (Section 2.5), that come with the DEXSeq pack-
age. If you have trouble finding them, start R and ask for the installation directory with

> system.file( "python_scripts", package="DEXSeq" )

The displayed path should contain the two files. If it does not, try to re-install DEXSeq (as usual,
with biocLite).

An alternative work flow, which replaces the two Python-based steps with R=based code, is
also available and is demonstrated in the vignette of the parathyroidSE package [8].

2.4 Preparing the annotation

The Python scripts expect a GTF file with gene models for your species. We have tested our tools
chiefly with GTF files from Ensembl and hence recommend to prefer these, as files from other
providers sometimes do not adhere fully to the GTF standard and cause the preprocessing to fail.
Ensembl GTF files can be found in the “FTP Download” sections of the Ensembl web sites (i. e.,
Ensembl, EnsemblPlants, EnsemblFungi, etc.). Make sure that your GTF file uses a coordinate
system that matches the reference genome that you have used for aligning your reads. (The safest
way to ensure this is to download the reference genome from Ensembl, too.) If you cannot use an
Ensembl GTF file, see Appendix D for advice on converting GFF files from other sources to make
them suitable as input for the dexseq_prepare_annotation.py script.

In a GTF file, many exons appear multiple times, once for each transcript that contains them.
We need to “collapse” this information to define exon counting bins, i. e., a list of intervals, each
corresponding to one exon or part of an exon. Counting bins for parts of exons arise when an
exonic region appears with different boundaries in different transcripts. See Figure 1 of the DEXSeq
paper [1] for an illustration. The Python script dexseq_prepare_annotation.py takes an Ensembl
GTF file and translates it into a GFF file with collapsed exon counting bins.

Make sure that your current working directory contains the GTF file and call the script (from
the command line shell, not from within R) with

python /path/to/library/DEXSeq/python_scripts/dexseq_prepare_annotation.py
Drosophila_melanogaster.BDGP5.72.gtf Dmel_flattened.gff

In this command, which should be entered as a single line, replace /path/to.../python_scripts
with the correct path to the Python scripts, which you have found with the call to system.file
shown above. Drosophila_melanogaster.BDGP5.72.gtf is the Ensembl GTF file (here the one for
fruit fly, already de-compressed) and Dmel_flattenend.gff is the name of the output file.

In the process of forming the counting bins, the script might come across overlapping genes. If
two genes on the same strand are found with an exon of the first gene overlapping with an exon

http://www-huber.embl.de/users/anders/HTSeq/doc/install.html
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of the second gene, the script’s default behaviour is to combine the genes into a single “aggregate
gene” which is subsequently referred to with the IDs of the individual genes, joined by a plus
(’+’) sign. If you do not like this behaviour, you can disable aggregation with the option “-r no”.
Without aggregation, exons that overlap with other exons from different genes are simply skipped.

2.5 Counting reads

For each SAM file, we next count the number of reads that overlap with each of the exon counting
bins defined in the flattened GFF file. This is done with the script python_count.py:

python /path/to/library/DEXSeq/python_scripts/dexseq_count.py
Dmel_flattenend.gff untreated1.sam untreated1.counts

This command (again, to be entered as a single line) expects two files in the current working
directory, namely the GFF file produced in the previous step (here Dmel_flattened.py) and a SAM
file with the aligned reads from a sample (here the file untreated1.sam with the aligned reads from
the first control sample). The command generates an output file, here called untreated1.counts,
with one line for each exon counting bin defined in the flattened GFF file. The lines contain the
exon counting bin IDs (which are composed of gene IDs and exon bin numbers), followed by a
integer number which indicates the number of reads that were aligned such that they overlap with
the counting bin.

Use the script multiple times to produce a count file from each of your SAM files.
There are a number of crucial points to pay attention to when using the python_count.py

script:
Paired-end data: If your data is from a paired-end sequencing run, you need to add the option

“-p yes” to the command to call the script. (As usual, options have to be placed before the
file names, surrounded by spaces.) In addition, the SAM file needs to be sorted, either by read
name or by position. Most aligners produce sorted SAM files; if your SAM file is not sorted,
use samtools sort -n to sort by read name (or samtools sort) to sort by position. (See e.g.
reference [7], if you need further explanations on how to sort SAM files.) Use the option “-r pos”
or “-r name” to indicate whether your paired-end data is sorted by alignment position or by read
name.2

Strandedness: By default, the counting script assumes your library to be strand-specific, i.e.,
reads are aligned to the same strand as the gene they originate from. If you have used a library
preparation protocol that does not preserve strand information (i.e., reads from a given gene can
appear equally likely on either strand), you need to inform the script by specifying the option
“-s no”. If your library preparation protocol reverses the strand (i.e., reads appear on the strand
opposite to their gene of origin), use “-s reverse”. In case of paired-end data, the default (-s yes)
means that the read from the first sequence pass is on the same strand as the gene and the read
from the second pass on the opposite strand (“forward-reverse” or “fr” order in the parlance of the
Bowtie/TopHat manual) and the options -s reverse specifies the opposite case.

SAM and BAM files: By default, tehs cript expects its input to be in plain-text SAM format.
However, it can also read BAM files, i.e., files in the the compressed binary variant of the SAM

2The possibility to process paired-end data from a file sorted by position is based on recent contributions of
Paul-Theodor Pyl to HTSeq.
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format. If you wish to do so, use the option “-f bam”. This works only if you have installed the
Python package pysam, which can be found at https://code.google.com/p/pysam/.

