
TCC: Differential expression analysis for tag count data

with robust normalization strategies

Jianqiang Sun1§, Tomoaki Nishiyama2§, Kentaro Shimizu1, and Koji Kadota1

1 The University of Tokyo, Tokyo, Japan

2 Kanazawa University, Kanazawa, Japan

§ Maintainer: Jianqiang Sun (wukong@bi.a.u-tokyo.ac.jp),

Tomoaki Nishiyama (tomoakin@staff.kanazawa-u.ac.jp)

October 15, 2013

Abstract

The R/Bioconductor package, TCC, provides users with a robust and accurate framework
to perform differential expression (DE) analysis of tag count data. We recently developed a
multi-step normalization method (TbT; Kadota et al., 2012 [3]) for two-group RNA-seq data.
The strategy (called DEGES) is to remove data that are potential differentially expressed
genes (DEGs) before performing the data normalization. DEGES in TCC is essential for
accurate normalization of tag count data, especially when the up- and down-regulated DEGs
in one of the groups are extremely biased in their number. A major characteristic of TCC is to
provide the DEGES-based normalization methods for several kinds of count data (two-group
with or without replicates, multi-group, and so on) by virtue of the use of combinations
of functions in other sophisticated packages (especially edgeR, DESeq, and baySeq). The
appropriate combination provided by TCC allows a more robust and accurate estimation to
be performed more easily than directly using original packages and TCC provides a simple
unified interface to perform the robust normalization.

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Citations . 4
1.3 Quick start . 4

2 Preparations 7
2.1 Reading the count data . 7
2.2 Constructing TCC class object . 7
2.3 Filtering low-count genes (optional) . 9

3 Normalization 10
3.1 Normalization of two-group count data with replicates 10

3.1.1 DEGES/TbT . 10
3.1.2 DEGES/edgeR . 11
3.1.3 iDEGES/edgeR . 13
3.1.4 DEGES/DESeq . 13

3.2 Normalization of two-group count data without replicates 14
3.3 Normalization of multi-group count data with replicates 16

3.3.1 DEGES/TbT . 17
3.3.2 DEGES/edgeR . 17
3.3.3 DEGES/DESeq . 19

3.4 Retrieving normalized data . 20
3.4.1 Retrieving two-group DEGES/edgeR-normalized data with replicates . . 22
3.4.2 Retrieving two-group DEGES/DESeq-normalized data with replicates . . 23
3.4.3 Retrieving two-group DEGES/DESeq-normalized data without replicates 24
3.4.4 Retrieving multi-group iDEGES/edgeR-normalized data with replicates . 26

4 Differential expression (DE) 29
4.1 DE analysis for two-group data with replicates 29

4.1.1 edgeR coupled with iDEGES/edgeR normalization 29
4.1.2 baySeq coupled with iDEGES/edgeR normalization 30

4.2 DE analysis for two-group data without replicates 32
4.3 DE analysis for multi-group data with replicates 33

4.3.1 baySeq coupled with DEGES/edgeR normalization 33
4.3.2 edgeR coupled with DEGES/edgeR normalization 35
4.3.3 DESeq coupled with DEGES/edgeR normalization 37

5 Generation of simulation data 39
5.1 Introduction and basic usage . 39
5.2 Two-group data without replicates . 42
5.3 Multi-group data with and without replicates . 44
5.4 Multi-factor data . 48
5.5 Other utilities . 50

6 Session info 55

7 References 56

2

1 Introduction

Differential expression analysis based on tag count data has become a fundamental task for
identifying differentially expressed genes or transcripts (DEGs). The TCC package (Tag Count
Comparison; Sun et al., 2013 [14]) provides users with a robust and accurate framework to per-
form differential expression analysis of tag count data. TCC provides integrated analysis pipelines
with improved data normalization steps, compared with other packages such as edgeR, DESeq,
and baySeq, by appropriately combining their functionalities. The package incorporates multi-
step normalization methods whose strategy is to remove data that are potential DEGs before
performing the data normalization.

Kadota et al. (2012) [3] recently reported that the normalization methods implemented in R
packages (such as edgeR (Robinson et al., 2010 [1]), DESeq (Anders and Huber, 2010 [8]), and
baySeq (Hardcastle and Kelly, 2010 [6])) for differential expression (DE) analysis between sam-
ples are inadequate when the up- and down-regulated DEGs in one of the samples are extremely
biased in their number (i.e., biased DE). This is because the current methods implicitly assume
a balanced DE, wherein the numbers of highly and lowly expressed DE entities in samples are
(nearly) equal. As a result, methods assuming unbiased DE will not work well on data with
biased DE. Although a major purpose of data normalization is to detect such DE entities, their
existence themselves consequently interferes with their opportunity to be top-ranked. Conven-
tional procedures for identifying DEGs from tag count data consisting of two steps (i.e., data
normalization and identification of DEGs) cannot in principle eliminate the potential DE entities
before data normalization.

To normalize data that potentially has various scenarios (including unbiased and biased
DE), we recently proposed a multi-step normalization strategy (called TbT, an acronym for
the TMM-baySeq-TMM pipeline; Kadota et al., 2012 [3]), in which the TMM normalization
method (Robinson and Oshlack, 2010 [4]) is used in steps 1 and 3 and an empirical Bayesian
method implemented in the baySeq package (Hardcastle and Kelly, 2010 [6]) is used in step 2.
Although this multi-step DEG elimination strategy (called ”DEGES” for short) can successfully
remove potential DE entities identified in step 2 prior to the estimation of the normalization
factors using the TMM normalization method in step 3, the baySeq package used in step 2 of
the TbT method is much more computationally intensive than competing packages like edgeR

and DESeq. While the three-step TbT normalization method performed best on simulated and
real tag count data, it is practically possible to make different choices for the methods in each
step. A more comprehensive study regarding better choices for DEGES is needed.

This package provides tools to perform multi-step normalization methods based on DEGES
and enables differential expression analysis of tag count data without having to worry much about
biased distributions of DEGs. The DEGES-based normalization function implemented in TCC

includes the TbT method based on DEGES for two-group data with or without replicates, much
faster method, and methods for multi-group comparison. TCC provides a simple unified interface
to perform data normalization with combinations of functions provided by baySeq, DESeq, and
edgeR. Functions to produce simulation data under various conditions and to plot the data are
also provided.

1.1 Installation

This package is available from the Bioconductor website (http://bioconductor.org/). To install
the package, enter the following command after starting R:

> source("http://bioconductor.org/biocLite.R")

> biocLite("TCC")

3

1.2 Citations

This package internally uses many of the functions implemented in the other packages. This is
because our normalization procedures consist, in part, of combinations of existing normalization
methods and differential expression (DE) methods.

For example, the TbT normalization method (Kadota et al., 2012 [3]), which is a particular
functionality of the TCC package (Sun et al., 2013 [14]), consists of the TMM normalization
method (Robinson and Oshlack, 2010 [4]) implemented in the edgeR package (Robinson et al.,
2010 [1]) and the empirical Bayesian method implemented in the baySeq package (Hardcastle
and Kelly, 2010 [6]). Therefore, please cite the appropriate references when you publish your
results.

> citation("TCC")

1.3 Quick start

Let us begin by showing two examples (Cases1 and 2) of identifying DEGs between two groups
from tag count data consisting of 1, 000 genes and a total of six samples (each group has three
biological replicates). The hypothetical count data (termed ”hypoData”) is stored in this package
(for details, see section 2.1). We then describe the DE analysis of count data without replicates
(i.e., two samples), using the data of the first and the fourth column of hypoData (Case 3). We
recommend the use of commands in Cases 2 and 3.

