
ggbio: visualization toolkits for genomic data

Tengfei Yin

April 5, 2014

Contents

1 Getting started 4

1.1 Citation . 4

1.2 Introduction . 5

1.3 Documentation . 5

1.4 Support . 5

1.5 Installation . 5

1.6 Getting started . 6

1.6.1 Genesis: everything started from GRanges . 6

1.6.2 About GRanges . 6

1.6.3 Visualize GRanges object . 8

2 Visaulize gff-like files 23

3 Visualize bam files 24

4 How to make tracks 25

4.1 Motivation . 25

4.2 Minimal examples for tracks . 27

5 Visualize single chromosome 31

5.1 Introduction . 31

5.2 Single chromosome visualization . 31

1

5.2.1 Single chromosome use to be embedded in tracks. 31

5.2.2 Get ideogram or customize the colors . 42

6 Circular view 43

6.1 Introduction . 43

6.2 Tutorial . 43

6.2.1 Step 1: understand the layout circle . 43

6.2.2 Step 2: get your data ready to plot . 44

6.2.3 Step 3: low level API: layout circle . 46

6.2.4 Step 4: Complex arragnment of plots . 52

6.3 Transform space . 55

7 Manhattan plot 57

7.1 Introduction . 57

7.2 Understand the new coordinate . 57

7.3 Step 2: Simulate a SNP data set . 60

7.4 Step 3: Start to make Manhattan plot by using autoplot 61

7.5 Convenient plotGrandLinear function . 64

7.6 Annotating manhattan plot easily . 70

7.7 Unequal space . 71

8 Karyogram overview 72

8.1 Introduction . 72

8.2 autoplot . 72

8.3 plotKaryogram . 78

8.4 layout karyogram . 78

9 Visualize genomic features 84

9.1 Introduction . 84

9.2 Usage . 85

2

9.2.1 autoplot . 85

9.2.2 geom alignment . 92

10 Visualize sequence 94

11 Visualize matrix-related objects 95

12 Visualize VCF files 96

13 Visualize splicing events 97

14 Miscellaneous 98

14.1 Themes . 98

14.1.1 Plot theme . 98

14.1.2 Track theme . 98

14.2 Scales . 98

15 Session Information 99

3

Chapter 1

Getting started

1.1 Citation

citation("ggbio")

##

To cite package 'ggbio' in publications use:

##

Tengfei Yin, Dianne Cook and Michael Lawrence (2012): ggbio:

an R package for extending the grammar of graphics for

genomic data Genome Biology 13:R77

##

A BibTeX entry for LaTeX users is

##

@Article{,

title = {ggbio: an R package for extending the grammar of graphics for genomic data},

author = {Tengfei Yin and Dianne Cook and Michael Lawrence},

journal = {Genome Biology},

volume = {13},

number = {8},

pages = {R77},

year = {2012},

publisher = {BioMed Central Ltd},

}

4

1.2 Introduction

The ggbio package extends and specializes the grammar of graphics for biological data. The graph-
ics are designed to answer common scientific questions, in particular those often asked of high
throughput genomics data. Almost all core Bioconductor data structures are supported, where
appropriate. The package supports detailed views of particular genomic regions, as well as genome-
wide overviews. Supported overviews include ideograms and grand linear views. High-level plots
include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several
splicing summaries.

1.3 Documentation

After Bioconductor 2.11, two kind of documentation are provided.

� Vignettes knited from sweave files.

� Another source is ggbio official websites, http://tengfei.github.com/ggbio, under doc-
umentation tab, Rd help manual is knited to html webpages under manual section(http:
//tengfei.github.com/ggbio/docs/man), so all the help manual with examples code hy-
brided with graphics is shown there.

1.4 Support

For issue/bug report and questions about usage, you could

� File a issue/bug report at https://github.com/tengfei/ggbio/issues,

� Ask question about ggbio on biocondcutor mailing list.

1.5 Installation

As described on-line (http://tengfei.github.com/ggbio/download.html).

Tips: github is only used for issue/bugs report and homepage build purpose,
developemnt has been stopped and removed from there already. I only use
bioconductor to maintain and develop my package.

5

http://tengfei.github.com/ggbio
http://tengfei.github.com/ggbio/docs/man
http://tengfei.github.com/ggbio/docs/man
https://github.com/tengfei/ggbio/issues
http://tengfei.github.com/ggbio/download.html

After R 2.15, R release cycle falls into annual release instead of semi-annual release cycle, at the
same time, Bioconductor project still follows semi-annual release cycle. So now you can install both
released and developmental version for the same version of R.

In your R session, please run following code to install released version of ggbio, but if you are using
developmental version of R, you will get developmental version of ggbio automatically. Because
what you get depends on the bioconductor installer, which is implemented in package BiocInstaller
and its version decides which version of Bioconductor you got.

source("http://bioconductor.org/biocLite.R")

biocLite("ggbio")

To install developmental version, run

library("BiocInstaller")

useDevel(TRUE)

biocLite("ggbio")

For developers, you can find latest source code in bioc svn.

1.6 Getting started

1.6.1 Genesis: everything started from GRanges

In our model, GRanges is the core data structure that support most direct geom/stat/layout
transformation and visualization support, every other data structure always converted to GRanges
first inside, and arrange components properly to bring some nice default graphics.

1.6.2 About GRanges

GRanges object is a container holding genomic interval data associated with meta data information.
The power about ggbio is about flexible mapping for all those information.

Here is an example of GRanges and how to construct it by using constructor GRanges. We construct
a GRanges object with three chromosomes named chr1, chr2, chr3 and with seqlengths 400, 500,
1000. Pay attention to the seqlengths, if you didn’t assign any value, these fields will be NA. And
these are important information if you want to generate overview in genome space context later.

library(GenomicRanges)

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"),

6

size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE),

width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-"), size = N, replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),

pair = sample(letters, size = N,

replace = TRUE))

seqlengths(gr) <- c(400, 1000, 500)

head(gr)

GRanges with 6 ranges and 4 metadata columns:

seqnames ranges strand | value score sample

<Rle> <IRanges> <Rle> | <numeric> <numeric> <character>

[1] chr1 [197, 267] - | 11.228 126.81 Tumor

[2] chr2 [106, 176] + | 15.067 68.58 Normal

[3] chr2 [82, 154] + | 14.760 159.14 Tumor

[4] chr3 [298, 368] + | 9.007 88.49 Tumor

[5] chr1 [191, 261] + | 3.144 149.62 Normal

[6] chr3 [64, 136] - | 17.493 145.37 Tumor

pair

<character>

[1] v

[2] t

[3] h

[4] e

[5] f

[6] b

seqlengths:

chr1 chr2 chr3

400 1000 500

The first three columns are required information about intervals, including seqnames(chromosome
names), ranges(interval start and end), strand(direction:*, +, -).

Tips: For more information, please visit vignettes for package IRanges, Genomi-
cRanges. Those packages provide awesome computational methods working on
interval data, and have lots of convenient accessors, so we won’t spend time
introducing those tips here.

7

1.6.3 Visualize GRanges object

autoplot is the generic function which support most core Bioconductor objects, try to make different
types of graphics for specific object.

library(ggbio)

autoplot(gr)

chr1 chr2 chr3

0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp

To set arbitrary aesthetics, such as color, size, etc.

autoplot(gr, color = "gray40", fill = "skyblue")

8

chr1 chr2 chr3

0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp

To map variables to certain aesthetics, DON’T forget to use aes() to wrap around the mapping,
that’s different with ggplot2 ’s qplot strategy. For example, if you want to map ’strand’ variable
to color, you have to put the mapping inside aes() and remember don’t use quotes around the
variable name.

autoplot(gr, aes(color = strand, fill = strand))

9

chr1 chr2 chr3

0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp

strand

+

−

You could also pass ’facets’ argument in autoplot, to split the data based on some column factors,
use the form ’a b’, ’a’ indicates the row and ’b’ indicates the column.

Tips: For implementation reason, if you pass facets inside autoplot that will
usually work as expected, if you plus facet grid and facet wrap in the end of
autoplot, for specific stat that won’t work as expected. Because data are cal-
culated split based facet formula and for now won’t work in ggplot2 evaluation
fashion.

autoplot(gr, aes(color = strand, fill = strand), facets = strand ~ seqnames)

10

chr1 chr2 chr3

+
−

0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp

strand

+

−

stat represents the statistical transformation from original data, allow you to plot or map new
computed variable in the graphics. Default stat is ’stepping’ which, as you have seen, print all
the interval stacked upon each other without overlapping, we could try use other different stat, to
specify it in the autoplot function. For example stat coverage.

autoplot(gr, aes(color = strand, fill = strand), facets = strand ~ seqnames,

stat = "coverage")

11

chr1 chr2 chr3

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

+
−

0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp

C
ov

er
ag

e strand

+

−

Some stats are very useful for summary statistics, for example, stat aggregate.

autoplot(gr, stat = "aggregate", aes(y = score))

Error: Discrete value supplied to continuous scale

autoplot(gr, stat = "aggregate", aes(y = score), geom = "boxplot", window = 50)

Error: Discrete value supplied to continuous scale

coordinate is not a new idea, we all familiar with x-y Cartesian coordinates. We introduced new
’genome’ coordinate in ggbio, that put all chromosomes together in a grand linear manner and
relabel them only by chromosome names.

layout is a fairly new idea in ggbio which not exists in ggplot2 , it’s about how we layout the genome,
in a circular fashion or in a karyogram fashion.

autoplot(gr, layout = "circle", aes(fill = seqnames))

12

seqnames

chr1

chr2

chr3

autoplot(gr, coord = "genome")

13

chr1 chr2

The power about autoplot is not only for GRanges, but also for some other core Bioconductor
data structures for example, IRanges object visualization strategy is almost identical to GRanges,
except that those plots are not faceted by seqnames by default.