Alignment quality: The scripts takes a further option, -a to specify the minimum alignment
quality (as given in the fifth column of the SAM file). All reads with a lower quality than specified
(with default -a 10) are skipped.

Help pages: Calling either script without arguments displays a help page with an overview of
all options and arguments.

2.6 Reading the data in to R

The remainder of the analysis process is now done in R. Start R and load DEXSeq

> library( "DEXSeq" )

Now, we need to prepare a sample table. This table should contain one row for each library, and
columns for all relevant information such as name of the file with the read counts, experimental
conditions, technical information and further covariates. To keep this vignette simple, we construct
the table on the fly.

> sampleTable <- data.frame(
+ row.names = c( "untreated1", "untreated2", "untreated3",
+ "untreated4", "treated1", "treated2", "treated3" ),
+ countFile = c( "untreated1.counts", "untreated2.counts",
+ "untreated3.counts", "untreated4.counts",
+ "treated1.counts", "treated2.counts","treated3.counts" ),
+ condition = c( "control", "control", "control",
+ "control", "knockdown", "knockdown", "knockdown" ),
+ libType = c( "single-end", "paired-end", "paired-end",
+ "single-end", "single-end", "paired-end", "paired-end" ) )

While this is a simple way to prepare the table, it may be less error-prone and more prudent to
used an existing table that had already been prepared when the experiments were done, save it in
CSV format and use the R function read.csv to load it.

In any case, it is vital to check the table carefully for correctness.

> sampleTable

countFile condition libType
untreated1 untreated1.counts control single-end
untreated2 untreated2.counts control paired-end
untreated3 untreated3.counts control paired-end
untreated4 untreated4.counts control single-end
treated1 treated1.counts knockdown single-end
treated2 treated2.counts knockdown paired-end
treated3 treated3.counts knockdown paired-end

https://code.google.com/p/pysam/
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Our table contains the sample names as row names, the names of the count files that we prepared
in the previous step and the two covariates that vary between samples: first the experimental
condition (factor condition with levels control and treatment) and the library type (factor
libType), which we included because the samples in this particular experiment were sequenced
partly in single-end runs and partly in paired-end runs.

For now, we will, however, ignore this latter piece of information, and postpone the discussion
of how to include such additional covariates to Section 4. If you have only a single covariate and
want to perform a simple analysis, the column with this covariate should be named condition.

Now, we construct an ExonCountSet object from this data. This object holds all the input
data and will be passed along the stages of the subsequent analysis. We construct the object with
the DEXSeq function read.HTSeqCounts, as follows:

> ecs <- read.HTSeqCounts(
+ sampleTable$countFile,
+ sampleTable,
+ "Dmel_flattenend.gff" )

The function takes three arguments. First, a vector with names of count files, i.e., of files that have
been generated with the dexseq_count.py script. The function will read these files and arrange
the count data in a matrix, which is stored in the ExonCountSet object ecs. The second argument
is our sample table, with one row for each of the files listed in the first argument. This information
is simply stored as is in the object’s meta-data slot (see below). The third argument is a file name
again, now of the flattened GFF file that was generated with dexseq_prepare_annotation.py and
used as input to dexseq_count.py when creating the count file.

There are other ways to get a DEXSeq analysis started. See Appendix A and Ref. [8] for details.

3 Standard analysis work-flow

3.1 Loading and inspecting the example data

To demonstrate the DEXSeq work flow, we have prepared, in the pasilla data package, an Exon-
CountSet similar to the one constructed in the previous section. However, in order to keep the
run-time of this vignette small, we have subset the object to only a few genes.

To start, we load the package DEXSeq and the example data from the pasilla package.

> library( DEXSeq )
> data( "pasillaExons", package="pasilla" )

The object pasillaExons is an ExonCountSet, which has been constructed with read.HTSeqCounts
as described above. For consistency, we rename it to ecs as above, and then inspect it.

> ecs <- pasillaExons
> ecs

ExonCountSet (storageMode: environment)
assayData: 498 features, 7 samples
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element names: counts
protocolData: none
phenoData

sampleNames: treated1fb treated2fb ... untreated4fb (7 total)
varLabels: sizeFactor condition type countfiles
varMetadata: labelDescription

featureData
featureNames: FBgn0000256:E001 FBgn0000256:E002 ... FBgn0261573:E016

(498 total)
fvarLabels: geneID exonID ... transcripts (13 total)
fvarMetadata: labelDescription

experimentData: use experimentData(object)
pubMedIds: 20921232

Annotation:

The ExonCountSet class is derived from eSet, Bioconductor’s standard container class for exper-
imental data [9]. As such, it contains the usual accessor functions for sample, feature and assay
data (including pData, fData, experimentData), and some specific ones. The core data in an
ExonCountSet object are the counts per exon. Let’s have a look at the first 7 rows.

> head( counts(ecs), 7 )

treated1fb treated2fb treated3fb untreated1fb untreated2fb
FBgn0000256:E001 92 28 43 54 131
FBgn0000256:E002 124 80 91 76 224
FBgn0000256:E003 340 241 262 347 670
FBgn0000256:E004 250 189 201 219 507
FBgn0000256:E005 96 38 39 71 76
FBgn0000256:E006 1 0 1 0 2
FBgn0000256:E007 149 70 71 130 281

untreated3fb untreated4fb
FBgn0000256:E001 51 49
FBgn0000256:E002 82 95
FBgn0000256:E003 260 297
FBgn0000256:E004 242 250
FBgn0000256:E005 57 62
FBgn0000256:E006 0 2
FBgn0000256:E007 115 94

The rows are labelled with gene IDs (here Flybase IDs), followed by a colon and the counting bin
number. (As a counting bin corresponds to an exon or part of an exon, this ID is called the exon
ID within DEXSeq.) The table content indicates the number of reads that have been mapped to
each counting bin in the respective sample.