Case 1: DE analysis of two-group count data with replicates by using the exact test (Robin-
son and Smyth, 2008 [13]) in edgeR coupled with TbT normalization (termed the TbT-edgeR
combination). The TCC package was originally designed with the TbT normalization method,
and the original study (Kadota et al., 2012 [3]) recommended this analysis pipeline. Note that a
smaller sampling size (i.e., samplesize = 100) is used here to reduce the computation time, but
a larger sampling size of around 10, 000 (i.e., samplesize = 10000) is recommended (Hardcastle
and Kelly, 2010 [6]). Suggested citations are as follows: TCC (Sun et al., 2013 [14]), TbT (Kadota
et al., 2012 [3]), TMM (Robinson and Oshlack, 2010 [4]), baySeq (Hardcastle and Kelly, 2010
[6]), and edgeR (Robinson et al., 2010 [1]). For details, see section 3.1.1.

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",

+ iteration = 1, samplesize = samplesize)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

151 gene_151 9.735317 -2.737610 4.776270e-11 4.776270e-08 1 1

39 gene_39 7.110977 -2.447505 1.131840e-09 3.779980e-07 2 1

599 gene_599 5.924530 -3.270209 1.133994e-09 3.779980e-07 3 1

68 gene_68 6.210423 -2.859602 6.431526e-09 1.607881e-06 4 1

144 gene_144 7.588298 -2.116988 1.335455e-08 2.297981e-06 5 1

175 gene_175 7.984566 -2.357710 1.378789e-08 2.297981e-06 6 1

4

Case 2: DE analysis for two-group count data with replicates by using the exact test coupled
with iterative DEGES/edgeR normalization (i.e., the iDEGES/edgeR-edgeR combination). This
is an alternative pipeline designed to reduce the runtime (approx. 20 sec.), yet its performance
is comparable to the above pipeline. Accordingly, we recommend using this pipeline as a default
when analyzing tag count data with replicates. A notable advantage of this pipeline is that the
multi-step normalization strategy only needs the methods implemented in the edgeR package.
The suggested citations are as follows: TCC (Sun et al., 2013 [14]), TMM (Robinson and Oshlack,
2010 [4]), the exact test (Robinson and Smyth, 2008 [13]), and edgeR (Robinson et al., 2010 [1]).
For details, see section 3.1.3.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

151 gene_151 9.736785 -2.753816 4.641083e-11 4.641083e-08 1 1

39 gene_39 7.110842 -2.460691 9.115042e-10 3.270783e-07 2 1

599 gene_599 5.927173 -3.282264 9.812348e-10 3.270783e-07 3 1

68 gene_68 6.209395 -2.867694 4.776945e-09 1.194236e-06 4 1

175 gene_175 7.984265 -2.373657 1.082493e-08 1.899827e-06 5 1

144 gene_144 7.588164 -2.130092 1.139896e-08 1.899827e-06 6 1

Case 3: DE analysis for two-group count data without replicates by using the negative bino-
mial (NB) test in DESeq coupled with iDEGES/DESeq normalization (i.e., the iDEGES/DESeq-
DESeq combination). A procedure using the data of the first and fourth columns of hypoData

is shown here. Similar to Case 2, this pipeline entirely consists of methods implemented in the
DESeq package. Suggested citations are as follows: TCC (Sun et al., 2013 [14]) and DESeq (Anders
and Huber, 2010 [8]). For details, see section 3.2.

> library(TCC)

> data(hypoData)

> group <- c(1, 2)

> tcc <- new("TCC", hypoData[,c(1,4)], group)

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "deseq", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

36 gene_36 -0.9988563 -8.525340 0.0002119999 0.2011879 1 0

17 gene_17 5.9635499 -5.470058 0.0064590145 1.0000000 2 0

5 gene_5 3.3084986 -6.499805 0.0184836363 1.0000000 3 0

5

989 gene_989 -0.9988563 -5.839291 0.0252092271 1.0000000 4 0

187 gene_187 3.6973024 5.507222 0.0321082546 1.0000000 5 0

822 gene_822 -0.9988563 5.436833 0.0522752310 1.0000000 6 0

6

2 Preparations

2.1 Reading the count data

Similar to the other packages, TCC typically starts the DE analysis with a count table matrix
where each row indicates a gene (or transcript), each column indicates a sample (or library), and
each cell indicates the number of counts for a gene in a sample. Here, we assume a hypothetical
count matrix consisting of 1,000 rows (or genes) and a total of six columns (the first three columns
are produced from biological replicates of Group 1 and the remaining columns are from Group
2); i.e., {G1 rep1, G1 rep2, G1 rep3} vs. {G2 rep1, G2 rep2, G2 rep3}. We start by loading the
hypothetical data (hypoData) from TCC and giving a numeric vector (group) indicating which
group each sample belongs to.

> library(TCC)

> data(hypoData)

> head(hypoData)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29

gene_2 358 388 22 36 25 68

gene_3 1144 919 990 374 480 239

gene_4 0 0 44 18 0 0

gene_5 98 48 17 1 8 5

gene_6 296 282 216 86 62 69

> dim(hypoData)

[1] 1000 6

> group <- c(1, 1, 1, 2, 2, 2)

If you want to analyze another count matrix consisting of nine columns (e.g., the first four
columns are produced from biological replicates of G1, and the remaining five columns are from
G2), the group vector should be indicated as follows.

> group <- c(1, 1, 1, 1, 2, 2, 2, 2, 2)

2.2 Constructing TCC class object

The new function has to be used to perform the main functionalities of TCC. This function
constructs a TCC class object, and subsequent analyses are performed on this class object. The
object is constructed from i) a count matrix (hypoData) and ii) the corresponding numeric vector
(group) as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc

7

Count:

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29

gene_2 358 388 22 36 25 68

gene_3 1144 919 990 374 480 239

gene_4 0 0 44 18 0 0

gene_5 98 48 17 1 8 5

gene_6 296 282 216 86 62 69

Sample:

group norm.factors lib.sizes

G1_rep1 1 1 142177

G1_rep2 1 1 145289

G1_rep3 1 1 149886

G2_rep1 2 1 112100

G2_rep2 2 1 104107

G2_rep3 2 1 101975

The count matrix and group vector information can be retrieved from the stored class object
by using tcc$count and tcc$group, respectively.

> head(tcc$count)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29

gene_2 358 388 22 36 25 68

gene_3 1144 919 990 374 480 239

gene_4 0 0 44 18 0 0

gene_5 98 48 17 1 8 5

gene_6 296 282 216 86 62 69

> tcc$group

group

G1_rep1 1

G1_rep2 1

G1_rep3 1

G2_rep1 2

G2_rep2 2

G2_rep3 2

The subset of TCC class object can be taken by the subset or "[" functions.

> dim(tcc$count)

[1] 1000 6

8

> tcc.sub1 <- subset(tcc, c(rep(TRUE, 20), rep(FALSE, 980)))

> dim(tcc.sub1$count)

[1] 20 6

> tcc.sub2 <- tcc[1:20]

> dim(tcc.sub2$count)

[1] 20 6

2.3 Filtering low-count genes (optional)

The way to filter out genes with low-count tags across samples depends on the user’s philosophy.
Although we recommend removing tags with zero counts across samples as a minimum filtering,
this effort is optional. The filterLowCountGenes function performs this filtering.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- filterLowCountGenes(tcc)

> dim(tcc$count)

[1] 996 6

It can be seen that 4(= 1000−996) genes were filtered as non-expressed. The same procedure
can be performed without the filterLowCountGenes function, in which case the filtering is
performed before the TCC class object is constructed.

> filter <- as.logical(rowSums(hypoData) > 0)

> dim(hypoData[filter,])

[1] 996 6

> tcc <- new("TCC", hypoData[filter,], group)

> dim(tcc$count)

[1] 996 6

9

3 Normalization

3.1 Normalization of two-group count data with replicates

This package provides robust normalization methods based on DEGES proposed by Kadota et
al. (2012) [3]. When obtaining normalization factors from two-group data with replicates, users
can select a total of six combinations (two normalization methods × three DEG identification
methods) coupled with an arbitrary number of iterations (n = 0, 1, 2, . . . , 100) in our DEGES-
based normalization pipeline. We show some of the practical combinations below.