For IRanges

autoplot(ranges(gr))

14

0 bp 100 bp 200 bp 300 bp

For seqinfo

autoplot(seqinfo(gr))

autoplot(gr, layout = "karyogram", aes(fill = score))

15

chr1

chr2

chr3

0 Mb2e−04 Mb4e−04 Mb6e−04 Mb8e−04 Mb0.001 Mb

chr1

chr2

chr3

0 bp200 bp400 bp600 bp800 bp1000 bp

40

80

120

score

16

Table 1.1 shows objects we currently supported and following chapters will cover most of those
topics.

Object meanings chapter

GRanges Genomic interva 1.6.1

IRanges numeric interval 1.6.1

GRangesList List of genomic interval 1.6.1

Seqinfo Information about genomic sequence 8

GAlignments NGS data 3

BamFiles Bam files container 3

character Bam files path 3 2

BSgenome Nucleotide sequence 10

matrix matrix 11

Rle Numeric vector 11

RleList List of numeric vector 11

Views Containter for a set of Views 11

ExpressionSet Container for microarray data 11

SummarizedExperiment eSet-like container 11

VCF Containter for VCF format data 12

Table 1.1: Objects that autoplot supported.

Thouth autoplot is a very conventient way to plot in ggbio, to create more customized graphics or
to understand what happened inside autoplot function, you may want to create your own graphics
layer by layer. In ggbio, generic function ggplot used to create plots by layers, it supports many
core data objects defined in Bioconductor, it takes in the original data, and save it in .data element
of the object, you can use obj$.data to get the original data, and a data.frame transformed and
stored in the object too. Running ggplot function is just creating the data layer, no plot will be
generated. You have to specify statistics and geometry by adding components using +.

For example, we can make some arches.

ggplot(gr) + geom_arch(aes(height = value))

17

chr1 chr2 chr3

0

5

10

15

0 100 200 300 0 100 200 300 0 100 200 300

.y

Besides all components defined in ggplot2 , we have several newly defined components inside ggbio.
Let’s take a look at a table about stat/geom/layout/coord/scale supported in ggbio,

Tips: A good source for understanding the low level components is to read the
on-line manual, they all parsed from example section from the Rd file. For
ggplot2 , it on http://docs.ggplot2.org/current/, for ggbio it’s on http:

//www.tengfei.name/ggbio/docs/man/.

plotIdeogram(or plotSingleChrom) provides functionality to construct ideogram. tracks func-
tion provides convenient control to bind your individual graphics as tracks, reset/backup/modification
is allowed.

library(ggbio)

require internet connection

p.ideo <- plotIdeogram(genome = "hg19")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

wh <- GRanges("chr16", IRanges(30064491, 30081734))

p1 <- autoplot(txdb, which = wh, names.expr = "gene_id")

18

http://docs.ggplot2.org/current/
http://www.tengfei.name/ggbio/docs/man/
http://www.tengfei.name/ggbio/docs/man/

Comp name usage icon
geom geom rect rectangle

geom segment segment
geom chevron chevron
geom arrow arrow
geom arch arches
geom bar bar
geom alignment alignment (gene)

stat stat coverage coverage (of reads)
stat mismatch mismatch pileup for alignments
stat aggregate aggregate in sliding window
stat stepping avoid overplotting
stat gene consider gene structure
stat table tabulate ranges 1 4

stat identity no change
coord linear ggplot2 linear but facet by chromosome chrYchrX

genome put everything on genomic coordinates chrYchrX

truncate gaps compact view by shrinking gaps
layout track stacked tracks chrYchrX

karyogram karyogram display

chr1
chr2

chr3

50 100 150 200 250 300
start

circle circular
faceting formula facet by formula chr1 chr2 chr3

Tum
or

 Norm
al

ranges facet by ranges chrX:1-100 chrY:200-1000

scale scale x sequnit change x unit:Mb, kb, bp
scale fill giemsa ideogram color
scale fill fold change around 0 scaling, for heatmap.

Table 1.2: Components of the basic grammar of graphics, with the extensions available in ggbio.

19

p2 <- autoplot(txdb, which = wh, stat = "reduce", color = "brown",

fill = "brown")

tracks(p.ideo, full = p1, reduce = p2, heights = c(1.5, 5, 1)) +

ylab("") + theme_tracks_sunset()

chr1

chr1y

fu
ll

226

226

226

226

226

226

226

re
du

ce

30.06 Mb 30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

Manhattan plots are used to show SNP, circular view could be used to show chromosome re-
arrangement, kayrogram plot could be used to show clusterred events or observe distribution
of haplotypes. In ggbio, plotGrandLinear is used to plot the whole genome Manhattan plot.
Function layout karyogram and layout ’karyogram’ in autoplot to plot the karyogram overview.
layout circle and layout ’circle’ in autoplot to plot the GRanges in circular layout.

If you are interested in how to visualize your data in circular layout like something shown in Figure

20

1.6.3, please go to chapter 6

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

0M 50
M

10
0M

15
0M

20
0M

0M

50
M

10
0M

15
0M

200M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M150M0M50M100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

0M

50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3

4
5

6

7

89
10

11

12

13
14

15
16

17

18

19
20

21 22

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

●

4

6

8

10

12

CRC−1 CRC−2 CRC−3

CRC−4 CRC−5 CRC−6

CRC−7 CRC−8 CRC−9

rearrangements

interchromosomal

intrachromosomal

If you are interested in how to make manhattan plot like something shown in Figure 1.6.3, please
go to chapter 7

0

1

2

3

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●
●●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y
Position

y

If you are interested in how to visualize your data in karyogram layout like something shown in
Figure 1.6.3, please go to chapter 8

For someother things like how to change theme and scales, please check chapter 14.

21

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

5.0e+07 1.0e+08 1.5e+08 2.0e+08
Human genome

22

Chapter 2

Visaulize gff-like files

For some historical reason, there are lots of different but very similar format out there to store
interval data and meta data, for example, bed, gff, gtf, etc. Bioconductor provide very nice abstract
for all kinds of widely used biological files. GRanges is one of them. With the help of pacakge
rtracklayer , we can easily import files like gff, bed into R sesseion. For example

fix annotation automatically

library(rtracklayer)

fl <- "~/Softwares/genome_browser/data/wgEncodeCshlLongRnaSeqHmecCellPamGeneDeNovoV2.gff"

gr <- import(, asRangedData = FALSE)

library(ggbio)

fix me

autoplot(gr[seqnames(gr) == "chr1"], geom = "bar")

autoplot(gr[seqnames(gr) == "chr1"], geom = "bar", color = "black", aes(y = log(score)))

autoplot()

23

Chapter 3

Visualize bam files

fl <- "~/Datas/seqs/ENCODE/cshl/wgEncodeCshlLongRnaSeqGm12878CellPapAlnRep1.bam"

autoplot(fl)

p <- autoplot(fl, which = c(paste0("chr", 1:12)))

p + facet_wrap(~seqnames)

data(genesymbol, package = "biovizBase")

autoplot(fl, which = genesymbol["BRCA1"], method = "raw")

autoplot(fl, which = genesymbol["BRCA1"], method = "raw", geom = "area")

fix me

autoplot(fl, which = genesymbol["BRCA1"], method = "raw", geom = "rect")

fix me

autoplot(fl, which = genesymbol["BRCA1"], method = "raw", stat = "stepping")

autoplot(fl, which = genesymbol["BRCA1"], method = "raw", geom = "gapped.pair")

24

Chapter 4

How to make tracks

4.1 Motivation

tracks function could be used with any other ggplot2 graphics, not just for graphics produced
by ggbio. ggbio depends on ggplot2 and extends it to genomic world, so most graphics produced
by ggbio is essentially a ggplot2 object, so you can use any tricks works for ggplot2 on
ggbio graphics..

Tips: If you want to manipulate graphics from ggbio more freely, documentation
on ggplot2 is a good start, grid, gtable packages are necessary knowledge for
advanced users. Tracks relies on the new gtable package heavily, it has several
convenient ways to manipulate the graphic objects.

Track-based view are widely used in almost all genome viewers, it usually stacks multiple plots
row by row and align them on exactly the same coordinate, which in most cases, the genomic
coordinates. In this way, we could be able to align various annotation data against each other to
make comparison. UCSC genome browser1 is one of the most widely used track-based web genome
browser, as shown in Figure ??. There are some other packages in R, that support track-based
view like UCSC genome browser, such as Gviz .

ggbio is trying to be even more general in terms of building tracks, and offer more features.

� You can bind any graphics produced by ggplot2 , not necessarily produced by ggbio, users
could construct plots independently, and tracks will align them for you.

� Utilities for zooming, backup, restore a view. This is useful when you tweak around with
your best snapshot, so you can always go back.

1http://genome.ucsc.edu/cgi-bin/hgGateway

25

http://genome.ucsc.edu/cgi-bin/hgGateway

� An extended + method. If you are familiar with ggplot2 ’s + method to edit an existing plot,
this is the way it works, if tracks object is adding anything behind with + , that modification
will be applied to each track. This make it easy to tweak with theme and update all the plots.

� Modify individual plot, with additional attributes, for example, ’fixed’, ’mutable’, etc . These
attributes ONLY reflect when those plots are embeded into tracks function. Table 4.1 lists
most attributes used.