To see details on the counting bins, we also print the first 3 lines of the feature data annotation:

> head( fData(pasillaExons), 3 )
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geneID exonID testable dispBeforeSharing dispFitted
FBgn0000256:E001 FBgn0000256 E001 NA NA NA
FBgn0000256:E002 FBgn0000256 E002 NA NA NA
FBgn0000256:E003 FBgn0000256 E003 NA NA NA

dispersion pvalue padjust chr start end strand
FBgn0000256:E001 NA NA NA chr2L 3872658 3872947 -
FBgn0000256:E002 NA NA NA chr2L 3873019 3873322 -
FBgn0000256:E003 NA NA NA chr2L 3873385 3874395 -

transcripts
FBgn0000256:E001 FBtr0077511;FBtr0077513;FBtr0077512;FBtr0290077;FBtr0290079;FBtr0290078;FBtr0290082;FBtr0290080;FBtr0290081
FBgn0000256:E002 FBtr0077511;FBtr0077513;FBtr0077512;FBtr0290077;FBtr0290079;FBtr0290078;FBtr0290082;FBtr0290080;FBtr0290081
FBgn0000256:E003 FBtr0077511;FBtr0077513;FBtr0077512;FBtr0290077;FBtr0290079;FBtr0290078;FBtr0290082;FBtr0290080;FBtr0290081

So far, this table contains information on the annotation data, such as gene and exon IDs,
genomic coordinates of the exon, and the list of transcripts that contain an exon. Further columns
for intermediate and final results are already present (and filled with NA) and will be filled with
results in subsequent steps of the analysis.

The accessor function design shows the design table with the sample annotation (which was
passed as the second argument to read.HTSeqCounts):

> design(ecs)

condition type
treated1fb treated single-read
treated2fb treated paired-end
treated3fb treated paired-end
untreated1fb untreated single-read
untreated2fb untreated single-read
untreated3fb untreated paired-end
untreated4fb untreated paired-end

In the following sections, we will update the object by calling a number of analysis functions,
always using the idiom “ ecs <- someFunction( ecs )”, which takes the ecs object, fills in the
results of the performed computation and writes the returned and updated object back into the
variable ecs.

3.2 Normalisation

Different samples might be sequenced with different depths. In order to adjust for such coverage
biases, we estimate size factors, which measure relative sequencing depth. DEXSeq uses the same
method as DESeq and DESeq2, which is provided in the function estimateSizeFactors.

> ecs <- estimateSizeFactors( ecs )

You may want to inspect the estimated size factors

> sizeFactors(ecs)
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treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb
1.34 0.80 0.92 0.99 1.57 0.84

untreated4fb
0.83

3.3 Dispersion estimation

To test for differential expression, we need to estimate the variability of the data. This is neces-
sary to be able to distinguish technical and biological variation (noise) from real effects on exon
expression due to the different conditions. The information on the strength of the noise is inferred
from the biological replicates in the data set and characterized by the so-called dispersion. In
RNA-Seq experiments the number of replicates is typically too small to reliably estimate variance
or dispersion parameters individually exon by exon, and therefore, variance information is shared
across exons and genes, in an intensity-dependent manner.

In this section, we discuss simple one-way designs: In this setting, samples with the same
experimental condition, as indicated in the condition factor of the design table (see above), are
considered as replicates – and therefore, the design table needs to contain a column with the name
condition. In Section 4, we discuss how to treat more complicated experimental designs which
are not accommodated by a single condition factor.

The first step is to get a dispersion estimate for each exon. This task is performed by the
function estimateDispersions, using Cox-Reid (CR) likelihood estimation (our approach here
follows that of the package edgeR [10]). Before starting estimating the CR dispersion estimates,
estimateDispersions first defines the “testable” counting bins. In this step, all bins are excluded
with less that minCount reads. By default, minCount=10, i.e., the bin must have at least 10 reads,
summed up across all samples, but other values can be specified when calling estimateDispersion.
If a gene has only one testable counting bin, then this counting bin is then considered as not testable,
either, because it’s usage cannot be compared to any other counting bins. The testable bins are
marked in the column testable of the feature data.

Then, a dispersion estimate is computed for each bin, and the obtained values are stored in the
feature data column dispBeforeSharing. The following command performs these steps.

> ecs <- estimateDispersions( ecs )

Note that for a full, genome-wide data set, execution of this function can take a while. To indicate
progress, a dot is printed on the console whenever 100 genes have been processed. If you have a
machine with multiple cores, you may want to use the nCores option to instruct the function to
parallelize the task over several CPU cores. See Section 6 and the function’s help page for details.

Afterwards, the function fitDispersionFunction needs to be called, in which a dispersion-
mean relation α(µ) = α0 + α1/µ is fitted to the individual CR dispersion values (as stored in
dispBeforeSharing). The fit coefficients are stored in the slot dispFitCoefs and finally, for each
exon, the maximum between the dispersion before sharing and the fitted dispersion value is taken
as the exon’s final dispersion value and stored in the dispersion slot.3 See our paper [1] for the
rationale behind this “sharing” scheme.

3Especially when the dispersion estimates are very large, this fit can be difficult, and has occasionally caused
the function to fail. In these rare cases please contact the developers.