Since the three-step TbT normalization method was originally designed for normalizing tag
count data with (biological) replicates, we will first explain the TbT method (3.1.1 DEGES/TbT).
In relation to the other DEGES-based methods, we will call the method ”DEGES/TbT” for
convenience. As mentioned in the original study, DEGES/TbT needs a long computation time.
Accordingly, we present three shorter alternatives (3.1.2 DEGES/edgeR, 3.1.3 iDEGES/edgeR,
and 3.1.4 DEGES/DESeq). Note that the purpose here is to obtain accurate normalization factors
to be used with statistical models (e.g., the exact test or empirical Bayes) for the DE analysis
described in the next section (4 Differential expression).

3.1.1 DEGES/TbT

The DEGES/TbT (Kadota et al., 2012 [3]) with default parameter settings can be performed as
follows.

> set.seed(1000)

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",

+ iteration = 1, samplesize = samplesize)

Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the compu-
tation time when performing the empirical Bayesian method in step 2, but a larger sampling size
of around 10, 000 (i.e., samplesize = 10000) is recommended (Hardcastle and Kelly, 2010 [6]).
This method estimates an empirical distribution of the parameters of the NB distribution by
bootstrapping from the input data. While the sampling size can be made smaller to reduce the
computation time (e.g., samplesize = 40), the resulting normalization factors will vary from
trial to trial. In this vignette, we will call the set.seed function for obtaining reproducible
results (i.e., the tcc$norm.factors values) when using any random function. The calculated
normalization factors and the computation time can be retrieved with the following commands.

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8915273 0.8547597 0.8339354 1.0740765 1.1617617 1.1839393

> tcc$DEGES$execution.time

10

user system elapsed

14.32 0.02 14.34

Of course, the procedure can be performed by using functions in edgeR and baySeq, instead
of using the calcNormFators function in TCC. The calcNormFators function together with the
above parameter settings can be regarded as a wrapper function for the following commands.

> set.seed(1000)

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> ### STEP 1 ###

> d <- DGEList(count = hypoData, group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors

> norm.factors <- norm.factors / mean(norm.factors)

> ### STEP 2 ###

> cD <- new("countData", data = hypoData, replicates = group,

+ groups = list(NDE = rep(1, length = length(group)), DE = group),

+ libsizes = colSums(hypoData) * norm.factors)

> cD <- getPriors.NB(cD, samplesize = samplesize, estimation = "QL", cl = NULL)

> cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

.

> is.DEG <- as.logical(rank(-cD@posteriors[, "DE"]) <

+ (nrow(hypoData) * cD@estProps[2]))

> ### STEP 3 ###

> d <- DGEList(count = hypoData[!is.DEG,], group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG,]) /

+ colSums(hypoData)

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8915273 0.8547597 0.8339354 1.0740765 1.1617617 1.1839393

3.1.2 DEGES/edgeR

Now let us describe an alternative approach that is roughly 200-400 times faster than DEGES/TbT,
yet has comparable performance. The TMM-edgeR-TMM pipeline (called DEGES/edgeR) em-
ploys the exact test implemented in edgeR in step 2. To use this pipeline, we have to provide a
reasonable threshold for defining potential DEGs in step 2. We will define the threshold as an
arbitrary false discovery rate (FDR) with a floor value of PDEG. The default FDR is < 0.1, and
the default floor PDEG is 5%, but different choices are of course possible. For example, in case of
the default settings, x%(x > 5%) of the top-ranked potential DEGs are eliminated in step 2 if
the percentage (= x%) of genes satisfying FDR < 0.1 is over 5%. The DEGES/edgeR pipeline
has an apparent advantage over TbT in computation time. It can be performed as follows:

11

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8745111 0.8449577 0.8406663 1.0806355 1.1514213 1.2078082

> tcc$DEGES$execution.time

user system elapsed

0.53 0.00 0.53

The normalization factors calculated from the DEGES/edgeR are very similar to those of
DEGES/TbT with the default parameter settings (i.e., samplesize = 10000). For edgeR users,
we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline
without TCC. The calcNormFators function together with the above parameter settings can be
regarded as a wrapper function for the following commands.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> d <- DGEList(counts = hypoData, group = group)

> ### STEP 1 ###

> d <- calcNormFactors(d)

> ### STEP 2 ###

> d <- estimateCommonDisp(d)

> d <- estimateTagwiseDisp(d)

> result <- exactTest(d)

> q.value <- p.adjust(result$table$PValue, method = "BH")

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$table$PValue, ties.method = "min") <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### STEP 3 ###

> d <- DGEList(counts = hypoData[!is.DEG,], group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG,]) /

+ colSums(hypoData)

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

12

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8745111 0.8449577 0.8406663 1.0806355 1.1514213 1.2078082

3.1.3 iDEGES/edgeR

Our multi-step normalization can be repeated until the calculated normalization factors converge
(Kadota et al., 2012 [3]). An iterative version of DEGES/TbT (i.e., iDEGES/TbT) can be
described as the TMM-(baySeq-TMM)n pipeline with n ≥ 2. Although the iDEGES/TbT
would not be practical in terms of the computation time, the TMM-(edgeR-TMM)n pipeline
(iDEGES/edgeR) is potentially superior to both the DEGES/edgeR and the DEGES/TbT. A
suggested iDEGES/edgeR implementation (n = 3) consists of seven steps, as follows:

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8766053 0.8450605 0.8346595 1.0842097 1.1538160 1.2056491

> tcc$DEGES$execution.time

user system elapsed

1.62 0.00 1.62

3.1.4 DEGES/DESeq

The DEGES pipeline can also be performed by using only the functions in the DESeq package.
Similar to the edgeR case above, this DESeq-DESeq-DESeq pipeline (DEGES/DESeq) changes the
corresponding arguments of the norm.method and test.method as follows:

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351

> tcc$DEGES$execution.time

13

user system elapsed

1.15 0.00 1.15

For DESeq users, we also provide commands, consisting of functions in DESeq, to perform
the DEGES/DESeq pipeline without TCC. The calcNormFators function together with the above
arguments can be regarded as a wrapper function for the following commands.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> cds <- newCountDataSet(hypoData, group)

> ### STEP 1 ###

> cds <- estimateSizeFactors(cds)

> ### STEP 2 ###

> cds <- estimateDispersions(cds)

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> result$padj[is.na(result$padj)] <- 1

> q.value <- result$padj

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### STEP 3 ###

> cds <- newCountDataSet(hypoData[!is.DEG,], group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(hypoData)

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351

3.2 Normalization of two-group count data without replicates

It is important to keep in mind that most R packages (including edgeR, DESeq, and baySeq) are
primarily for analyzing data including biological replications because the biological variability
has to be accurately estimated to avoid spurious DE calls (Glaus et al., 2012 [10]). In fact,
the functions for the DEG identification method implemented in edgeR (i.e., the exact test; ver.
3.0.4) do not allow analysis without replicates, though the TMM normalization method in the
package can be applied to data regardless of whether it has replicates. Although the edgeR

manual provides users with some ideas on how to perform the DE analysis, it is difficult to
customize the analysis with DEGES to data without replicates.

When obtaining normalization factors from two-group count data without replicates, users
can select a total of four combinations (two normalization methods × two DEG identification

14

methods) coupled with an arbitrary number of iterations (n = 0, 1, 2, . . . , 100) in our DEGES-
based normalization pipeline. That is, the calcNormFators function with the norm.method =

"deseq" or "tmm" and test.method = "deseq" or "bayseq" can be indicated. Let us explain
the procedure by retrieving the data of the first and the fourth columns of hypoData, i.e.,

> library(TCC)

> data(hypoData)

> group <- c(1, 2)

> tcc <- new("TCC", hypoData[, c(1, 4)], group)

> head(tcc$count)

G1_rep1 G2_rep1

gene_1 34 16

gene_2 358 36

gene_3 1144 374

gene_4 0 18

gene_5 98 1

gene_6 296 86

> tcc$group

group

G1_rep1 1

G2_rep1 2

A DEGES pipeline (DEGES/DESeq) for obtaining normalization factors is as follows.