� Creating your own customized themes for not only single plot but also tracks. We will show
an example how to create a theme called theme tracks subset in the following sections.

attributes description

bgColor background color

fixed fixed x scale or not
hline labeled track is labeled on left or not

mutable track is mutable to modification or not

hasAxis track has x axis or not

height height for track

Table 4.1: List of attributes, they all have corresponding replacer function such as RcodebgColor()
¡-

Tips: tracks function only support graphic objects produced by either ggplot2
or ggbio. If you want to align plots, produced by other grid based system, like
lattice, users need to tweak in grid level, to insert a lattice grob to a layout.

26

4.2 Minimal examples for tracks

Function tracks is a constructor for an object with class Tracks. This object is a container for
each plot you are going to align, and all the graphic attributes controlling the appearance of tracks.

load ggbio automatically load ggplot2

library(ggbio)

make a simulated time series data set

df1 <- data.frame(time = 1:100, score = sin((1:100)/20)*10)

p1 <- qplot(data = df1, x = time, y = score, geom = "line")

df2 <- data.frame(time = 30:120, score = sin((30:120)/20)*10, value = rnorm(120-30 + 1))

p2 <- ggplot(data = df2, aes(x = time, y = score)) +

geom_line() + geom_point(size = 2, aes(color = value))

Tips: When you see qplot function, you have to know it’s ggplot2 ’s func-
tion(means ’quick plot’), since Bioconductor 2.10, ggbio stop using a confusing
generic qplot function, instead, we are using a new generic method introduced
in ggplot2 , called autoplot.

p1

−10

−5

0

5

10

0 25 50 75 100
time

sc
or

e

p2

27

●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●
●
●
●
●
●
●
●
●
●

−10

−5

0

5

10

50 75 100
time

sc
or

e

−2

−1

0

1

2
value

These two plots have different scale on x-axis, but we want to compare those two plots and hope
to align them on exactly the same x-axis scale, then we could make vertical comaprison easily. By
default, if you don’t pass a name, the tracks simply align two plots without two labels. Notice
even one plot has a legend, that won’t affact the alignment.

tracks(p1, p2)

28

−10

−5

0

5

10

sc
or

e

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●

−10

−5

0

5

10

sc
or

e

−2

−1

0

1

2
value

0 40 80 120

tracks(time1 = p1, time2 = p2) + xlim(1, 40) + theme_tracks_sunset()

29

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−2

−1

0

1

2
value

10 20 30 40

Other availalbe zoom in/out methods:

library(GenomicRanges)

gr <- GRanges("chr", IRanges(1, 40))

GRanges

tracks(time1 = p1, time2 = p2) + xlim(gr)

IRanges

tracks(time1 = p1, time2 = p2) + xlim(ranges(gr))

tks <- tracks(time1 = p1, time2 = p2)

xlim(tks)

xlim(tks) <- c(1, 35)

xlim(tks) <- gr

xlim(tks) <- ranges(gr)

Check manual of tracks for other utilities like reset/backup.

30

Chapter 5

Visualize single chromosome

5.1 Introduction

Single Chromosome Ideogram: it is widely used in most track-based genome browsers, usually
on top of all tracks, and use an indicator such as a highlighted window to indicate current zoomed
region being viewed for different data tracks below, in this case, users won’t lose too much context
when zoomed into certain region.

We are going to introduce two types of single chromosome visualization in this vignette.

� The first one is used to be embedded into tracks as an overview, it’s not a simple ggplot
object. Only one highlighted rectangle are allowed to be plotted on top of it. We will focus
mostly on this type of visualization in this vignette. In ggbio, this object belongs to a special
class called ’ideogram’, which has several effect which will be introduced later.

� If you want to render more data on single chromosome visualization, you have to use a special
case for karyogram overview, which contains only one chromosome, more information about
karyogram overview could be found in another vignettes about overview visualization.

5.2 Single chromosome visualization

5.2.1 Single chromosome use to be embedded in tracks.

plotIdeogram is a wrapper function around some functionality in package rtracklayer to help down-
load cytoband table from UCSC automatically and return a graphic object with class ’ideogram’.

� If you don’t pass genome name, it is going to ask your option from available genomes. NOTE:
not all genome has cytoband information, if nocytoband information is available, only se-

31

qlengths information will be returned and a message will be printed. When cytoband infor-
mation is available, the arm of chromosomes could be inferred, and plotted as you expected.
You could always use cytoband argument to control it.

� If argument subchr is not specified, the first chromosomes is going to be used.

p <- plotIdeogram()

Please specify genome

1: hg19 2: hg18 3: hg17 4: hg16 5: felCat4

6: felCat3 7: galGal4 8: galGal3 9: galGal2 10: panTro3

11: panTro2 12: panTro1 13: bosTau7 14: bosTau6 15: bosTau4

16: bosTau3 17: bosTau2 18: canFam3 19: canFam2 20: canFam1

21: loxAfr3 22: fr3 23: fr2 24: fr1 25: nomLeu1

26: gorGor3 27: cavPor3 28: equCab2 29: equCab1 30: petMar1

31: anoCar2 32: anoCar1 33: calJac3 34: calJac1 35: oryLat2

36: myoLuc2 37: mm10 38: mm9 39: mm8 40: mm7

41: hetGla1 42: monDom5 43: monDom4 44: monDom1 45: ponAbe2

46: chrPic1 47: ailMel1 48: susScr2 49: ornAna1 50: oryCun2

51: rn5 52: rn4 53: rn3 54: rheMac2 55: oviAri1

56: gasAcu1 57: echTel1 58: tetNig2 59: tetNig1 60: melGal1

61: macEug2 62: xenTro3 63: xenTro2 64: xenTro1 65: taeGut1

66: danRer7 67: danRer6 68: danRer5 69: danRer4 70: danRer3

71: ci2 72: ci1 73: braFlo1 74: strPur2 75: strPur1

76: apiMel2 77: apiMel1 78: anoGam1 79: droAna2 80: droAna1

81: droEre1 82: droGri1 83: dm3 84: dm2 85: dm1

86: droMoj2 87: droMoj1 88: droPer1 89: dp3 90: dp2

91: droSec1 92: droSim1 93: droVir2 94: droVir1 95: droYak2

96: droYak1 97: caePb2 98: caePb1 99: cb3 100: cb1

101: ce10 102: ce6 103: ce4 104: ce2 105: caeJap1

106: caeRem3 107: caeRem2 108: priPac1 109: aplCal1 110: sacCer3

111: sacCer2 112: sacCer1

Selection:

After first plotting, the data is automatically hooked with the graphic object, when you do edit
and zooming, it will NOT download it anymore, and you can even change the view to another
chromosomes. That’s the special part about object with class ’ideogram’.

library(ggbio)

requrie connection

p <- plotIdeogram(genome = "hg19")

p

32

chr1

chr1y

p <- plotIdeogram(genome = "hg19", cytoband = FALSE)

p

chr1

chr1y

the data stored with p, won't download again for zooming

head(attr(p, "ideogram.data"))

NULL

Tips: aspect.ratio by default is 1/20, if you set it to NULL, you have to resize
the graphic device manually. You can always set the aspect.ration in theme()
function of ggplot2 by +theme(aspect.ratio =)

You can always download the data manualy and save it and use it later, the function used called
getIdoegram in package biovizBase. Or more flexible relevant function in package rtracklayer .
The data hg19IdeogramCyto is a default data of human in ggbio. What if you cannot get cytoband
information from UCSC, but have the data available in hand? You can construct the GRanges

object manually, but have to satisfy following restriction:

Object have to has elementMeta columns:

33

� name: start with p or q. to tell the different arms of chromosomes. such as p36.22 and q12.

� gieStain: dye color of cytoband. such as gneg.

data(hg19IdeogramCyto, package = "biovizBase")

data structure

head(hg19IdeogramCyto)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

plotIdeogram(hg19IdeogramCyto)

chr1

chr1y

Here comes more special features about the single chromosome ’ideogram’ object, it all aims to
be conventient when it’s embeded in tracks. For a normal ggbio plot or ggplot2 plot object, when
you set limmits, it zooms in certain ranges. But, for an ’ideogram’ object, set limits will only add
highlights rectangle!

You could specify argument zoom.region in plotIdeogram function, or plus a function xlim, it
accpets

� nuemric range

34

� IRanges

� GRanges object, when it’s GRanges object, it will change the chromosome if seqnames is not
what it is before.

The highlighted style will be remembered when you zoom use xlim.

plotIdeogram(hg19IdeogramCyto, "chr1", zoom.region = c(1e7, 5e7))

chr1

chr1y

change style of highlighted rectangle

p <- plotIdeogram(hg19IdeogramCyto, "chr1")

p <- plotIdeogram(hg19IdeogramCyto, "chr1",

zoom.region = c(1e7, 5e7), fill = NA, color = "blue", size = 2,

zoom.offset = 4)

Error: invalid class "Ideogram" object: invalid object for slot "fill" in class

"Ideogram": got class "logical", should be or extend class "character"

p

chr1

chr1y

35

class(p)

[1] "Ideogram"

attr(,"package")

[1] "ggbio"

p + xlim(1e7, 5e7)

chr1

chr1y

library(GenomicRanges)

p + xlim(IRanges(5e7, 7e7))

chr1

chr1y

change visualized chromosomes

p + xlim(GRanges("chr2", IRanges(1e7, 5e7)))

36

chr2

chr2y

Default ideogram has no X-scale label, to add axis text, you have to specify argument xlabel to
TRUE.

plotIdeogram(hg19IdeogramCyto, "chr1", xlabel = TRUE)

chr1

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

y

Some time, you don’t want to visualize a chromosome with cytobands, or you cannot find any
information about cytobands, in this case, you can simply visualize a blank chromosome as overview
template. ggbio has several ways to do it.