Inferring differential exon usage in RNA-Seq data with the DEXSeq package 11

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●●

●

●●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

1e−01 1e+01 1e+03

1e
−

11
1e

−
08

1e
−

05
1e

−
02

mean of normalized counts

di
sp

er
si

on

Figure 1: Fit Diagnostics. Per-gene dispersion estimates (shown by points) and the fitted mean-
dispersion function (red line).

> ecs <- fitDispersionFunction( ecs )

We can have a look at the results of the CR estimation, the coefficients from the fit, and the fitted
values:

> head( fData(ecs)$dispBeforeSharing )

[1] 0.0119 0.0021 0.0072 0.0076 0.0444 NA

> ecs@dispFitCoefs

(Intercept) I(1/means[good])
0.032 0.815

> head( fData(ecs)$dispFitted )

[1] 0.046 0.040 0.035 0.035 0.046 1.067

As a fit diagnostic, we plot the per-exon dispersion estimates versus the mean normalised count.

> plotDispEsts( ecs )
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The plot (Figure 1) shows the estimates for all exons as dots and the fit as red line. The red line
follows the trend of the dots in the upper cluster of dots. The lower cluster stems from exons
for which the sample noise happens to fall below shot noise, i.e., their sample estimates of the
dispersion is zero or close to zero and hence form another cluster at the bottom. The fact that
these two clusters look so well separated is to a large extent an artefact of the logarithmic y-axis
scaling. Inspect the fit and make sure that the regression line follows the trend of the points within
the upper cluster.

The intercept coefficient of the dispersion fit (see above), which is the horizontal asymptote
of the red line, can be understood as the square of the coefficient of variation of highly expressed
exons, and is a good rough estimate of the overall noise in the data set and hence of the available
power to infer differential exon usage,

3.4 Testing for differential exon usage

Having the dispersion estimates and the size factors, we can now test for differential exon usage.
For each gene, DEXSeq fits a generalized linear model with the formula

∼ sample + exon + condition:exon (2)

and compare it to the smaller model (the null model)

∼ sample + exon. (3)

In these formulae (which use the standard notation for linear model formulae in R; consult a
text book on R if you are unfamiliar with it), sample is a factor with different levels for each
sample, condition is the factor of experimental conditions that we defined when constructing the
ExonCountSet object at the beginning of the analysis, and exon is a factor with two levels, this
and others. The two models described by these formulae are fit for each counting bin, where the
data supplied to the fit comprise two read count values for each sample, corresponding to the two
levels of the exon factor: the number of reads mapping to the bin in question (level this), and the
sum of the read counts from all other bins of the same gene (level others). Note that this approach
differs from the approach described in the paper [1] and used in older versions of DEXSeq; see
Appendix C for further discussion.

Readers familiar with linear model formulae might find one aspect of Equation (2) surprising:
We have an interaction term condition:exon, but denote no main effect for condition. Note,
however, that all observations from the same sample are also from the same condition, i.e., the
condition main effects are absorbed in the sample main effects, because the sample factor is
nested within the condition factor.

The deviances of both fits are compared using a χ2-distribution, giving rise to a p value. Based
on that, we can decide whether the null model (3) is sufficient to explain the data, or whether it
may be rejected in favour of the alternative, model (2), which contains an interaction coefficient
for condition:exon. The latter means that the fraction of the gene’s reads that fall onto the exon
under the test differs significantly between the experimental conditions.

The function testForDEU performs these tests for each exon in each gene.

> ecs <- testForDEU( ecs )
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The function stores its results in the pvalue and padjust columns of the featureData slots of the
ExonCountSet object with the results. Here, pvalue contains the p values from the χ2 likelihood-
ratio test, and padjust is the result of performing Benjamini-Hochberg adjustment for multiple
testing on pvalue:

> head( fData(ecs)[, c( "pvalue", "padjust" ) ] )

pvalue padjust
FBgn0000256:E001 0.94 1
FBgn0000256:E002 0.47 1
FBgn0000256:E003 0.92 1
FBgn0000256:E004 0.81 1
FBgn0000256:E005 0.87 1
FBgn0000256:E006 NA NA

For some usages, we may also want to estimate fold changes. To this end, we call estimatelog2FoldChanges:

> ecs <- estimatelog2FoldChanges( ecs )

This function stores its results in the feature data table, too.
A convenient way to extract all relevant columns of the feature data table is offered by the

function DEUresultTable:

> res1 <- DEUresultTable(ecs)
> head( res1 )

geneID exonID dispersion pvalue padjust meanBase
FBgn0000256:E001 FBgn0000256 E001 0.046 0.94 1 58.34
FBgn0000256:E002 FBgn0000256 E002 0.040 0.47 1 103.33
FBgn0000256:E003 FBgn0000256 E003 0.035 0.92 1 326.48
FBgn0000256:E004 FBgn0000256 E004 0.035 0.81 1 253.65
FBgn0000256:E005 FBgn0000256 E005 0.046 0.87 1 60.64
FBgn0000256:E006 FBgn0000256 E006 1.067 NA NA 0.79

log2fold(untreated/treated)
FBgn0000256:E001 0.025
FBgn0000256:E002 -0.045
FBgn0000256:E003 0.025
FBgn0000256:E004 0.038
FBgn0000256:E005 -0.013
FBgn0000256:E006 0.126

Controlling false discovery rate (FDR) at 0.1 (10%), we can now ask how many counting bins show
evidence of differential exon usage:

> table ( res1$padjust < 0.1 )

FALSE TRUE
375 8
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Figure 2: MA plot. Mean expression versus log2 fold change plot. Significant hits (at padj<0.1)
are coloured in red.

