
HowTo BGX

Ernest Turro
Imperial College London

April 25, 2007

1 Introduction

This vignette describes how to use bgx , a C++ implementation of a Bayesian hierarchical
integrated approach to the modelling and analysis of Affymetrix GeneChip arrays. The
model and methodology is described in Hein et al, 2005.

There are two ways to run bgx : (1) through R and (2) as a standalone binary. Both
ways make use of probe level GeneChip data, which you must obtain as GeneChip CEL
files.

2 Reading in the CEL files

When you load bgx , several required packages from the Bioconductor1 project are auto-
matically loaded.

> library(bgx)

The affy package allows you to read CEL files into an AffyBatch object. This can
be achieved by changing your working directory to wherever the CEL files are stored
and executing:

> aData <- ReadAffy()

This will read in the CEL files in alphabetical order and save the data in the aData

object. Alternatively, you can specify the specific files you would like to read in by
adding their paths to the argument list, for example:

> aData <- ReadAffy("CEL/choe/chipC-rep1.CEL", "CEL/choe/chipS-rep2.CEL")

1http://bioconductor.org

1

http://bioconductor.org

3 Running BGX through R

A basic execution of the program can be performed by simply passing an AffyBatch

object as a single parameter to the bgx function and saving the result in an Expression-

Set object. The result will hold array-specific gene expression values and their corre-
sponding standard errors in assayData(eset)$exprs and assayData(eset)$se.exprs

respectively.

> eset <- bgx(aData)

A more elaborate scenario would involve splitting the arrays into a number of condi-
tions using the samplesets argument2; specifying which genes to analyse with the genes
argument; specifying whether to take into account probe affinity with probeAff ; setting
the number of burn-in and post burn-in runs with the burnin and iter arguments respec-
tively; setting the set of parameters to save with the output argument3; and specifying
where to save the runs with rundir . Execute help(bgx) in R for a full explanation of
all the parameters.

As an example, let us analyse the Dilution data set and save the results in the
current working directory (”.”):

> library(affydata)

> library(hgu95av2cdf)

> data(Dilution)

> eset <- bgx(Dilution, samplesets=c(2,2), probeAff=FALSE, burnin=2048, iter=8192,genes=c(12500:12599), output="all")

The eset object will contain gene expression information for each gene under each
condition (not necessarily each array). You may obtain the gene expression measure
using the exprs function. For instance:

> exprs(eset)[10:40,] # Shorthand for assayData(eset)\$exprs[10:40,]

condition 1 condition 2

947_at 6.54882 6.23533

948_s_at 4.80074 4.45260

949_s_at 4.75990 4.54776

950_at 4.46098 4.23591

951_at 1.81786 2.75080

952_at 2.52115 2.29997

953_g_at 5.27994 4.87892

2Note that if your AffyBatch object contains information on the experimental design in the phen-

oData slot, you do not need to use the samplesets argument.
3output can be set to either ”minimal”, ”trace” or ”all”. See the documentation for an explanation of

what these levels mean

2

954_s_at 6.36742 6.09736

955_at 6.62402 6.34845

956_at 7.01234 6.70974

957_at 4.62311 4.22943

958_s_at 5.53824 5.18073

959_at 1.61462 1.32862

960_g_at 5.22585 4.92409

961_at 1.61015 1.63794

962_at 2.23727 2.01095

963_at 4.59609 4.20270

964_at 4.28568 4.00659

965_at 2.14193 1.36846

966_at 4.45682 4.10201

967_g_at 4.89294 4.59490

968_i_at 3.08878 3.58380

969_s_at 4.74009 4.49441

970_r_at 6.31431 6.17404

971_s_at 2.83499 2.78558

973_at 4.38212 4.08772

974_at 1.70736 2.25615

975_at 4.38175 4.01188

976_s_at 2.73965 3.41333

977_s_at 4.89886 4.55122

978_at 3.03629 2.60538

Run help(ExpressionSet) in R for more information.
Note that samplesets should be set to an array specifying the number of replicates

in each condition. If set to (3,2), bgx will treat the first three arrays read into R as
replicates under condition 1 and the next two as replicates under condition 2. You should
make sure that all condition 1 files are read in first and all condition 2 files are read in
second by ReadAffy(). You may check the order of the samples in your AffyBatch

object by using the sampleNames function:

> sampleNames(Dilution)

[1] "20A" "20B" "10A" "10B"

4 Running BGX as a standalone binary

Occasionally it may be useful to run bgx as a standalone binary from the command line4.
In this case, you should use the standalone.bgx function instead of the bgx function.

4You can compile it by tweaking ’src/Makefile.standalone’ to your specifications and running ‘make
-f Makefile.standalone‘ from the ’src’ directory.

3

It takes the same arguments as bgx, with the addition of dirname, which should specify
where you would like to save the input files required by the standalone binary.

aData <- ReadAffy() # Read in 6 arrays across two conditions

in alphabetical order

standalone.bgx(aData, samplesets=c(3,3), genes=c(1:650,1000:1200),

burnin=16384, iter=65536, output="minimal",

dirname="input-choe3replicates")

Once you have saved the input files, you should locate the binary, make sure it is
executable5, and pass the path to the newly created infile.txt file as a single argument.
For example:

./bgx ../input-choe3replicates/infile.txt

5 Detailed analysis of the output

If you wish to analyse the output in detail, you should first read the output into a list
as follows:

> bgxOutput <- readOutput.bgx("run.1")

You may then pass the bgxOutput object to any of several analysis functions. For
instance, to view the gene expression distributions under the various conditions for gene
10, you could do:

> plotExpressionDensity(bgxOutput, gene=10)

5Under Unix-like environments, you can type chmod +x bgx at the command prompt to do this.

4

5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Densities of mu for gene 947_at

Expression

D
en

si
ty

Cond 1
Cond 2

In order to get a list of ranked differential expression values, you could do:

> rankedGeneList <- rankByDE(bgxOutput)

> print(rankedGeneList[1:25,]) # print top 25 DEG

Position DiffExpression

956_at 19 34.415585

941_at 4 34.090607

AFFX-HSAC07/X00351_5_at 83 33.011335

947_at 10 30.873117

AFFX-HUMGAPDH/M33197_5_at 89 30.510521

955_at 18 27.775266

AFFX-HUMGAPDH/M33197_M_at 91 24.097000

AFFX-HSAC07/X00351_M_at 85 21.913618

954_s_at 17 21.591047

953_g_at 16 19.871139

AFFX-HUMGAPDH/M33197_3_at 87 19.282793

AFFX-BioDn-3_at 70 16.954794

5

946_at 9 16.395416

958_s_at 21 15.611503

AFFX-HUMISGF3A/M97935_3_at 93 14.703255

AFFX-HUMISGF3A/M97935_MB_at 96 14.534467

AFFX-HUMISGF3A/M97935_MA_at 95 12.268148

957_at 20 11.727123

960_g_at 23 11.675859

977_s_at 39 11.107148

993_at 54 9.943220

963_at 26 9.749545

AFFX-HSAC07/X00351_3_at 81 9.602072

969_s_at 32 9.545740

982_at 44 9.341472

Run help(analysis.bgx) for more detailed usage instructions on the analysis func-
tions.

6

	Introduction
	Reading in the CEL files
	Running BGX through R
	Running BGX as a standalone binary
	Detailed analysis of the output