� Use argument cytoband. Set it to FALSE.

� Pass a GRanges with no extra column such as name, gieStain. it will automatically parse
and estimate the chromosome lengths. It is IMPORTANT that to create an accurate lengths
for chromosomes, you need to either make sure the ranges you passed covers all chromosomes
or you need to specify the seqlengths for our GRanges object.

� Use autoplot,Seqinfo, when you only pass one chromosomes, it automatically convert it to an
’ideogram’.

When there is no seqlengths, the length is estiamted from the data(cytoband).

37

there are no seqlengths

data(hg19IdeogramCyto, package = "biovizBase")

seqlengths(hg19IdeogramCyto)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2

NA NA NA NA NA NA NA NA NA NA NA NA

chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA NA NA NA NA NA NA

so directly plot will try to aggregate and estimate lengths of chromosomes,

this is not accurate

p1 <- plotIdeogram(hg19IdeogramCyto, "chr1", cytoband = FALSE, xlabel = TRUE)

p1

chr1

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

y

Another default data ’hg19Ideogram’ contains seqlengths, more suitable for plotting blank overview.
Use ’Seqinfo’ is convenient way to construct single chromosome overview or karyogram overview.

data(hg19Ideogram, package= "biovizBase")

autoplot(seqinfo(hg19Ideogram)[paste0("chr", 1:13)])

38

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

Single chromosome visualization by seqinfo, if argument ideogram is set to TRUE, the returned
object is an ’ideogram’ object. By default, it’s a normal ggplot object, their lookings are different
too.

head(hg19Ideogram)

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 249250621] *

[2] chr1_gl000191_random [1, 106433] *

[3] chr1_gl000192_random [1, 547496] *

[4] chr2 [1, 243199373] *

[5] chr3 [1, 198022430] *

[6] chr4 [1, 191154276] *

seqlengths:

chr1 chr1_gl000191_random ... chrM

249250621 106433 ... 16571

39

library(GenomicRanges)

single ideogram

p <- autoplot(seqinfo(hg19Ideogram)["chr1"])

p + theme(aspect.ratio = 1/20)

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

class(p)

[1] "GGbio"

attr(,"package")

[1] "ggbio"

p <- autoplot(seqinfo(hg19Ideogram)["chr1"], ideogram = TRUE)

p

chr1

chr1

class(p)

[1] "Ideogram"

attr(,"package")

[1] "ggbio"

40

To add more data freely on your single chromosome overview, I can see cases that users are familiar
with ggbio and ggplot2 and they hope to

� Tweak with graphics more before embedded in tracks.

� Just visualize data on a single chromosome.

You can

� Set ideogram to TRUE, and change class back to ggplot default, then tweak with low level
function.

� Default then use layout karyogram.

use argument ideogram to set it to FALSE, then it’s just a formal ggplot object, and you could
manipulate it as usual.

not ideogram, just ggplot object

p <- autoplot(seqinfo(hg19Ideogram)["chr1"], ideogram = TRUE)

class(p)

[1] "Ideogram"

attr(,"package")

[1] "ggbio"

class(p) <- c("gg", "ggplot")

Warning: Setting class(x) to multiple strings ("gg", "ggplot", ...); result will

no longer be an S4 object

gr <- GRanges("chr1", IRanges(start = sample(1:1e8, size = 20), width = 5),

seqlengths = seqlengths(hg19Ideogram)["chr1"])

library(biovizBase)

p + geom_rect(data = mold(gr), aes(xmin = start, xmax = start, ymin = 0, ymax = 10),

fill = "black", color = "black")

Error: object of type ’S4’ is not subsettable

or default + layout_karyogram

p <- autoplot(seqinfo(hg19Ideogram)["chr1"]) + layout_karyogram(gr) + theme(aspect.ratio = 1/20)

p

41

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

5.2.2 Get ideogram or customize the colors

We only provide default cytoband ideogram information and trying to cover all the cases might
be encountered in real world, but what if you want to create your ideogram color yourself? To
update the cytoband color with complete definition, simply replace the pre-defined color set. This
will affect all the R session.

optlist <- getOption("biovizBase")

cyto.new <- rep(c("red", "blue"), length = length(optlist$cytobandColor))

names(cyto.new) <- names(optlist$cytobandColor)

head(cyto.new)

gneg stalk acen gpos gvar gpos1

"red" "blue" "red" "blue" "red" "blue"

suppose cyto.new is your new defined color

optlist$cytobandColor <- cyto.new

options(biovizBase = optlist)

see what happenned...

plotIdeogram(hg19IdeogramCyto)

chr1

chr1y

42

Chapter 6

Circular view

6.1 Introduction

Circular view is a special layout in ggbio , this idea has been implemented in many different software,
for example, the Circos project.

In this tutorial, we will start from the raw data, if you are already familiar with how to process
your data into the right format, which here I mean GRanges,you can jump to 6.2.3 directly.

6.2 Tutorial

6.2.1 Step 1: understand the layout circle

We have discussed about the new coordinate ”genome” in vignette about Manhattan plot before,
now this time, it’s one step further compared to genome coordinate transformation. We specify ring
radius radius and track width trackWidth to help transform a linear genome coordinate system
to a circular coordinate system. By using layout circle function which we will introduce later.

Before we visualize our data, we need to have something in mind

� How many tracks we want?

� Can they be combined into the same data?

� Do I have chromosomes lengths information?

� Do I have interesting variables attached as one column?

43

6.2.2 Step 2: get your data ready to plot

Ok, let’s start to process some raw data to the format we want. The data used in this study is
from this a paper1. In this example, We are going to

1. Visualize somatic mutation as segment.

2. Visualize inter,intro-chromosome rearrangement as links.

3. Visualize mutation score as point tracks with grid-background.

4. Add scale and ticks and labels.

5. To arrange multiple plots and legend. create multiple sample comparison.

Notes: don’t put too much tracks on it.

I simply put script here to get mutation data as ‘GRanges‘ object.

crc1 <- system.file("extdata", "crc1-missense.csv", package = "biovizBase")

crc1 <- read.csv(crc1)

library(GenomicRanges)

mut.gr <- with(crc1,GRanges(Chromosome, IRanges(Start_position, End_position),

strand = Strand))

values(mut.gr) <- subset(crc1, select = -c(Start_position, End_position, Chromosome))

data("hg19Ideogram", package = "biovizBase")

seqs <- seqlengths(hg19Ideogram)

subset_chr

chr.sub <- paste("chr", 1:22, sep = "")

levels tweak

seqlevels(mut.gr) <- c(chr.sub, "chrX")

mut.gr <- keepSeqlevels(mut.gr, chr.sub)

seqs.sub <- seqs[chr.sub]

remove wrong position

bidx <- end(mut.gr) <= seqs.sub[match(as.character(seqnames(mut.gr)),

names(seqs.sub))]

mut.gr <- mut.gr[which(bidx)]

assign_seqlengths

seqlengths(mut.gr) <- seqs.sub

reanme to shorter names

new.names <- as.character(1:22)

names(new.names) <- paste("chr", new.names, sep = "")

new.names

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html

44

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

"1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

"13" "14" "15" "16" "17" "18" "19" "20" "21" "22"

mut.gr.new <- renameSeqlevels(mut.gr, new.names)

head(mut.gr.new)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | Hugo_Symbol

<Rle> <IRanges> <Rle> | <factor>

[1] 1 [11003085, 11003085] + | TARDBP

[2] 1 [62352395, 62352395] + | INADL

[3] 1 [194960885, 194960885] + | CFH

[4] 2 [10116508, 10116508] - | CYS1

[5] 2 [33617747, 33617747] + | RASGRP3

[6] 2 [73894280, 73894280] + | C2orf78

Entrez_Gene_Id Center NCBI_Build Strand

<integer> <factor> <integer> <factor>

[1] 23435 Broad 36 +

[2] 10207 Broad 36 +

[3] 3075 Broad 36 +

[4] 192668 Broad 36 -

[5] 25780 Broad 36 +

[6] 388960 Broad 36 +

Variant_Classification Variant_Type Reference_Allele

<factor> <factor> <factor>

[1] Missense SNP G

[2] Missense SNP T

[3] Missense SNP G

[4] Missense SNP C

[5] Missense SNP C

[6] Missense SNP T

Tumor_Seq_Allele1 Tumor_Seq_Allele2

<factor> <factor>

[1] G A

[2] T G

[3] G A

[4] C T

[5] C T

[6] T C

seqlengths:

1 2 3 ... 20 21 22

45

249250621 243199373 198022430 ... 63025520 48129895 51304566

To get ideogram track, we need to load human hg19 ideogram data, for details please check another
vignette about getting ideogram.

hg19Ideo <- hg19Ideogram

hg19Ideo <- keepSeqlevels(hg19Ideogram, chr.sub)

hg19Ideo <- renameSeqlevels(hg19Ideo, new.names)

head(hg19Ideo)

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 [1, 249250621] *

[2] 2 [1, 243199373] *

[3] 3 [1, 198022430] *

[4] 4 [1, 191154276] *

[5] 5 [1, 180915260] *

[6] 6 [1, 171115067] *

seqlengths:

1 2 3 ... 20 21 22

249250621 243199373 198022430 ... 63025520 48129895 51304566

6.2.3 Step 3: low level API: layout circle

layout circle is a lower level API for creating circular plot, it accepts Granges object, and users
need to specify radius, track width, and other aesthetics, it’s very flexible. But keep in mind, you
have to pay attention rules when you make circular plots.