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

G1_rep1 G2_rep1

0.921658 1.078342

An advantage of this DEGES/DESeq pipeline is that the multi-step normalization strategy
only needs the methods in the DESeq package. These factors should be the same as those produced
by the following procedure consisting of functions implemented in DESeq.

> library(TCC)

> data(hypoData)

> group <- c(1, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> cds <- newCountDataSet(hypoData[, c(1, 4)], group)

> ### STEP 1 ###

> cds <- estimateSizeFactors(cds)

> ### STEP 2 ###

> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")

15

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> result$padj[is.na(result$padj)] <- 1

> q.value <- result$padj

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### STEP 3 ###

> cds <- newCountDataSet(hypoData[!is.DEG, c(1, 4)], group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(hypoData[, c(1, 4)])

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

G1_rep1 G2_rep1

0.921658 1.078342

3.3 Normalization of multi-group count data with replicates

Many R packages (including edgeR, DESeq, and baySeq) support DE analysis for multi-group
tag count data. TCC provides some prototypes of DEGES-based pipelines for such data. Here,
we analyze another hypothetical three-group count matrix, the hypoData_mg object, provided in
TCC. It consists of 1, 000 genes and a total of nine columns for testing any difference among three
groups that each have triplicates.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> tcc

Count:

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2 G3_rep3

gene_1 63 48 31 15 12 12 24 15 14

gene_2 18 0 7 2 3 8 3 5 2

gene_3 106 66 25 9 14 14 11 11 3

gene_4 4 9 6 1 6 1 0 2 2

gene_5 0 1 2 1 0 1 0 0 1

gene_6 57 100 83 20 5 16 26 7 21

Sample:

group norm.factors lib.sizes

G1_rep1 1 1 150490

G1_rep2 1 1 166665

G1_rep3 1 1 199283

16

G2_rep1 2 1 183116

G2_rep2 2 1 126651

G2_rep3 2 1 131377

G3_rep1 3 1 149828

G3_rep2 3 1 150288

G3_rep3 3 1 141702

> dim(tcc$count)

[1] 1000 9

Of the 1, 000 genes, the first 200 genes are DEGs and the remaining 800 genes are non-
DEGs. The breakdowns for the 200 DEGs are as follows: 140, 40, and 20 DEGs are up-regulated
in Groups 1, 2, and 3. Below, we show some DEGES-based normalization pipelines for this
multi-group data (3.3.1 DEGES/TbT, 3.3.2 DEGES/edgeR, and 3.3.3 DEGES/DESeq).

3.3.1 DEGES/TbT

The DEGES/TbT pipeline for multi-group data is essentially the same as those for two-group
data with/without replicates. Note that a smaller sampling size (i.e., samplesize = 100) is
used here to reduce the computation time, but a larger sampling size of around 10, 000 (i.e.,
samplesize = 10000) is recommended (Hardcastle and Kelly, 2010 [6]).

> set.seed(1000)

> library(TCC)

> data(hypoData_mg)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",

+ iteration = 1, samplesize = samplesize)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

1.0369575 0.9165584 0.7861750 0.8229178 1.1755355 1.1965579 1.0224641 1.0227613

G3_rep3

1.0200725

3.3.2 DEGES/edgeR

edgeR employs generalized linear models (GLMs) to find DEGs between any of the groups. The
DEGES/edgeR normalization pipeline in TCC internally uses functions for the GLM approach
that require two models (a full model and a null model). The full model corresponds to a design
matrix to describe sample groups. The null model corresponds to the model coefficients. The
two models can be defined as follows:

17

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> design <- model.matrix(~ as.factor(group))

> coef <- 2:length(unique(group))

The design matrix (design) can be constructed by using the model.matrix function. For
the model coefficients (coef), the user should specify all the coefficients except for the intercept
term. The two models (design and coef) will automatically be generated when performing the
following calcNormFactors function if those models are not explicitly indicated.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

1.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848

G3_rep3

1.0182572

For edgeR users, we provide commands, consisting of functions in edgeR, to perform the
DEGES/edgeR pipeline without TCC. The calcNormFators function together with the above
parameter settings can be regarded as a wrapper function for the following commands.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> FDR <- 0.1

> floorPDEG <- 0.05

> design <- model.matrix(~ as.factor(group))

> coef <- 2:length(unique(group))

> d <- DGEList(counts = hypoData_mg, group = group)

> ### STEP 1 ###

> d <- calcNormFactors(d)

> ### STEP 2 ###

> d <- estimateGLMCommonDisp(d, design)

> d <- estimateGLMTrendedDisp(d, design)

> d <- estimateGLMTagwiseDisp(d, design)

> fit <- glmFit(d, design)

> lrt <- glmLRT(fit, coef = coef)

> result <- topTags(lrt, n = nrow(hypoData_mg))

> result <- result$table[rownames(hypoData_mg),]

> if (sum(result$FDR < FDR) > (floorPDEG * nrow(hypoData_mg))) {

+ is.DEG <- as.logical(result$FDR < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$PValue, ties.method = "min") <=

+ nrow(hypoData_mg) * floorPDEG)

+ }

18

> ### STEP 3 ###

> d <- DGEList(counts = hypoData_mg[!is.DEG,], group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors * colSums(hypoData_mg[!is.DEG,]) /

+ colSums(hypoData_mg)

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

1.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848

G3_rep3

1.0182572

3.3.3 DEGES/DESeq

DESeq also employs GLMs for analyzing multi-group experiments. Similar to the edgeR package,
it requires two models (full model and reduced model). The full model (fit1) and reduced model
(fit0) can be created as follows:

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> fit1 <- count ~ condition

> fit0 <- count ~ 1

The two models (fit1 and fit0) will automatically be generated when performing the fol-
lowing calcNormFactors function if those models are not explicitly indicated.

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1)

> tcc$norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

1.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697

G3_rep3

1.0602121

For DESeq users, we provide commands, consisting of functions in DESeq, to perform the
DEGES/ DESeq pipeline without TCC. The calcNormFators function together with the above
parameter settings can be regarded as a wrapper function for the following commands.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> FDR <- 0.1

> floorPDEG <- 0.05

> tcc <- new("TCC", hypoData_mg, group)

> fit1 <- count ~ condition

19

> fit0 <- count ~ 1

> cds <- newCountDataSet(hypoData_mg, group)

> ### STEP 1 ###

> cds <- estimateSizeFactors(cds)

> ### STEP 2 ###

> cds <- estimateDispersions(cds)

> reduced.model <- fitNbinomGLMs(cds, fit0)

.

> full.model <- fitNbinomGLMs(cds, fit1)

.

> p.value <- nbinomGLMTest(full.model, reduced.model)

> p.value[is.na(p.value)] <- 1

> q.value <- p.adjust(p.value, method = "BH")

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData_mg))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(p.value, ties.method = "min") <=

+ nrow(hypoData_mg) * floorPDEG)

+ }

> ### STEP 3 ###

> cds <- newCountDataSet(hypoData_mg[!is.DEG,], group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(hypoData_mg)

> norm.factors <- norm.factors / mean(norm.factors)

> norm.factors

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

1.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697

G3_rep3

1.0602121

3.4 Retrieving normalized data

Similar functions for calculating normalization factors are the calcNormFators function in edgeR

and the estimateSizeFactors function in DESeq. Note that the terminology used in DESeq

(i.e., size factors) is different from that used in edgeR (i.e., effective library sizes) and ours. The
effective library size in edgeR is calculated as the library size multiplied by the normalization
factor. The size factors in the DESeq package are comparable to the normalized effective library
sizes wherein the summary statistics for the effective library sizes are adjusted to one. Our
normalization factors, which can be obtained from tcc$norm.factors, have the same names as
those in edgeR. Accordingly, the normalization factors calculated from TCC with arbitrary options
should be manipulated together with the library sizes when normalized read counts are to be

20

obtained. Since biologists are often interested in such information (Dillies et al., 2012 [2]), we
provide the getNormalizedData function for retrieving normalized data.