We may also ask how many genes are affected

> table ( tapply( res1$padjust < 0.1, geneIDs(pasillaExons), any ) )

FALSE TRUE
15 7

Remember that our example data set contains only a selection of genes. We have chosen these
to contain interesting cases; so the fact that such a large fraction of genes is significantly affected
here is not typical.

To see how the power to detect differential exon usage depends on the number of reads that map
to an exon, a so-called MA plot is useful, which plots the logarithm of fold change versus average
normalized count per exon and marks by red colour the exons which are considered significant;
here, the exons with an adjusted p values of less than 0.1 (Figure 2). There is of course nothing
special about the number 0.1, and you can specify other thresholds in the call to plotMA.

> plotMA( ecs, FDR=0.1, ylim=c(-4,4), cex=0.8 )

4 Additional technical or experimental variables

In the previous section we performed a simple analysis of differential exon usage, in which each
sample was assigned to one of two experimental conditions. If your experiment is of this type, you
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can use the work flow shown above. All you have to make sure is that you indicate which sample
belongs to which experimental condition when you construct the ExonCountSet object (Section
2.6. Do so by means of a column called condition in the sample table.

If you have a more complex experimental design, you can provide different or additional columns
in the sample table. You then have to indicate the design by providing explicit formulae for the
test.

In the pasilla dataset, some samples were sequenced in single-end and others in paired-end
mode. Possibly, this influenced counts and should hence be accounted for. We therefore use this
as an example for a complex design.

When we constructed the ExonCountSet object in Section 2.6, we provided in the sample table
an additional column called type, which has been stored in the object:

> design(pasillaExons)

condition type
treated1fb treated single-read
treated2fb treated paired-end
treated3fb treated paired-end
untreated1fb untreated single-read
untreated2fb untreated single-read
untreated3fb untreated paired-end
untreated4fb untreated paired-end

We specify two design formulae, which indicate that the libType factor should be treated as a
blocking factor:

> formulaFullModel <- ~ sample + exon + type:exon + condition:exon
> formulaReducedModel <- ~ sample + exon + type:exon

Compare these formulae with the default formulae (2, 3) given in Section 3.4. We have added, in
both the full model and the reduced model, the term type:exon. Therefore, any dependence of
exon usage on library type will be absorbed by this term and accounted for equally in the full and
a reduced model, and the likelihood ratio test comparing them will only detect differences in exon
usage that can be attributed to condition, independent of type.

To start a fresh analysis, now using these formulae instead of the default ones, we copy the
example data into a new object.

> ecs2 <- pasillaExons

As before, we first estimate the size factors

> ecs2 <- estimateSizeFactors( ecs2 )

Next, we estimate the dispersions. This time, we need to inform the estimateDispersions function
about our design by providing the full model’s formula, which should be used instead of the default
formula (2).

> ecs2 <- estimateDispersions( ecs2, formula = formulaFullModel )
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The fit is performed as before.

> ecs2 <- fitDispersionFunction( ecs2 )

The test function now needs to be informed about both formulae

> ecs2 <- testForDEU( ecs2,
+ formula0 = formulaReducedModel, formula1 = formulaFullModel )

Finally, we get a summary table, as before.

> res2 <- DEUresultTable( ecs2 )
> head(res2)

geneID exonID dispersion pvalue padjust meanBase
FBgn0000256:E001 FBgn0000256 E001 0.026 0.90 0.99 58.34
FBgn0000256:E002 FBgn0000256 E002 0.020 0.40 0.99 103.33
FBgn0000256:E003 FBgn0000256 E003 0.014 0.85 0.99 326.48
FBgn0000256:E004 FBgn0000256 E004 0.015 0.53 0.99 253.65
FBgn0000256:E005 FBgn0000256 E005 0.056 0.88 0.99 60.64
FBgn0000256:E006 FBgn0000256 E006 1.097 NA NA 0.79

How many significant DEU cases have we got this time?

> table( res2$padjust < 0.1 )

FALSE TRUE
374 9

We can now compare with the previous result:

> table( before = res1$padjust < 0.1, now = res2$padjust < 0.1 )

now
before FALSE TRUE
FALSE 374 1
TRUE 0 8

Accounting for the library type has allowed us to find one more hit. (With so few genes, this could
be coincidence, of course. However, performing the analysis on the full pasilla data confirms that
accounting for the covariate improves power.)
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Figure 3: Fitted expression. The plot represents the expression estimates from a call to
testForDEU. Shown in red is the exon that showed significant differential exon usage.

5 Visualization

The plotDEXSeq provides a means to visualize the results of an analysis.

> plotDEXSeq( ecs2, "FBgn0010909", legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2 )

The result is shown in Figure 3. This plot shows the fitted expression values of each of the
exons of gene FBgn0010909, for each of the two conditions, treated and untreated. The function
plotDEXSeq expects at least two arguments, the ExonCountSet object and the gene ID. The option
legend=TRUE causes a legend to be included. The three remaining arguments in the code chunk
above are ordinary plotting parameters which are simply handed over to R’s standard plotting
functions. They are not strictly needed and included here to improve appearance of the plot. See
the help page for par for details.

Optionally, one can also visualize the transcript models (Figure 4), which can be useful for
putting differential exon usage results into the context of isoform regulation.

> plotDEXSeq( ecs2, "FBgn0010909", displayTranscripts=TRUE, legend=TRUE,
+ cex.axis=1.2, cex=1.3, lwd=2 )
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Figure 4: Transcripts. As in Figure 3, but including the annotated transcript models.

Other useful options are to look at the count values from the individual samples, rather than at
the model effect estimates. For this display (option norCounts=TRUE), the counts are normalized
by dividing them by the size factors (Figure 5).