� For now, seqlengths, seqlevels and chromosomes names should be exactly the same, so
you have to make sure data on all tracks have this uniform information to make a comparison.

� Set arguments space.skip to the same value for all tracks, that matters for transformation,
default is the same, so you don’t have to change it, unless you want to add/remove space in
between.

� direction argument should be exactly the same, either ”clockwise” or ”counterclockwise”.

� Tweak with your radius and tracks width to get best results.

Since low level API leave you as much flexibility as possible, this may looks hard to adjust, but
it can produce various types of graphics which higher levels API like autoplot hardly can, for
instance, if you want to overlap multiple tracks or fine-tune your layout.

46

Ok, let’s start to add tracks one by one.

First to add a ”ideo” track

library(ggbio)

p <- ggplot() + layout_circle(hg19Ideo, geom = "ideo", fill = "gray70",

radius = 30, trackWidth = 4)

Then a ”scale” track with ticks

p <- p + layout_circle(hg19Ideo, geom = "scale", size = 2, radius = 35, trackWidth = 2)

p

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M
50M

100M150M0M

50M100M

150M

0M50M

100M

0M50M

100M

0M

50M
100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M
0M

50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

Then a ”text” track to label chromosomes. *NOTICE*, after genome coordinate transformation,
original data will be stored in column ”.ori”, and for mapping, just use ”.ori” prefix to it. Here we
use ‘.ori.seqnames‘, if you use ‘seqnames‘, that is going to be just ”genome” character.

p <- p + layout_circle(hg19Ideo, geom = "text", aes(label = seqnames), vjust = 0,

radius = 38, trackWidth = 7)

p

47

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M
0M

50M
100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M
100M

0M
50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7
8910

11

12
13

14
15

16
17

18
19 20 21 22

Then a ”rectangle” track to show somatic mutation, this will looks like vertical segments.

p <- p + layout_circle(mut.gr, geom = "rect", color = "steelblue",

radius = 23 ,trackWidth = 6)

p

48

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M
0M

50M
100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M
100M

0M
50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7
8910

11

12
13

14
15

16
17

18
19 20 21 22

Next, we need to add some ”links” to show the rearrangement, of course, links can be used to map
any kind of association between two or more different locations to indicate relationships like copies
or fusions.

rearr <- read.csv(system.file("extdata", "crc-rearrangment.csv", package = "biovizBase"))

start position

gr1 <- with(rearr, GRanges(chr1, IRanges(pos1, width = 1)))

end position

gr2 <- with(rearr, GRanges(chr2, IRanges(pos2, width = 1)))

add extra column

nms <- colnames(rearr)

.extra.nms <- setdiff(nms, c("chr1", "chr2", "pos1", "pos2"))

values(gr1) <- rearr[,.extra.nms]

remove out-of-limits data

seqs <- as.character(seqnames(gr1))

.mx <- seqlengths(hg19Ideo)[seqs]

idx1 <- start(gr1) > .mx

seqs <- as.character(seqnames(gr2))

.mx <- seqlengths(hg19Ideo)[seqs]

idx2 <- start(gr2) > .mx

49

idx <- !idx1 & !idx2

gr1 <- gr1[idx]

seqlengths(gr1) <- seqlengths(hg19Ideo)

gr2 <- gr2[idx]

seqlengths(gr2) <- seqlengths(hg19Ideo)

To create a suitable structure to plot, please use another ‘GRanges‘ to represent the end of the
links, and stored as elementMetadata for the ”start point” ‘GRanges‘. Here we named it as ”to.gr”
and will be used later.

values(gr1)$to.gr <- gr2

rename to gr

gr <- gr1

Here we show the flexibility of *ggbio*, for example, if you want to use color to indicate your
links, make sure you add extra information in the data, used for mapping later. Here in this
example, we use ”intrachromosomal” to label rearrangement within the same chromosomes and
use ”interchromosomal” to label rearrangement in different chromosomes.

values(gr)$rearrangements <- ifelse(as.character(seqnames(gr))

== as.character(seqnames((values(gr)$to.gr))),

"intrachromosomal", "interchromosomal")

Get subset of links data for only one sample ”CRC1”

gr.crc1 <- gr[values(gr)$individual == "CRC-1"]

Ok, add a ”point” track with grid background for rearrangement data and map ‘y‘ to variable
”score”, map ‘size‘ to variable ”tumreads”, rescale the size to a proper size range.

p <- p + layout_circle(gr.crc1, geom = "point", aes(y = score, size = tumreads), color = "red",

radius = 12 ,trackWidth = 10, grid = TRUE) +

scale_size(range = c(1, 2.5))

p

50

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M
50M

100M

150M

0M
50M
100M
150M

0M
50M

100M150M
0M

50M100M150M0M50M100M

150M

0M50M

100M

0M50M
100M

0M
50M

100M
0M

50M
100M

0M
50M

100M

0M
50M

100M

0M
50M
100M
0M
50M
100M

0M
50M

0M
50M

0M

50
M 0M

50
M 0M 50

M

0M 0M 50
M 1

2

3
4

5
6

7
8910

11

12
13

14
15

16
17

18
19202122

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

Finally, let’s add links and map color to rearrangement types. Remember you need to specify
‘linked.to‘ to the column that contain end point of the data.

p <- p + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements),

radius = 10 ,trackWidth = 1)

p

51

0M 50
M

10
0M

15
0M

20
0M

0M 50
M

10
0M

15
0M

20
0M

0M
50M
100M

150M

0M
50M
100M
150M

0M
50M
100M150M0M50M100M150M0M50M100M

150M

0M50M
100M

0M50M
100M

0M
50M

100M
0M

50M
100M

0M
50M
100M

0M
50M
100M

0M
50M
100M
0M
50M
100M 0M

50M
0M 50M 0M

50
M 0M 50

M 0M 50
M

0M 0M 50
M 1

2

3
4

5
6

7
891011

12
13

14
15

16
17

18
19202122

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

6.2.4 Step 4: Complex arragnment of plots

In this step, we are going to make multiple sample comparison, this may require some knowledge
about package grid and gridExtra. We will introduce a more easy way to combine your graphics
later after this.

We just want 9 single circular plots put together in one page, since we cannot keep too many tracks,
we only keep ideogram and links. Here is one sample.

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p0 <- ggplot() + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1) +

layout_circle(hg19Ideo, geom = "ideo", trackWidth = 1.5,

color = "gray70", fill = "gray70") +

scale_color_manual(values = cols)

p0

52

rearrangements

interchromosomal

intrachromosomal

grl <- split(gr, values(gr)$individual)

need "unit", load grid

library(grid)

lst <- lapply(grl, function(gr.cur){
print(unique(as.character(values(gr.cur)$individual)))

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p <- ggplot() + layout_circle(gr.cur, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1) +

layout_circle(hg19Ideo, geom = "ideo", trackWidth = 1.5,

color = "gray70", fill = "gray70") +

scale_color_manual(values = cols) +

labs(title = (unique(values(gr.cur)$individual))) +

theme(plot.margin = unit(rep(0, 4), "lines"))

})

[1] "CRC-1"

[1] "CRC-2"

[1] "CRC-3"

[1] "CRC-4"

53

[1] "CRC-5"

[1] "CRC-6"

[1] "CRC-7"

[1] "CRC-8"

[1] "CRC-9"

We wrap the function in grid level to a more user-friendly high level function, called arrangeGrobByParsingLegend.
You can pass your ggplot2 graphics to this function , specify the legend you want to keep on the
right, you can also specify the column/row numbers. Here we assume all plots we have passed
follows the same color scale and have the same legend, so we only have to keep one legend on the
right.

arrangeGrobByParsingLegend(lst, widths = c(4, 1), legend.idx = 1, ncol = 2)

CRC−1 CRC−2

CRC−3 CRC−4

CRC−5 CRC−6

CRC−7 CRC−8

CRC−9

rearrangements

interchromosomal

intrachromosomal

NULL

54

6.3 Transform space

This is an experimental feature that added after 1.7.12, which transform the genome space based
on some specified proportions. In layout circle there is a new parameter called chr.weight,
which is a vector of numeric value and sum of those value should not exceed 1, these value indicates
proportion of chrommosome space to take in overall space. Names of this vectors are chromosomes
names, and you can only specify a few of them, other chromosomes will take up left space according
to their space.

p1 <- ggplot() + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1) +

layout_circle(hg19Ideo, geom = "ideo", trackWidth = 1.5,

color = "gray70", fill = "gray70") +

layout_circle(hg19Ideo, geom = "text", trackWidth = 1.5, radius = 12, aes(label = seqnames))+

scale_color_manual(values = cols)

.trans <- 0.5

names(.trans) <- "1"

p2 <- ggplot() + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1, chr.weight = .trans) +

layout_circle(hg19Ideo, geom = "ideo", trackWidth = 1.5,

color = "gray70", fill = "gray70", chr.weight = .trans) +

layout_circle(hg19Ideo, geom = "text", trackWidth = 1.5,

radius = 12, aes(label = seqnames),

chr.weight = .trans)+

scale_color_manual(values = cols)

library(gridExtra)

grid.arrange(p1, p2)

55

1
2

3
4

5
6

7
89101112

13
14

15
16

17

18
19202122

rearrangements

interchromosomal

intrachromosomal
1

2
34567

8
91

01
11

21
31

41
51

617
1819202122

rearrangements

interchromosomal

intrachromosomal

56

Chapter 7

Manhattan plot

7.1 Introduction

In this tutorial, we introduce a new coordinate system called ”genome” for genomic data. This
transformation is to put all chromosomes on the same genome coordinates following specified orders
and adding buffers in between. One may think about facet ability based on seqnames, it can produce
something similar to Manhattan plot1, but the view will not be compact. What’s more, genome
transformation is previous step to form a circular view. In this tutorial, we will simulate some
SNP data and use this special coordinate and a specialized function plotGrandLinear to make a
Manhattan plot.