Note that the hypoData consists of 1, 000 genes and a total of six samples (three biological
replicates for G1 and three biological replicates for G2); i.e., {G1 rep1, G1 rep2, G1 rep3} vs.
{G2 rep1, G2 rep2, G2 rep3}. These simulation data have basically the same conditions as
shown in Fig. 1 of the TbT paper (Kadota et al., 2012 [3]); i.e., (i) the first 200 genes are
DEGs (PDEG = 200/1000 = 20%), (ii) the first 180 genes of the 200 DEGs are higher in G1
(PG1 = 180/200 = 90%), and the remaining 20 DEGs are higher in G2, and (iii) the level of
DE is four-fold. The last 800 genes were designed to be non-DEGs. The different normalization
strategies can roughly be evaluated in terms of the similarity of their summary statistics for
normalized data labeled as non-DEGs in one group (e.g., G1) to those of the other group (e.g.,
G2). The basic statistics for the non-DEGs are as follows.

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> summary(hypoData[nonDEG,])

G1_rep1 G1_rep2 G1_rep3 G2_rep1

Min. : 0.00 Min. : 0 Min. : 0.00 Min. : 0.0

1st Qu.: 3.00 1st Qu.: 4 1st Qu.: 3.00 1st Qu.: 3.0

Median : 20.50 Median : 20 Median : 20.00 Median : 21.0

Mean : 103.36 Mean : 105 Mean : 104.45 Mean : 113.8

3rd Qu.: 74.25 3rd Qu.: 68 3rd Qu.: 73.25 3rd Qu.: 68.0

Max. :8815.00 Max. :9548 Max. :8810.00 Max. :9304.0

G2_rep2 G2_rep3

Min. : 0 Min. : 0.0

1st Qu.: 3 1st Qu.: 3.0

Median : 21 Median : 20.0

Mean : 105 Mean : 104.6

3rd Qu.: 70 3rd Qu.: 70.0

Max. :9466 Max. :9320.0

From now on, we will display only the median values for simplicity, i.e.,

> apply(hypoData[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

20.5 20.0 20.0 21.0 21.0 20.0

In what follows, we show detailed examples using hypoData. Note, however, that the basic
usage is simple.

> normalized.count <- getNormalizedData(tcc)

21

3.4.1 Retrieving two-group DEGES/edgeR-normalized data with replicates

The getNormalizedData function can be applied to the TCC class object after the normalization
factors have been calculated.

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

20.26002 20.01902 19.50410 21.30174 21.52711 19.95349

The same procedure consisting of functions in edgeR is

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> d <- DGEList(counts = hypoData, group = group)

> ### Step 1 ###

> d <- calcNormFactors(d)

> ### Step 2 ###

> d <- estimateCommonDisp(d)

> d <- estimateTagwiseDisp(d)

> result <- exactTest(d)

> q.value <- p.adjust(result$table$PValue, method = "BH")

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(order(rank(result$table$PValue)) <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### Step 3 ###

> d <- DGEList(counts = hypoData[!is.DEG,], group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors * colSums(hypoData[!is.DEG,]) /

+ colSums(hypoData)

> norm.factors <- norm.factors / mean(norm.factors)

> effective.libsizes <- colSums(hypoData) * norm.factors

> normalized.count <- sweep(hypoData, 2,

+ mean(effective.libsizes) / effective.libsizes, "*")

> apply(normalized.count[nonDEG,], 2, median)

22

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

20.26002 20.01902 19.50410 21.30174 21.52711 19.95349

It is obvious that the summary statistics (ranging from 19.50410 to 21.52711) from DEGES/edgeR-
normalized data are close to the truth (i.e., ranging from 20.0 to 21.0). For comparison, the
summary statistics for TMM-normalized data produced using the original normalization method
(i.e., TMM) in edgeR are obtained as follows.

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2)

> d <- DGEList(count = hypoData, group = group)

> d <- calcNormFactors(d)

> norm.factors <- d$samples$norm.factors

> norm.factors <- norm.factors / mean(norm.factors)

> effective.libsizes <- colSums(hypoData) * norm.factors

> normalized.count <- sweep(hypoData, 2,

+ mean(effective.libsizes) / effective.libsizes, "*")

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

19.35893 19.01078 18.59060 22.98591 22.16273 21.00685

This is the same as

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

19.35893 19.01078 18.59060 22.98591 22.16273 21.00685

From the viewpoint of the data distribution of non-DEGs, these statistics (ranging from
18.59060 to 22.98591) are not as good as those of DEGES/edgeR.

3.4.2 Retrieving two-group DEGES/DESeq-normalized data with replicates

Similar to the DEGES/edgeR case, DEGES/DESeq-normalized data can be retrieved as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> nonDEG <- 201:1000

> tcc <- new("TCC", hypoData, group)

23

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

19.98051 19.23724 19.79865 21.56052 21.57241 20.47685

The same procedure consisting of functions in DESeq is

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> cds <- newCountDataSet(hypoData, group)

> ### Step 1 ###

> cds <- estimateSizeFactors(cds)

> ### Step 2 ###

> cds <- estimateDispersions(cds)

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> result$padj[is.na(result$padj)] <- 1

> q.value <- result$padj

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### Step 3 ###

> cds <- newCountDataSet(hypoData[!is.DEG,], group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(hypoData)

> norm.factors <- norm.factors / mean(norm.factors)

> effective.libsizes <- colSums(hypoData) * norm.factors

> normalized.count <- sweep(hypoData, 2,

+ mean(effective.libsizes) / effective.libsizes, "*")

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

19.98051 19.23724 19.79865 21.56052 21.57241 20.47685

3.4.3 Retrieving two-group DEGES/DESeq-normalized data without replicates

Similar to the case of count data with replicates, the DEGES/DESeq-normalized data without
replicates can be retrieved as follows.

24

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 2)

> tcc <- new("TCC", hypoData[, c(1, 4)], group)

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G2_rep1

19.70555 21.88220

The same procedure consisting of functions in DESeq is

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 2)

> FDR <- 0.1

> floorPDEG <- 0.05

> cds <- newCountDataSet(hypoData[,c(1, 4)], group)

> ### Step 1 ###

> cds <- estimateSizeFactors(cds)

> ### Step 2 ###

> cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> result$padj[is.na(result$padj)] <- 1

> q.value <- result$padj

> if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {

+ is.DEG <- as.logical(q.value < FDR)

+ } else {

+ is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=

+ nrow(hypoData) * floorPDEG)

+ }

> ### Step 3 ###

> cds <- newCountDataSet(hypoData[!is.DEG, c(1, 4)], group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(hypoData[, c(1, 4)])

> norm.factors <- norm.factors / mean(norm.factors)

> effective.libsizes <- colSums(hypoData[, c(1, 4)]) * norm.factors

> normalized.count <- sweep(hypoData[, c(1, 4)], 2,

+ mean(effective.libsizes) / effective.libsizes, "*")

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G2_rep1

19.70555 21.88220

25

The above summary statistics from DEGES/DESeq-normalized data are closer to the truth
(i.e., 20.5 for G1 rep1 and 21.0 for G2 rep1) than are the following summary statistics from data
normalized using the original normalization method implemented in DESeq.

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> group <- c(1, 2)

> cds <- newCountDataSet(hypoData[, c(1, 4)], group)

> cds <- estimateSizeFactors(cds)

> normalized.count <- counts(cds, normalized = TRUE)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G2_rep1

19.40717 22.18253

3.4.4 Retrieving multi-group iDEGES/edgeR-normalized data with replicates

Here, we analyze another hypothetical three-group count matrix, the hypoData_mg object, pro-
vided in TCC. It consists of 1, 000 genes and a total of nine columns for testing any difference
among three groups that each have triplicates. Similar to the hypoData object, the first 200 genes
are DEGs and the remaining 800 genes are non-DEGs. The basic statistics for the non-DEGs
are as follows.