> plotDEXSeq( ecs2, "FBgn0010909", expression=FALSE, norCounts=TRUE,
+ legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2 )

As explained in Section 1, DEXSeq is designed to find changes in relative exon usage, i. e., changes
in the expression of individual exons that are not simply the consequence of overall up- or down-
regulation of the gene. To visualize such changes, it is sometimes advantageous to remove overall
changes in expression from the plots. Use the (somewhat misnamed) option splicing=TRUE for
this purpose.

> plotDEXSeq( ecs2, "FBgn0010909", expression=FALSE, splicing=TRUE,
+ legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2 )

To generate an easily browsable, detailed overview over all analysis results, the package provides
an HTML report generator, implemented in the function DEXSeqHTML. This function uses the
package hwriter [11] to create a result table with links to plots for the significant results, allowing
a more detailed exploration of the results.
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Figure 5: Normalized counts. As in Figure 3, with normalized count values of each exon in
each of the samples.

> DEXSeqHTML( pasillaExons, FDR=0.1, color=c("#FF000080", "#0000FF80") )

6 Parallelization

DEXSeq analyses can be computationally heavy, especially with data sets that comprise a large
number of samples, or with genomes containing genes with large numbers of exons. While some
steps of the analysis work on the whole data set, the two parts that are most time consuming
– the functions estimateDispersions and testForDEU – can be parallelized by setting the two
functions’ parameter nCores to the number of CPU cores to be used. These functions will then
distribute the ExonCountSet object into smaller objects that are processed in parallel on different
cores. This functionality uses the parallel package, which hence has to be loaded first.

> data("pasillaExons", package="pasilla")
> library("parallel")
> pasillaExons <- estimateSizeFactors( pasillaExons )
> pasillaExons <- estimateDispersions( pasillaExons, nCores=16)
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Figure 6: Fitted splicing. The plot represents the estimated effects, as in Figure 3, but after
subtraction of overall changes in gene expression.

> pasillaExons <- fitDispersionFunction( pasillaExons )
> pasillaExons <- testForDEU( pasillaExons, nCores=16)

7 Perform a standard differential exon usage analysis in one
command

In the previous sections, we went through the analysis step by step. Once you are sufficiently
confident about the work flow for your data, its invocation can be streamlined by the wrapper
function doCompleteDEUAnalysis, which runs the analysis shown above through a single function
call.

In the simplest case, construct the ExonCountSet as shown in Section 2 or in Appendix A,
then run doCompleteDEUAnalysis passing the ExonCountSet as only argument, and finally inspect
the result with DEUresultTable. In the following, we also specify design formulae to account for
library type as described in Section 4 and the nCores argument for parallelization (Section 6).

> data( "pasillaExons", package="pasilla" )
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> pasillaExons <- doCompleteDEUAnalysis(
+ pasillaExons,
+ formula0 = ~ sample + exon + type:exon,
+ formula1 = ~ sample + exon + type:exon + condition:exon,
+ nCores = 1 )

> head( DEUresultTable( pasillaExons ) )

geneID exonID dispersion pvalue padjust meanBase
FBgn0000256:E001 FBgn0000256 E001 0.026 0.90 0.99 58.34
FBgn0000256:E002 FBgn0000256 E002 0.020 0.40 0.99 103.33
FBgn0000256:E003 FBgn0000256 E003 0.014 0.85 0.99 326.48
FBgn0000256:E004 FBgn0000256 E004 0.015 0.53 0.99 253.65
FBgn0000256:E005 FBgn0000256 E005 0.056 0.88 0.99 60.64
FBgn0000256:E006 FBgn0000256 E006 1.097 NA NA 0.79

log2fold(untreated/treated)
FBgn0000256:E001 -0.00094
FBgn0000256:E002 -0.07526
FBgn0000256:E003 0.01082
FBgn0000256:E004 0.02590
FBgn0000256:E005 -0.03983
FBgn0000256:E006 0.09629
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APPENDIX

A Preprocessing within R

As an alternative to the approach described in Section 2, users can also create ExonCountSet
objects from other Bioconductor data objects. The code for implementationg these functions was
kindly contributed by Michael I. Love. For details, see the parathyroidSE package vignette [8].
The work flow is similar to the one using the HTSeq python scripts.

emphNote: The code in this section is not run when the vignette is built, as some of the
commands have long run time. Therefore, no output is given.

We use functionality from the following Bioconductor packages

> library("GenomicFeatures")
> library("GenomicRanges")
> library("Rsamtools")

We demonstrate the workflow briefly (for more details, see [8]) on the data set of Haglund et
al. [12], which is provided as example data in the parathyroidSE data package.

First, we download the current human gene model annotation from Ensembl via Biomart and
create a transcript data base from these. Note that this step takes some time.

> hse <- makeTranscriptDbFromBiomart( biomart="ensembl",
+ dataset="hsapiens_gene_ensembl" )

Next, we collapse the gene models into counting bins, analogous to Section 2.4.

> exonicParts <- disjointExons( hse, aggregateGenes=TRUE )

As before, we have to choose how to handle genes with overlapping exons. The aggregateGenes
option here plays the same role as the -r option to dexseq_prepare_anotation.py described at
the end of Section 2.4. The exonicParts object contains a GRanges object with our counting
bins. We use it to count the number of read fragments that overlap with the bins by means of the
function countReadsForDEXSeq. To demonstrate this, we first determine the paths to the example
BAM files in the parathyroidSE data package.