Manhattan plot is just a special use design with this coordinate system.

7.2 Understand the new coordinate

Let’s load some packages and data first

library(ggbio)

data(hg19IdeogramCyto, package = "biovizBase")

data(hg19Ideogram, package = "biovizBase")

library(GenomicRanges)

Make a minimal example ‘GRanges‘, and see what the default coordiante looks like, pay attention
that, by default, the graphics are faceted by ‘seqnames‘ as shown in Figure ??

1http://en.wikipedia.org/wiki/Manhattan

57

library(biovizBase)

gr <- GRanges(rep(c("chr1", "chr2"), each = 5),

IRanges(start = rep(seq(1, 100, length = 5), times = 2),

width = 50))

autoplot(gr, aes(fill = seqnames))

chr1 chr2

0 bp 50 bp 100 bp 150 bp0 bp 50 bp 100 bp 150 bp

seqnames

chr1

chr2

What if we specify the coordinate system to be ”genome” in autoplot function, there is no faceting
anymore, the two plots are merged into one single genome space, and properly labeled.

autoplot(gr, coord = "genome", aes(fill = seqnames))

58

chr1 chr2

seqnames

chr1

chr2

The internal transformation are implemented into the function transformToGenome. And there is
some simple way to test if a GRanges object is transformed to coordinate ”genome” or not

gr.t <- transformToGenome(gr)

head(gr.t)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | .start .end

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 50] * | 1 50

[2] chr1 [25, 74] * | 25 74

[3] chr1 [50, 99] * | 50 99

[4] chr1 [75, 124] * | 75 124

[5] chr1 [100, 149] * | 100 149

[6] chr2 [1, 50] * | 180 229

seqlengths:

chr1 chr2

NA NA

is_coord_genome(gr.t)

[1] TRUE

59

metadata(gr.t)$coord

[1] "genome"

7.3 Step 2: Simulate a SNP data set

Let’s use the real human genome space to simulate a SNP data set.

chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))

seqlths <- seqlengths(hg19Ideogram)[chrs]

set.seed(1)

nchr <- length(chrs)

nsnps <- 100

gr.snp <- GRanges(rep(chrs,each=nsnps),

IRanges(start =

do.call(c, lapply(chrs, function(chr){
N <- seqlths[chr]

runif(nsnps,1,N)

})), width = 1),

SNP=sapply(1:(nchr*nsnps), function(x) paste("rs",x,sep='')),

pvalue = -log10(runif(nchr*nsnps)),

group = sample(c("Normal", "Tumor"), size = nchr*nsnps,

replace = TRUE)

)

genome(gr.snp) <- "hg19"

gr.snp

GRanges with 2400 ranges and 3 metadata columns:

seqnames ranges strand | SNP

<Rle> <IRanges> <Rle> | <character>

[1] chr1 [66178199, 66178199] * | rs1

[2] chr1 [92752113, 92752113] * | rs2

[3] chr1 [142784056, 142784056] * | rs3

[4] chr1 [226371355, 226371355] * | rs4

[5] chr1 [50269347, 50269347] * | rs5

...

[2396] chrY [34038689, 34038689] * | rs2396

[2397] chrY [3010837, 3010837] * | rs2397

[2398] chrY [23806602, 23806602] * | rs2398

[2399] chrY [15474595, 15474595] * | rs2399

[2400] chrY [10016302, 10016302] * | rs2400

60

pvalue group

<numeric> <character>

[1] 1.22380 Normal

[2] 1.27916 Normal

[3] 0.01199 Tumor

[4] 0.09985 Normal

[5] 1.49938 Tumor

...

[2396] 0.17601 Normal

[2397] 0.78685 Tumor

[2398] 0.48952 Normal

[2399] 0.60000 Normal

[2400] 0.03967 Normal

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

We use the some trick to make a shorter names.

seqlengths(gr.snp)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2

NA NA NA NA NA NA NA NA NA NA NA NA

chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA NA NA NA NA NA NA

nms <- seqnames(seqinfo(gr.snp))

nms.new <- gsub("chr", "", nms)

names(nms.new) <- nms

gr.snp <- renameSeqlevels(gr.snp, nms.new)

seqlengths(gr.snp)

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 X Y

NA

7.4 Step 3: Start to make Manhattan plot by using autoplot

wrapped basic functions into autoplot, you can specify the coordinate. Figure ?? shows what the
unordered object looks like.

61

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 10 11 12 13 141516171819 2 202122 3 4 5 6 7 8 9 X Y

pv
al

ue

That’s probably not what you want, if you want to change to specific order, just sort them by hand
and use ‘keepSeqlevels‘. Figure ?? shows a sorted plot.

gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))

values(gr.snp)$highlight <- FALSE

idx <- sample(1:length(gr.snp), size = 15)

values(gr.snp)$highlight[idx] <- TRUE

values(gr.snp)$id <- 1:length(gr.snp)

p <- autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

NOTICE: the data now doesn’t have information about lengths of each chromosomes, this is
allowed to be plotted, but it’s misleading sometimes, without chromosomes lengths information,
ggbio use data space to make estimated lengths for you, this is not accurate! So let’s just assign
seqlengths to the object. Then you will find the data space now is distributed proportional to
real space as shown in Figure ??.

names(seqlths) <- gsub("chr", "", names(seqlths))

seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))]

backup

gr.back <- gr.snp

62

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

In autoplot, argument coord is just used to transform the data, after that, you can use it as
common GRanges, all other geom/stat works for it. Here just show a simple example for another
geom ”line” as shown in Figure ??

autoplot(gr.snp, coord = "genome", geom = "line", aes(y = pvalue, group = seqnames,

color = seqnames))

63

0

1

2

3

1 2 3 4 5 6 7 8 9 10111213141516171819202122 X Y

pv
al

ue
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

7.5 Convenient plotGrandLinear function

In ggbio, sometimes we develop specialized function for certain types of plots, it’s basically a
wrapper over lower level API and autoplot, but more convenient to use. Here for Manhattan plot,
we have a function called plotGrandLinear used for it. aes(y =) is required to indicate the y
value, e.g. p-value. Figure ?? shows a defalut graphic.

Color mapping is automatically figured out by *ggbio* following the rules

� if color present in aes(), like aes(color = seqnames), it will assume it’s mapping to data
column called ’seqnames’.

� if color is not wrapped in aes(), then this function will recylcle them to all chromosomes.

� if color is single character representing color, then just use one arbitrary color.

Let’s test some examples for controling colors.

plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames))

64

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("gray0", "gray40"))

65

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

Even more than two colors.

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("gray0", "gray40", "gray60")) +

theme_classic() + theme(legend.position = "none")

66

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

For fixed color, and smaller point

plotGrandLinear(gr.snp, aes(y = pvalue), color = "darkblue", size = 1.5)

67

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●
●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●
●

●

●
●
●●● ●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

You can also add cutoff line as shown in Figure ??.

plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue", cutoff.size = 1)

68

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●
●
●●●●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

This is equivalent to ggplot2 ’s API.

plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue", size = 4)

Sometimes the names of chromosomes maybe very long, you may want to rotate them, let’s make
a longer name first

let's make a long name

nms <- seqnames(seqinfo(gr.snp))

nms.new <- paste("chr00000", nms, sep = "")

names(nms.new) <- nms

gr.snp <- renameSeqlevels(gr.snp, nms.new)

seqlengths(gr.snp)

chr000001 chr000002 chr000003 chr000004 chr000005 chr000006

249250621 243199373 198022430 191154276 180915260 171115067

chr000007 chr000008 chr000009 chr0000010 chr0000011 chr0000012

159138663 146364022 141213431 135534747 135006516 133851895

chr0000013 chr0000014 chr0000015 chr0000016 chr0000017 chr0000018

115169878 107349540 102531392 90354753 81195210 78077248

chr0000019 chr0000020 chr0000021 chr0000022 chr00000X chr00000Y

59128983 63025520 48129895 51304566 155270560 59373566

69

Then rotate it!

plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x=theme_text(angle=-90, hjust=0))

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●

●

●
●

●
●●●
●
●

●

●

●

●

●
●

●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●●

●●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●●
●●

●

●

●
●

●

●●

●●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●
●●●

●

●

●
●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●
●

●●●
●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●
●

●
●

●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●

● ●

●
●

●

●
●
●

●

●
●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●

●

●●

●

●
●●●●
●●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●

●

●
●

● ●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●●● ●
●

●●

●
●
●

●

●
●●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●●
●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●
●
●●
●

●
●

●

●

●

●
●

●●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●0

1

2

3

chr000001

chr000002

chr000003

chr000004

chr000005

chr000006

chr000007

chr000008

chr000009

chr0000010

chr0000011

chr0000012
chr0000013
chr0000014
chr0000015
chr0000016
chr0000017
chr0000018
chr0000019
chr0000020
chr0000021
chr0000022
chr00000X
chr00000Y

pv
al

ue

As you can tell from above examples, all utilities works for ggplot2 will work for ggbio too.