> library(TCC)

> data(hypoData_mg)

> nonDEG <- 201:1000

> summary(hypoData_mg[nonDEG,])

G1_rep1 G1_rep2 G1_rep3 G2_rep1

Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0

1st Qu.: 2.00 1st Qu.: 2.0 1st Qu.: 2.0 1st Qu.: 2.0

Median : 14.00 Median : 13.0 Median : 14.5 Median : 13.0

Mean : 135.41 Mean : 150.5 Mean : 190.6 Mean : 199.4

3rd Qu.: 51.25 3rd Qu.: 53.0 3rd Qu.: 55.0 3rd Qu.: 52.0

Max. :27218.00 Max. :27987.0 Max. :66273.0 Max. :75148.0

G2_rep2 G2_rep3 G3_rep1 G3_rep2

Min. : 0.00 Min. : 0.0 Min. : 0 Min. : 0.0

1st Qu.: 2.00 1st Qu.: 2.0 1st Qu.: 2 1st Qu.: 2.0

Median : 13.00 Median : 14.0 Median : 14 Median : 15.0

Mean : 132.53 Mean : 138.4 Mean : 164 Mean : 166.2

3rd Qu.: 52.25 3rd Qu.: 55.0 3rd Qu.: 52 3rd Qu.: 55.0

Max. :22381.00 Max. :24979.0 Max. :49398 Max. :49709.0

G3_rep3

Min. : 0.0

1st Qu.: 2.0

Median : 15.0

Mean : 152.1

3rd Qu.: 50.0

Max. :39299.0

26

From now on, we will display only the median values for simplicity, i.e.,

> apply(hypoData_mg[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2 G3_rep3

14.0 13.0 14.5 13.0 13.0 14.0 14.0 15.0 15.0

The iDEGES/edgeR-normalized data can be retrieved as follows.

> library(TCC)

> data(hypoData_mg)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> design <- model.matrix(~ as.factor(group))

> coef <- 2:length(unique(group))

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

13.88374 13.22872 14.08230 13.01186 13.24126 13.75022 14.22157 14.76685

G3_rep3

15.30593

> range(apply(normalized.count[nonDEG,], 2, median))

[1] 13.01186 15.30593

For comparison, the summary statistics for TMM-normalized data produced using the original
normalization method (i.e., TMM) in edgeR are obtained as follows.

> library(TCC)

> data(hypoData_mg)

> nonDEG <- 201:1000

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count[nonDEG,], 2, median)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3 G3_rep1 G3_rep2

13.46685 12.55871 13.42509 13.14068 13.52699 13.84316 14.20297 15.38684

G3_rep3

16.25185

27

> range(apply(normalized.count[nonDEG,], 2, median))

[1] 12.55871 16.25185

It is obvious that the summary statistics (ranging from 13.01186 to 15.30593) from iDEGES/edgeR-
normalized data are closer to the truth (i.e., ranging from 13.0 to 15.0) than those (ranging from
12.55871 to 16.25185) from TMM-normalized data.

28

4 Differential expression (DE)

The particular feature of TCC is that it calculates robust normalization factors. Moreover, end
users would like to have some accessory functions for subsequent analyses. Here, we provide
the estimateDE function for identifying DEGs. Specifically, the function internally uses the
corresponding functions implemented in three packages: exactTest in edgeR, nbinomTest in
DESeq, and getLikelihoods.NB in baySeq. Similar to the usage in the calcNormFators function
with the test.method argument in TCC, those DE methods in edgeR, DESeq, and baySeq can
be performed by using the estimateDE function with test.method = "edger", "deseq", and
"bayseq", respectively. Here, we show some examples of DE analysis for two-group data with
replicates (4.1), two-group data without replicates (4.2), and multi-group data with replicates
(4.3).

4.1 DE analysis for two-group data with replicates

4.1.1 edgeR coupled with iDEGES/edgeR normalization

We give a procedure for DE analysis using the exact test implemented in edgeR together with
iDEGES/edgeR normalization factors (i.e., the iDEGES/edgeR-edgeR combination) for the hy-
pothetical two-group count data with replicates (i.e., the hypoData object). If the user wants to
determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

The results of the DE analysis are stored in the TCC class object. The summary statistics for
top-ranked genes can be retrieved by using the getResult function.

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

151 gene_151 9.736785 -2.753816 4.641083e-11 4.641083e-08 1 1

39 gene_39 7.110842 -2.460691 9.115042e-10 3.270783e-07 2 1

599 gene_599 5.927173 -3.282264 9.812348e-10 3.270783e-07 3 1

68 gene_68 6.209395 -2.867694 4.776945e-09 1.194236e-06 4 1

175 gene_175 7.984265 -2.373657 1.082493e-08 1.899827e-06 5 1

144 gene_144 7.588164 -2.130092 1.139896e-08 1.899827e-06 6 1

The DE results can be broken down as follows.

> table(tcc$estimatedDEG)

0 1

854 146

29

This means 854 non-DEGs and 146 DEGs satisfy FDR < 0.1. The plot function generates an
M-A plot, where ”M”indicates the log-ratio (i.e., M = log2G2−log2G1) and ”A”indicates average
read count (i.e., A = (log2G2+ log2G1)/2), from the normalized count data. The magenta points
indicate the identified DEGs at FDR < 0.1.

> plot(tcc)

4.1.2 baySeq coupled with iDEGES/edgeR normalization

If the user wants to employ the empirical Bayesian method in baySeq together with iDEGES/edgeR
normalization factors (i.e., the iDEGES/edgeR-baySeq combination), one can do as follows.

> set.seed(1000)

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "bayseq",

30

+ FDR = 0.1, samplesize = samplesize)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

168 gene_168 8.903341 -1.968787 9.116026e-08 9.116026e-08 1 1

115 gene_115 8.903382 -1.947266 2.149005e-07 1.530304e-07 2 1

171 gene_171 8.795243 -2.267941 1.231974e-05 4.208601e-06 3 1

176 gene_176 9.013616 -1.999303 7.236392e-05 2.124743e-05 4 1

144 gene_144 7.588164 -2.130092 1.221492e-04 4.142779e-05 5 1

3 gene_3 9.251797 -1.446596 1.424981e-04 5.827284e-05 6 1

> table(tcc$estimatedDEG)

0 1

868 132

Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the com-
putation time, but a larger sampling size of around 10, 000 (i.e., samplesize = 10000) is rec-
ommended (Hardcastle and Kelly, 2010 [6]). Note also that baySeq outputs posterior likeli-
hoods instead of the p-values obtained from edgeR and DESeq. The p-value column stores the
(1 − likelihood) values when the estimateDE function is executed with the empirical Bayes in
baySeq. Now let us describe an alternative procedure for baySeq users that corresponds to
the estimateDE function. The likelihood values and p-values (calculated as 1− likelihood) are
retrieved as follows.

> set.seed(1000)

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> effective.libsizes <- colSums(tcc$count) * tcc$norm.factors

> groups <- list(NDE = rep(1, length(group)), DE = group)

> cD <- new("countData", data = tcc$count, replicates = group,

+ libsizes = effective.libsizes, groups = groups)

> cD <- getPriors.NB(cD, samplesize = samplesize,

+ estimation = "QL", cl = NULL)

> cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

.