> bamDir <- system.file( "extdata", package="parathyroidSE", mustWork=TRUE )
> fls <- list.files( bamDir, pattern="bam$", full=TRUE )

Then, use the following code to count the reads overlapping the bins.

> bamlst <- BamFileList( fls, index=character(), yieldSize=100000, obeyQname=TRUE )
> SE <- summarizeOverlaps( exonicParts, bamlst, mode="Union", singleEnd=FALSE,
+ ignore.strand=TRUE, inter.feature=FALSE, fragments=TRUE )

We can now call the function buildExonCountSet to build an ExonCountSet object. The middle
argument in the following call is the design, indicating that the first two BAM files form one
experimental condition and the third one the other. Generally, you will want to pass a data.frame
with a sample table as in Section 2.6.

> ecs <- buildExonCountSet( SE, c("A", "A", "B"), exonicParts )
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B Lower-level functions

The following functions are not needed in a standard analysis work-flow, but may be useful for
special purposes. We list them here briefly; see the help pages of these function for further options
(e. g., to specify formulae).

B.1 Count tables

While the function counts returns the whole read count table, the function countTableForGene
returns the count table for a single gene:

> countTableForGene( pasillaExons, "FBgn0010909" )

Like the function counts, the function countTableForGene can also return normalized counts (i.e.,
counts divided by the size factors). Use the option normalized=TRUE.

> head( countTableForGene( pasillaExons, "FBgn0010909", normalized=TRUE ) )

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb
E001 1495 618 609 1161 1603 680
E002 91 140 195 70 129 186
E003 207 366 331 192 254 372
E004 314 250 197 232 284 218
E005 311 271 302 147 108 283
E006 364 446 511 192 215 499

untreated4fb
E001 659
E002 171
E003 312
E004 223
E005 278
E006 439

The function geneCountTable computes a table of gene counts, which are obtained by summing the
counts from all exons with the same geneID. This might be useful for the detection of differential
expression of genes, where the table can be used as input e. g. for the packages DESeq or edgeR.
This kind of table can also be produced with the package GenomicRanges, e. g. with the function
summarizeOverlaps.

> head( geneCountTable( pasillaExons ) )

treated1fb treated2fb treated3fb untreated1fb untreated2fb
FBgn0000256 1482 857 966 1169 2626
FBgn0000578 4386 2301 2827 3541 6381
FBgn0002921 11305 7135 8001 7433 11980
FBgn0003089 8 4 4 6 9
FBgn0010226 129 100 113 106 126
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FBgn0010280 2693 1776 2187 2088 3963
untreated3fb untreated4fb

FBgn0000256 1105 1101
FBgn0000578 3139 2725
FBgn0002921 5618 5991
FBgn0003089 4 6
FBgn0010226 60 99
FBgn0010280 2069 1981

Note that a read that mapped to several exons of a gene is counted for each of these exons by the
dexseq_count.py script. The table returned geneCountTable will hence count the read several
time for the gene, which may skew downstream analyses in subtle ways. Hence, we recommend to
use geneCountTable with care and use more sophisticated counting schemes where appropriate.

B.2 Model frames

The function constructModelFrame returns the model frame used for the dispersion fits and
the model fits involved in the likelihood ratio test. The terms used in the formulae passed to
estimateDispersions and testForDEU refer to this model frame and hence must appear as col-
umn names.

> constructModelFrame( pasillaExons )

sample condition type sizeFactor exon
1 treated1fb treated single-read 1.34 this
2 treated2fb treated paired-end 0.80 this
3 treated3fb treated paired-end 0.92 this
4 untreated1fb untreated single-read 0.99 this
5 untreated2fb untreated single-read 1.57 this
6 untreated3fb untreated paired-end 0.84 this
7 untreated4fb untreated paired-end 0.83 this
8 treated1fb treated single-read 1.34 others
9 treated2fb treated paired-end 0.80 others
10 treated3fb treated paired-end 0.92 others
11 untreated1fb untreated single-read 0.99 others
12 untreated2fb untreated single-read 1.57 others
13 untreated3fb untreated paired-end 0.84 others
14 untreated4fb untreated paired-end 0.83 others

For the visualization with plotDEXSeq, a GLM is fitted over the joint data from all exons of a gene.
The function modelFrameForGene returns the model frame used for this fit for a single gene.

> mf <- modelFrameForGene( pasillaExons, "FBgn0010909" )
> head( mf )
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sample exon sizeFactor condition type dispersion count
1 treated1fb E001 1.3 treated single-read 0.013 1997
2 treated1fb E002 1.3 treated single-read 0.025 122
3 treated1fb E003 1.3 treated single-read 0.015 276
4 treated1fb E004 1.3 treated single-read 0.015 420
5 treated1fb E005 1.3 treated single-read 0.051 416
6 treated1fb E006 1.3 treated single-read 0.020 486

B.3 Further accessors

The function geneIDs returns the gene ID column of the feature data as a character vector, and
the function exonIDs return the exon ID column as a factor.

> head( geneIDs(pasillaExons) )

FBgn0000256:E001 FBgn0000256:E002 FBgn0000256:E003 FBgn0000256:E004
FBgn0000256 FBgn0000256 FBgn0000256 FBgn0000256

FBgn0000256:E005 FBgn0000256:E006
FBgn0000256 FBgn0000256

14470 Levels: FBgn0000003 FBgn0000008 FBgn0000014 FBgn0000015 ... FBgn0261575

> head( exonIDs(pasillaExons) )

FBgn0000256:E001 FBgn0000256:E002 FBgn0000256:E003 FBgn0000256:E004
"E001" "E002" "E003" "E004"

FBgn0000256:E005 FBgn0000256:E006
"E005" "E006"

These functions are useful for subsetting an ExonCountSet object.