7.6 Annotating manhattan plot easily

You can provide a highlight GRanges, and each row highlights a set of overlaped snps, and labeled
by rownames or certain columns, there is more control in the function as parameters, with prefix
highlight.*, so you could control color, label size and color, etc.

gr.snp <- gr.back

gro <- GRanges(c("1", "11"), IRanges(c(100, 2e6), width = 5e7))

names(gro) <- c("id1", "id2")

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro)

Error: unable to find an inherited method for function ’seqnames’ for signature

’"NULL"’

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro) + theme_classic() +

70

theme(legend.position = "none")

Error: unable to find an inherited method for function ’seqnames’ for signature

’"NULL"’

7.7 Unequal space

This is an experimental feature that added after 1.7.12, which transform the genome space to some
specified proportions.

In plotGrandLinear, there is a new parameter called chr.weight, which is a vector of numeric
value and sum of those value should not exceed 1, these value indicates proportion of chrommosome
space to take in overall space. Names of this vectors are chromosomes names, and you can only
specify a few of them, other chromosomes will take up left space according to their space.

.trans <- 0.5

names(.trans) <- "1"

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro, chr.weight = .trans) +

theme_clear() + theme(legend.position = "none")

Error: unable to find an inherited method for function ’seqnames’ for signature

’"NULL"’

71

Chapter 8

Karyogram overview

8.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell1.
It’s one kind of overview when we want to show distribution of certain events on the genome, for
example, binding sites for certain protein, even compare them acroos samples as example shows in
this section.

GRanges and Seqinfo object are also an ideal container for storing data needed for karyogram plot.
Here is the strategy we used for generating ideogram templates.

� Althouth seqlengths is not required, it’s highly recommended for plotting karyogram. If a
GRanges object contains seqlengths, we know exactly how long each chromosome is, and
will use this information to plot genome space, particularly we plot all levels included in it,
NOT JUST data space.

� If a GRanges has no seqlengths, we will issue a warning and try to estimate the chromosome
lengths from data included. This is NOT accurate most time, so please pay attention to
what you are going to visualize and make sure set seqlengths before hand.

8.2 autoplot

Let’s first introduce how to use autoplot to generate karyogram graphic.

The most easy one is to just plot Seqinfo by using autoplot, if your GRanges object has seqinfo
with seqlengths information.

1http://en.wikipedia.org/wiki/Karyotype

72

data(hg19Ideogram, package = "biovizBase")

chrs <- paste0("chr", 1:20)

p <- autoplot(seqinfo(hg19Ideogram)[chrs])

p

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

Even more typical karyogram overview with cytoband, this will even show the arms, two required
columns are required ’name’ and ’gieStain’.

data(hg19IdeogramCyto, package = "biovizBase")

head(hg19IdeogramCyto)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

73

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

p <- autoplot(hg19IdeogramCyto, layout = "karyogram", cytoband = TRUE)

Tips: Your turn: change the order of chromosomes.

We use a default data in package biovizBase, which is a subset of RNA editing set in human. The
data involved in this GRanges is sparse, so we cannot simply use it to make karyogram, otherwise,
the estimated chromosome lengths will be very rough and inaccurate. So what we need to do is:

1. Adding seqlegnths to this GRanges object. If you adding seqlengths to object, we have two
ways to show chromosome space as karyogram.
autoplot(object, layout = ’karyogram’) or
autoplot(seqinfo(object)).

2. Changing the order of chromosomes.

3. Visualize it and map variable to different aesthetics.

data(darned_hg19_subset500, package = "biovizBase")

dn <- darned_hg19_subset500

head(dn)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | inchr inrna

<Rle> <IRanges> <Rle> | <character> <character>

[1] chr5 [86618225, 86618225] - | A I

[2] chr7 [99792382, 99792382] - | A I

[3] chr12 [110929076, 110929076] - | A I

[4] chr20 [25818128, 25818128] - | A I

[5] chr3 [132397992, 132397992] + | A I

[6] chr19 [59078471, 59078471] - | A I

snp gene seqReg exReg

<character> <character> <character> <character>

[1] <NA> <NA> O <NA>

[2] <NA> <NA> O <NA>

74

[3] <NA> <NA> O <NA>

[4] <NA> <NA> O <NA>

[5] <NA> <NA> O <NA>

[6] <NA> MZF1 I <NA>

source ests esta author

<character> <integer> <integer> <character>

[1] amygdala 0 0 15342557

[2] <NA> 0 0 15342557

[3] salivary gland 0 0 15342557

[4] brain, hippocampus 0 0 15342557

[5] small intestine 0 0 15342557

[6] <NA> 0 0 15258596

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr6 chr7 chr8 chr9 chrX

NA NA NA NA NA NA ... NA NA NA NA NA

add seqlengths

we have seqlegnths information in another data set

data(hg19Ideogram, package = "biovizBase")

seqlengths(dn) <- seqlengths(hg19Ideogram)[names(seqlengths(dn))]

now we have seqlengths

head(dn)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | inchr inrna

<Rle> <IRanges> <Rle> | <character> <character>

[1] chr5 [86618225, 86618225] - | A I

[2] chr7 [99792382, 99792382] - | A I

[3] chr12 [110929076, 110929076] - | A I

[4] chr20 [25818128, 25818128] - | A I

[5] chr3 [132397992, 132397992] + | A I

[6] chr19 [59078471, 59078471] - | A I

snp gene seqReg exReg

<character> <character> <character> <character>

[1] <NA> <NA> O <NA>

[2] <NA> <NA> O <NA>

[3] <NA> <NA> O <NA>

[4] <NA> <NA> O <NA>

[5] <NA> <NA> O <NA>

[6] <NA> MZF1 I <NA>

source ests esta author

<character> <integer> <integer> <character>

[1] amygdala 0 0 15342557

75

[2] <NA> 0 0 15342557

[3] salivary gland 0 0 15342557

[4] brain, hippocampus 0 0 15342557

[5] small intestine 0 0 15342557

[6] <NA> 0 0 15258596

seqlengths:

chr1 chr10 chr11 ... chr8 chr9 chrX

249250621 135534747 135006516 ... 146364022 141213431 155270560

then we change order

dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

autoplot(dn, layout = "karyogram")

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

this equivalent to

autoplot(seqinfo(dn))

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data map-
ping ability in graphics, make data exploration much more convenient. In the following example,

76

we are trying to map a categorical variable ’exReg’ to color, this variable is included in the data,
and have three levels, ’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’ means coding region. We have
some missing values indicated as NA, in default, it’s going to be shown in gray color, and keep
in mind, since the basic geom(geometric object) is rectangle, and genome space is very large, so
change both color/fill color of the rectangle to specify both border and filled color is necessary to
get the data shown as different color, otherwise if the region is too small, border color is going to
override the fill color.

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

Or you can set the missing value to particular color you want.

Note: NA values is not shown on the legend.

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) +

scale_color_discrete(na.value = "brown")

77

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

8.3 plotKaryogram

plotKaryogram (or plotStackedOverview) are specialized function to draw karyogram graphics.
It’s actually what function autoplot calls inside. API is a littler simpler because layout ’karyogram’
is default in these two functions. So equivalent usage is like

plotKaryogram(dn)

plotKaryogram(dn, aes(color = exReg, fill = exReg))

8.4 layout karyogram

In this section, a lower level function layout karyogram is going to be introduced. This is conve-
nient API for constructing karyogram plot and adding more data layer by layer. Function ggplot

is just to create blank object to add layer on.

You need to pay attention to

78

� when you add plots layer by layer, seqnames of different data must be the same to make
sure the data are mapped to the same chromosome. For example, if you name chromosome
following schema like chr1 and use just number 1 to name other data, they will be treated
as different chromosomes.

� cannot use the same aesthetics mapping multiple time for different data. For example, if you
have used aes(color =), for one data, you cannot use aes(color =) anymore for mapping
variables from other add-on data, this is currently not allowed in ggplot2 , even though you
expect multiple color legend shows up, this is going to confuse people which is which. HOW-
EVER, color or fill without aes() wrap around, is allowed for any track, it’s set single
arbitrary color. This is shown in Figure ??.

� Default rectangle y range is [0, 10], so when you add on more data layer by layer on existing
graphics, you can use ylim to control how to normalize your data and plot it relative to
chromosome space. For example, with default, chromosome space is plotted between y [0,
10], if you use ylim = c(10 , 20), you will stack data right above each chromosomes and
with equal width. For geom like ’point’, which you need to specify ’y’ value in aes(), we will
add 5% margin on top and at bottom of that track.

plot ideogram

p <- ggplot(hg19) + layout_karyogram(cytoband = TRUE)

Error: error in evaluating the argument ’data’ in selecting a method for function

’ggplot’: Error: object ’hg19’ not found

p

79

chr1
chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr2

chr20
chr21
chr22
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chrX
chrY

0 Mb 50 Mb100 Mb150 Mb200 Mb250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

eqevelant autoplot(hg19, layout = "karyogram", cytoband = TRUE)

p <- p + layout_karyogram(dn, geom = "rect", ylim = c(11, 21), color = "red")

commented line below won't work

the cytoband fill color has been used already.

p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect")

p

80

chr1
chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr2

chr20
chr21
chr22
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chrX
chrY

0 Mb 50 Mb100 Mb150 Mb200 Mb250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

Then we construct another multiple layer graphics for multiple data using different geom, suppose
we want to show RNA-editing sites on chromosome space as rectangle(looks like segment in graphic)
and stack a line for another track above.

plot chromosome space

p <- autoplot(seqinfo(dn))

make sure you pass rect as geom

otherwise you just get background

p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect")

values(dn)$pvalue <- rnorm(length(dn))

p + layout_karyogram(dn, aes(x = start, y = pvalue),

ylim = c(10, 30), geom = "line", color = "red")

81

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg

3

5

C

p

82

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg

3

5

C

83

Chapter 9

Visualize genomic features

9.1 Introduction

Transcript-centric annotation is one of the most useful tracks that frequently aligned with other
data in many genome browsers. In Bioconductor, you can either request data on the fly from UCSC
or BioMart, which require internet connection, or you can save frequently used annotation data of
particular organism, for example human genome, as a local data base. Package GenomicFeatures
provides very convenient API for making and manipulating such database. Bioconductor also pre-
built some frequently used genome annotation as packages for easy installation, for instance, for
human genome(hg19), there is a meta data package called TxDb.Hsapiens.UCSC.hg19.knownGene,
after you load this package, a TranscriptDb object called TxDb.Hsapiens.UCSC.hg19.knownGene

will be visible from your workspace. This object contains information like coding regions, exons,
introns, utrs, transcripts for this genome. If you cannot find the organism you want in Bioconductor
meta packages, please refer to the vignette of package GenomicFeatures to check how to build your
own data base manually.

ggbio providing visualization utilities based on this specific object, in the following tutorial we cover
some usage:

� How to plot genomic features for certain region, including coding region, introns, utrs.