> tmp <- topCounts(cD, group = "DE", number = nrow(tcc$count))

> tmp <- tmp[rownames(tcc$count),]

> p.value <- 1 - tmp$Likelihood

31

> q.value <- tmp$FDR

> result <- cbind(p.value, q.value)

> rownames(result) <- rownames(tmp)

> head(result)

p.value q.value

gene_1 0.5941146695 1.703518e-01

gene_2 0.7239975980 2.524021e-01

gene_3 0.0001424981 5.827284e-05

gene_4 0.9840748601 7.820015e-01

gene_5 0.3871351956 1.041083e-01

gene_6 0.0023301598 8.574920e-04

4.2 DE analysis for two-group data without replicates

As described previously, the functions for the DEG identification method implemented in edgeR

(i.e., the exact test; ver. 3.0.4) do not allow analysis without replicates. Currently, the esti-

mateDE function only allows the "deseq" or "bayseq" options for the test.method argument.
Here, we show a procedure for DE analysis using the NB test implemented in DESeq together
with iDEGES/DESeq normalization factors (i.e., the iDEGES/DESeq-DESeq combination) for the
hypothetical two-group count data without replicates (i.e., the hypoData[, c(1, 4)] object).
If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can
do as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 2)

> tcc <- new("TCC", hypoData[, c(1, 4)], group)

> head(tcc$count)

G1_rep1 G2_rep1

gene_1 34 16

gene_2 358 36

gene_3 1144 374

gene_4 0 18

gene_5 98 1

gene_6 296 86

> tcc$group

group

G1_rep1 1

G2_rep1 2

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

32

G1_rep1 G2_rep1

0.9211464 1.0788536

> tcc <- estimateDE(tcc, test.method = "deseq",

+ FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

36 gene_36 -0.9988563 -8.525340 0.0002119999 0.2011879 1 0

17 gene_17 5.9635499 -5.470058 0.0064590145 1.0000000 2 0

5 gene_5 3.3084986 -6.499805 0.0184836363 1.0000000 3 0

989 gene_989 -0.9988563 -5.839291 0.0252092271 1.0000000 4 0

187 gene_187 3.6973024 5.507222 0.0321082546 1.0000000 5 0

822 gene_822 -0.9988563 5.436833 0.0522752310 1.0000000 6 0

> table(tcc$estimatedDEG)

0

1000

It can be seen that there is no DEG having FDR < 0.1.

4.3 DE analysis for multi-group data with replicates

Here, we give three examples of DE analysis coupled with DEGES/edgeR normalization for the
hypothetical three-group data with replicates, i.e., the hypoData_mg object. The use of the
DEGES/edgeR normalization factors is simply for reducing the computation time.

4.3.1 baySeq coupled with DEGES/edgeR normalization

The empirical Bayesian method implemented in baySeq after executing the DEGES/edgeR nor-
malization (i.e., the DEGES/edgeR-baySeq combination) can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> set.seed(1000)

> samplesize <- 100

> tcc <- estimateDE(tcc, test.method = "bayseq",

+ FDR = 0.1, samplesize = samplesize)

> result <- getResult(tcc, sort = TRUE)

> head(result)

33

gene_id a.value m.value p.value q.value rank estimatedDEG

27 gene_27 NA NA 1.089807e-07 1.089807e-07 1 1

179 gene_179 NA NA 1.377257e-07 1.233532e-07 2 1

134 gene_134 NA NA 1.999990e-07 1.489018e-07 3 1

194 gene_194 NA NA 3.274252e-07 1.935327e-07 4 1

169 gene_169 NA NA 2.120088e-06 5.788437e-07 5 1

74 gene_74 NA NA 4.835544e-06 1.288294e-06 6 1

> table(tcc$estimatedDEG)

0 1

896 104

It can be seen that the baySeq method identified 104 DEGs having FDR < 0.1. One can
obtain the number of DEGs with another threshold (e.g., FDR < 0.2) from the result object as
follows.

> sum(result$q.value < 0.2)

[1] 131

For baySeq users, we provide commands, consisting of functions in baySeq, to perform the
DEG identification without the function in TCC. The estimateDE function with test.method =

"bayseq" can be regarded as a wrapper function for the following commands after the DEGES/edgeR
normalization.

> set.seed(1000)

> samplesize <- 100

> effective.libsizes <- colSums(tcc$count) * tcc$norm.factors

> groups <- list(NDE = rep(1, length(group)), DE = group)

> cD <- new("countData", data = tcc$count, replicates = group,

+ libsizes = effective.libsizes, groups = groups)

> cD <- getPriors.NB(cD, samplesize = samplesize,

+ estimation = "QL", cl = NULL)

> cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

.

> tmp <- topCounts(cD, group = "DE", number = nrow(tcc$count))

> tmp <- tmp[rownames(tcc$count),]

> p.value <- 1 - tmp$Likelihood

> q.value <- tmp$FDR

> result <- cbind(p.value, q.value)

> rownames(result) <- rownames(tmp)

> head(result)

34

p.value q.value

gene_1 0.22275288 0.04643278

gene_2 0.97564403 0.62790167

gene_3 0.07028071 0.01413496

gene_4 0.94708066 0.50800029

gene_5 0.99236244 0.77185161

gene_6 0.11824641 0.02784658

> sum(q.value < 0.1)

[1] 104

> sum(q.value < 0.2)

[1] 131

4.3.2 edgeR coupled with DEGES/edgeR normalization

The exact test implemented in edgeR after executing the DEGES/edgeR normalization (i.e., the
DEGES/edgeR-edgeR combination) can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

56 gene_56 NA NA 2.088289e-13 6.378767e-11 1 1

64 gene_64 NA NA 2.368722e-13 6.378767e-11 2 1

27 gene_27 NA NA 2.494570e-13 6.378767e-11 3 1

121 gene_121 NA NA 2.551507e-13 6.378767e-11 4 1

126 gene_126 NA NA 6.579178e-13 1.315836e-10 5 1

83 gene_83 NA NA 7.416750e-12 1.236125e-09 6 1

> table(tcc$estimatedDEG)

0 1

829 171

35

Note that these DEGs having FDR < 0.1 display DE between any of the groups because
the two arguments indicated here (design and coef) correspond to an AVOVA-like test for any
differences provided in edgeR, i.e.,

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> design <- model.matrix(~ as.factor(group))

> coef <- 2:length(unique(group))

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> d <- DGEList(tcc$count, group = group)

> d$samples$norm.factors <- tcc$norm.factors

> d <- estimateGLMCommonDisp(d, design)

> d <- estimateGLMTrendedDisp(d, design)

> d <- estimateGLMTagwiseDisp(d, design)

> fit <- glmFit(d, design)

> lrt <- glmLRT(fit, coef = coef)

> tmp <- topTags(lrt, n = nrow(tcc$count))

> p.value <- tmp$table$PValue

> q.value <- tmp$table$FDR

> result <- cbind(p.value, q.value)

> rownames(result) <- rownames(tmp)

> head(result)

p.value q.value

gene_56 2.088289e-13 6.378767e-11

gene_64 2.368722e-13 6.378767e-11

gene_27 2.494570e-13 6.378767e-11

gene_121 2.551507e-13 6.378767e-11

gene_126 6.579178e-13 1.315836e-10

gene_83 7.416750e-12 1.236125e-09

> sum(q.value < 0.1)

[1] 171

> sum(q.value < 0.2)

[1] 208

As described in the edgeR manual, the second and third columns in the design object are
relative to the baseline (i.e., Group 1 or G1): coef = 2 means G2 vs. G1 and coef = 3 means G3
vs. G1. The above procedure with the coef object (i.e., 2:length(unique(group))) indicates

36

the both comparisons (i.e., G2 vs. G1 and G3 vs. G1) and identifies DEGs between any of the
three groups. In other words, one can do any two-group comparison of interest from multi-group
data with replicates. For example, the DE analysis for G3 vs. G1 together with DEGES/edgeR
normalization can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> coef <- 3

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1, coef = coef)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

126 gene_126 NA NA 1.869121e-10 1.869121e-07 1 1

56 gene_56 NA NA 5.600857e-10 2.800428e-07 2 1

121 gene_121 NA NA 1.099748e-09 3.126964e-07 3 1

27 gene_27 NA NA 1.250786e-09 3.126964e-07 4 1

64 gene_64 NA NA 2.867280e-09 5.734559e-07 5 1

112 gene_112 NA NA 8.166684e-09 1.361114e-06 6 1

> table(tcc$estimatedDEG)