C Methodological changes since publication of the paper

In our paper [1], we suggested to fit for each exon a model that includes separately the counts
for all the gene’s exons. However, this turned out to be computationally inefficient for genes with
many exons, because the many exons required large model matrices, which are computationally
expensive to deal with. We have therefore modified the approach: when fitting a model for an
exon, we now sum up the counts from all the other exon and use only the total, rather than the
individual counts in the model. Now, computation time per exon is independent of the number
of other exons in the gene, which improved DEXSeq’s scalability. While the p values returned
by the two approaches are not exactly equal, the differences were very minor in the tests that we
performed.

For now, the function for our original approach (which we now call the “big model” or “BM”
approach) are still included; all relevant functions, however, have been renamed to carry the suffix
_BM in their name. The new approach, which is now default and is used by the work flow described
in this vignette, has no special name (in some previous releases of DEXSeq which had included it
first on an experimental basis, it was termed the “TRT” approach).
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In the following, we describe the current default (“TRT”) approach in detail (though the expo-
sition assumes the reader’s familiarity with our paper).

Deviating from the paper’s notation, we now use the index i to indicate a specific counting bin,
with i running through all counting bins of all genes. The samples are indexed with j, as in the
paper. We write Kij0 for the count or reads mapped to counting bin i in sample j and Kij1 for the
sum of the read counts from all other counting bins in the same gene. Hence, when we write Kijl,
the third index l indicates whether we mean the read count for bin i (l = 0) or the sum of counts
for all other bins of the same gene (l = 1). As before, we fit a GLM of the negative binomial (NB)
family

Kijl ∼ NB(mean = sjµijl, dispersion = αi), (4)

now with the model specified in Equation (2), which we write out as

log2 µijl = βS
ij + lβE

i + βEC
iρj
. (5)

This model is fit separately for each counting bin i. The coefficient βS
ij accounts for the sample-

specific contribution (factor sample in Equation (2)), the term βE
i is only included if l = 1 and

hence estimates the logarithm of the ratio Kij1/Kij0 between the counts for all other exons and the
counts for the tested exon. As this coefficient is estimated from data from all samples, it can be
considered as a measure of “average exon usage”. In the R model formula, it is represented by the
term exon with its two levels this (l = 0) and others (l = 1). Finally, the last term, βEC

i,ρj
, captures

the interaction condition:exon, i.e., the change in exon usage if sample j is from experimental
condition group ρ(j). Here, the first condition, ρ = 0, is absorbed in the sample coefficients, i.e.,
βEC
i0 is fixed to zero and does not appear in the model matrix.

For the dispersion estimation, one dispersion value αi is estimated with Cox-Reid-adjusted
maximum likelihood using the full model given above. For the likelihood ratio test, this full model
is fit and compared with the fit of the reduced model, which lacks the interaction term βEC

iρj
. As

described in Section 4, alternative model formulae can be specified.

D Requirements on GTF files

In the initial preprocessing step described in Section 2.4, the Python script dexseq_prepare_annotation.py
is used to convert a GTF file with gene models into a GFF file with collapsed gene models. We
recommend to use GTF files downloaded from Ensembl as input for this script, as files from other
sources may deviate from the format expected by the script. Hence, if you need to use a GTF or
GFF file from another source, you may need to convert it to the expected format. To help with
this task, we here give details on how the dexseq_prepare_annotation.py script interprets a GFF
file.

� The script only looks at exon lines, i.e., at lines which contain the term exon in the third
(“type”) column. All other lines are ignored.

� Of the data in these lines, the information about chromosome, start, end, and strand (1st,
4th, 5th, and 7th column) are used, and, from the last column, the attributes gene_id and
transcript_id. The rest is ignored.
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� The gene_id attribute is used to see which exons belong to the same gene. It must be called
gene_id (and not Parent as in GFF3 files, or GeneID as in some older GFF files), and it
must give the same identifier to all exons from the same gene, even if they are from different
transcripts of this gene. (This last requirement is not met by GTF files generated by the
Table Browser function of the UCSC Genome Browser.)

� The transcript_id attribute is used to build the transcripts attribute in the flattened
GFF file, which indicates which transcripts contain the described counting bin. This infor-
mation is needed only to draw the transcript model at the bottom of the plots when the
displayTranscript option to plotDEXSeq is used.

Therefore, converting a GFF file to make it suitable as input to dexseq_prepare_annotation.py
amounts to making sure that the exon lines have type exon and that the atributes giving gene
ID (or gene symbol) and transcript ID are called gene_id and transcript_id, with this exact
spelling. Remember to also take care that the chromosome names match those in your SAM files,
and that the coordinates refer to the reference assembly that you used when aligning your reads.

E Session Information

The session information records the versions of all the packages used in the generation of the
present document.

> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] DEXSeq_1.8.0 Biobase_2.22.0 BiocGenerics_0.8.0

loaded via a namespace (and not attached):
[1] BiocStyle_1.0.0 Biostrings_2.30.0 GenomicRanges_1.14.0
[4] IRanges_1.20.0 RCurl_1.95-4.1 Rsamtools_1.14.0
[7] XML_3.98-1.1 XVector_0.2.0 biomaRt_2.18.0
[10] bitops_1.0-6 hwriter_1.3 statmod_1.4.18
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[13] stats4_3.0.2 stringr_0.6.2 tools_3.0.2
[16] zlibbioc_1.8.0
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