� How to change geom of introns, how to revise arrow size and density.

� How to change aesthetics such as colors.

� How to plot single genomic features by make statistical transformation of “reduce”.

� How to revise y label using expression and pattern.

� How to change x-scale unit to arbitrary kb,bp.

� How to use lower level API.

84

9.2 Usage

9.2.1 autoplot

autoplot API is higher level API in ggbio which tries to make smart decision for object-oriented
graphics. Another vignette have more detailed introduction to this function.

In this tutorial, we solely focus on visualization of TranscriptDb object.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

suppose you already know the region you want to visualize

or for human genome, you can try following commented code

data(genesymbol, package = "biovizBase")

genesymbol["ALDOA"]

aldoa.gr <- GRanges("chr16", IRanges(30064491, 30081734))

aldoa.gr

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr16 [30064491, 30081734] *

seqlengths:

chr16

NA

library(ggbio)

p1 <- autoplot(txdb, which = aldoa.gr)

p1

85

uc010bzo.2

uc002dvx.3

uc002dvw.3

uc002dvz.3

uc002dwa.4

uc002dwc.3

uc010veg.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

You can changing some aesthetics like colors in autoplot, since rectangle is defined by ’color’ which
is border color and ’fill’ for filled color.

library(ggbio)

p1 <- autoplot(txdb, which = aldoa.gr, fill = "brown", color = "brown")

p1

86

uc010bzo.2

uc002dvx.3

uc002dvw.3

uc002dvz.3

uc002dwa.4

uc002dwc.3

uc010veg.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

autoplot function for object TranscriptDb has two supported statistical transformation.

� identity: full model, show each transcript, parsing coding region, introns and utrs auto-
matically from the database. intorns are shown as small arrows to indicate the direction,
exons are represented as wider rectangles and utrs are represented as narrow rectangles. This
transformation is shown in Figure ??

� reduce: reduced model, show single reduced model, which take union of CDS, utrs and
re-compute introns, as shown in Figure ??.

p2 <- autoplot(txdb, which = aldoa.gr, stat = "reduce")

print(p2)

87

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

To better understand the behavior of “reduce” transformation, we layout these two graphics by
tracks as shown in Figure ??. Function Tracks has been introduced in detail in another vignette.

tracks(full = p1, reduced = p2, heights = c(4,1)) +

theme_alignment(grid=FALSE, border = FALSE)

fu
ll

uc010bzo.2

uc002dvx.3

uc002dvw.3

uc002dvz.3

uc002dwa.4

uc002dwc.3

uc010veg.2

re
du

ce
d

30.06 Mb 30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

We allow users to change the way to visualization introns here, it’s controlled by parameter
“gap.geom”, supported three geoms:

� arrow: with small arrow to indicate the strand direction, extra parameter existing to control
the appearance of the arrow, as shown in Figure ??. arrow.rate control how dense the
arrows shows in between.

88

� chevron:chevron to show as introns, no strand indication. please check geom chevron.

� segment:segments to show as introns, no strand indication.

The geometric object for ranges, introns and uts are controled by parameters range.geom, gap.geom,

utr.geom. For example if you want to change the geom for gap, just change the gap.geom.

autoplot(txdb, which = aldoa.gr, gap.geom = "chevron")

uc010bzo.2

uc002dvx.3

uc002dvw.3

uc002dvz.3

uc002dwa.4

uc002dwc.3

uc010veg.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

library(grid)

autoplot(txdb, which = aldoa.gr, arrow.rate = 0.001, length = unit(0.35, "cm"))

89

uc010bzo.2

uc002dvx.3

uc002dvw.3

uc002dvz.3

uc002dwa.4

uc002dwc.3

uc010veg.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

We also allow users to parse y labels from existing column in TranscriptDb object.

p <- autoplot(txdb, which = aldoa.gr, names.expr = "gene_id:::tx_name")

p

90

226:::uc010bzo.2

226:::uc002dvx.3

226:::uc002dvw.3

226:::uc002dvz.3

226:::uc002dwa.4

226:::uc002dwc.3

226:::uc010veg.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

91

scale x sequnit is a add-on utility to revise the x-scale, it provides three unit

� mb: 1e6bp unit. default for autoplot,TranscriptDb.

� kb: 1e3bp unit.

� bp: 1bp unit

it’s just post-graphic modification, won’t re-load the parsing process. Figure

p + scale_x_sequnit("kb")

226:::uc010bzo.2

226:::uc002dvx.3

226:::uc002dvw.3

226:::uc002dvz.3

226:::uc002dwa.4

226:::uc002dwc.3

226:::uc010veg.2

30065 kb 30070 kb 30075 kb 30080 kb

Figure 9.1: change the unit to kb.

9.2.2 geom alignment

stat gene is deprecated, and geom alignment is the lower level API which facilitate construction
layer by layer.

92

p1 <- ggplot() + geom_alignment(txdb, which = aldoa.gr)

93

Chapter 10

Visualize sequence

94

Chapter 11

Visualize matrix-related objects

95

Chapter 12

Visualize VCF files

96

Chapter 13

Visualize splicing events

97

Chapter 14

Miscellaneous

14.1 Themes

14.1.1 Plot theme

14.1.2 Track theme

14.2 Scales

98

Chapter 15

Session Information

sessionInfo()

R version 3.0.3 (2014-03-06)

Platform: i386-w64-mingw32/i386 (32-bit)

##

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

##

attached base packages:

[1] grid parallel methods stats graphics grDevices

[7] utils datasets base

##

other attached packages:

[1] gridExtra_0.9.1

[2] biovizBase_1.10.8

[3] TxDb.Hsapiens.UCSC.hg19.knownGene_2.10.1

[4] GenomicFeatures_1.14.5

[5] AnnotationDbi_1.24.0

[6] Biobase_2.22.0

[7] rtracklayer_1.22.7

[8] ggbio_1.10.16

[9] ggplot2_0.9.3.1

[10] GenomicRanges_1.14.4

[11] XVector_0.2.0

[12] IRanges_1.20.7

99

[13] BiocGenerics_0.8.0

[14] knitr_1.5

##

loaded via a namespace (and not attached):

[1] BSgenome_1.30.0 Biostrings_2.30.1

[3] DBI_0.2-7 Formula_1.1-1

[5] Hmisc_3.14-3 MASS_7.3-31

[7] RColorBrewer_1.0-5 RCurl_1.95-4.1

[9] RSQLite_0.11.4 Rcpp_0.11.1

[11] Rsamtools_1.14.3 VariantAnnotation_1.8.13

[13] XML_3.98-1.1 biomaRt_2.18.0

[15] bitops_1.0-6 cluster_1.15.2

[17] colorspace_1.2-4 dichromat_2.0-0

[19] digest_0.6.4 evaluate_0.5.3

[21] formatR_0.10 gtable_0.1.2

[23] highr_0.3 labeling_0.2

[25] lattice_0.20-29 latticeExtra_0.6-26

[27] munsell_0.4.2 plyr_1.8.1

[29] proto_0.3-10 reshape2_1.2.2

[31] scales_0.2.3 splines_3.0.3

[33] stats4_3.0.3 stringr_0.6.2

[35] survival_2.37-7 tools_3.0.3

[37] zlibbioc_1.8.0

100

	Getting started
	Citation
	Introduction
	Documentation
	Support
	Installation
	Getting started
	Genesis: everything started from GRanges
	About GRanges
	Visualize GRanges object

	Visaulize gff-like files
	Visualize bam files
	How to make tracks
	Motivation
	Minimal examples for tracks

	Visualize single chromosome
	Introduction
	Single chromosome visualization
	Single chromosome use to be embedded in tracks.
	Get ideogram or customize the colors

	Circular view
	Introduction
	Tutorial
	Step 1: understand the layout circle
	Step 2: get your data ready to plot
	Step 3: low level API: layout_circle
	Step 4: Complex arragnment of plots

	Transform space

	Manhattan plot
	Introduction
	Understand the new coordinate
	Step 2: Simulate a SNP data set
	Step 3: Start to make Manhattan plot by using autoplot
	Convenient plotGrandLinear function
	Annotating manhattan plot easily
	Unequal space

	Karyogram overview
	Introduction
	autoplot
	plotKaryogram
	layout_karyogram

	Visualize genomic features
	Introduction
	Usage
	autoplot
	geom_alignment

	Visualize sequence
	Visualize matrix-related objects
	Visualize VCF files
	Visualize splicing events
	Miscellaneous
	Themes
	Plot theme
	Track theme

	Scales

	Session Information