0 1

884 116

4.3.3 DESeq coupled with DEGES/edgeR normalization

The NB test implemented in DESeq after executing the DEGES/edgeR normalization (i.e., the
DEGES/edgeR-DESeq combination) can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> fit1 <- count ~ condition

> fit0 <- count ~ 1

> tcc <- estimateDE(tcc, test.method = "deseq",

+ FDR = 0.1, fit0 = fit0, fit1 = fit1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

37

gene_id a.value m.value p.value q.value rank estimatedDEG

126 gene_126 NA NA 3.100853e-13 3.100853e-10 1 1

63 gene_63 NA NA 1.775390e-10 8.876949e-08 2 1

27 gene_27 NA NA 2.703793e-08 9.012645e-06 3 1

176 gene_176 NA NA 5.679543e-08 1.419886e-05 4 1

121 gene_121 NA NA 8.783653e-08 1.756731e-05 5 1

83 gene_83 NA NA 1.255741e-07 1.840819e-05 6 1

> table(tcc$estimatedDEG)

0 1

872 128

For DESeq users, we provide commands, consisting of functions in DESeq, to perform the DEG
identification without the function in TCC. The estimateDE function with test.method = "de-

seq" can be regarded as a wrapper function for the following commands after the DEGES/edgeR
normalization.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> ### DE analysis ###

> fit1 <- count ~ condition

> fit0 <- count ~ 1

> cds <- newCountDataSet(tcc$count, group)

> sizeFactors(cds) <- tcc$norm.factors * colSums(tcc$count)

> cds <- estimateDispersions(cds)

> reduced.model <- fitNbinomGLMs(cds, fit0)

.

> full.model <- fitNbinomGLMs(cds, fit1)

.

> p.value <- nbinomGLMTest(full.model, reduced.model)

> p.value[is.na(p.value)] <- 1

> q.value <- p.adjust(p.value, method = "BH")

> tmp <- cbind(p.value, q.value)

> rownames(tmp) <- tcc$gene_id

> result <- tmp[order(p.value),]

> head(result)

38

p.value q.value

gene_126 3.100853e-13 3.100853e-10

gene_63 1.775390e-10 8.876949e-08

gene_27 2.703793e-08 9.012645e-06

gene_176 5.679543e-08 1.419886e-05

gene_121 8.783653e-08 1.756731e-05

gene_83 1.255741e-07 1.840819e-05

> sum(q.value < 0.1)

[1] 128

> sum(q.value < 0.2)

[1] 143

5 Generation of simulation data

5.1 Introduction and basic usage

As demonstrated in our previous study (Kadota et al., 2012 [3]), the DEGES-based normalization
methods implemented in TCC theoretically outperform the other normalization methods when
the numbers of DEGs (G1 vs. G2) in the tag count data are biased. However, it is difficult to
determine whether the up- and down-regulated DEGs in one of the groups are actually biased
in their number when analyzing real data (Dillies et al., 2012 [2]). This means we have to
evaluate the potential performance of our DEGES-based methods using mainly simulation data.
The simulateReadCounts function generates simulation data under various conditions. This
function can generate simulation data analyzed in the TbT paper (Kadota et al., 2012 [3]), and
that means it enables other researchers to compare the methods they develop with our DEGES-
based methods. For example, the hypoData object, a hypothetical count dataset provided in
TCC, was generated by using this function. The output of the simulateReadCounts function is
stored as a TCC class object and is therefore ready-to-analyze.

Note that different trials of simulation analysis generally yield different count data even under
the same simulation conditions. As mentioned in section 3.1.1, we can call the set.seed func-
tion in order to obtain reproducible results (i.e., the tcc$count) with the simulateReadCounts

function.

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,

+ DEG.assign = c(0.9, 0.1),

+ DEG.foldchange = c(4, 4),

+ replicates = c(3, 3))

> dim(tcc$count)

[1] 1000 6

39

> head(tcc$count)

G1_rep1 G1_rep2 G1_rep3 G2_rep1 G2_rep2 G2_rep3

gene_1 168 104 62 38 24 35

gene_2 10 8 27 4 5 4

gene_3 64 94 81 15 57 12

gene_4 350 443 472 116 135 108

gene_5 92 263 60 7 15 22

gene_6 561 682 591 19 65 179

> tcc$group

group

G1_rep1 1

G1_rep2 1

G1_rep3 1

G2_rep1 2

G2_rep2 2

G2_rep3 2

The simulation conditions for comparing two groups (G1 vs. G2) with biological replicates
are as follows: (i) the number of genes is 1, 000 (i.e., Ngene = 1000), (ii) the first 20% of genes are
DEGs (PDEG = 0.2), (iii) the first 90% of the DEGs are up-regulated in G1, and the remaining
10% are up-regulated in G2 (DEG.assign = c(0.9, 0.1)), (iv) the levels of DE are four-fold
in both groups (DEG.foldchange = c(4, 4)), and (v) there are a total of six samples (three
biological replicates for G1 and three biological replicates for G2) (replicates = c(3, 3)). The
variance of the NB distribution can be modeled as V = µ+φµ2. The empirical distribution of the
read counts for producing the mean (µ) and dispersion (φ) parameters of the model was obtained
from Arabidopsis data (three biological replicates for each of the treated and non-treated groups)
in NBPSeq (Di et al., 2011 [15]).

The tcc$count object is essentially the same as the hypoData object of TCC. The information
about the simulation conditions can be viewed as follows.

> str(tcc$simulation)

List of 4

$ trueDEG : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...

$ DEG.foldchange: num [1:1000, 1:6] 4 4 4 4 4 4 4 4 4 4 ...

$ PDEG : num [1:2] 0.18 0.02

$ params :'data.frame': 1000 obs. of 2 variables:

..$ mean: num [1:1000] 32.99 4.13 16.73 103.14 15.57 ...

..$ disp: num [1:1000] 0.3868 0.0915 0.1835 0.0503 0.6416 ...

Specifically, the entries for 0, 1, and 2 in the tcc$simulation$trueDEG object are for non-
DEG, DEGs up-regulated in G1, and DEGs up-regulated in G2, respectively. The breakdowns
for individual entries are the same as stated above: 800 entries are non-DEGs, 180 DEGs are
up-regulated in G1, and 20 DEGs are up-regulated in G2.

40

> table(tcc$simulation$trueDEG)

0 1 2

800 180 20

This information can be used to evaluate the performance of the DEGES-based normalization
methods in terms of the sensitivity and specificity of the results of their DE analysis. A good
normalization method coupled with a DE method such as the exact test (Robinson and Smyth,
2008 [13]) and the empirical Bayes (Hardcastle and Kelly, 2010) should produce well-ranked gene
lists in which the true DEGs are top-ranked and non-DEGs are bottom-ranked when all genes are
ranked according to the degree of DE. The ranked gene list after performing the DEGES/edgeR-
edgeR combination can be obtained as follows.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG

74 gene_74 8.095342 -2.542249 1.632080e-10 1.286724e-07 1 1

185 gene_185 7.177367 2.407113 4.534722e-10 1.286724e-07 2 1

181 gene_181 7.861230 2.425154 5.023661e-10 1.286724e-07 3 1

11 gene_11 7.145969 -2.471502 5.786026e-10 1.286724e-07 4 1

113 gene_113 12.197408 -2.233912 6.433622e-10 1.286724e-07 5 1

138 gene_138 9.397467 -2.232690 1.118317e-09 1.863861e-07 6 1

We can now calculate the area under the ROC curve (i.e., AUC; 0 ≤AUC≤ 1) between the
ranked gene list and the truth (i.e., DEGs or non-DEGs) and thereby evaluate the sensitivity
and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high
sensitivity and specificity). The calcAUCValue function calculates the AUC value based on the
information stored in the TCC class object.

> calcAUCValue(tcc)

[1] 0.8923437

This is essentially the same as

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),

+ data = -tcc$stat$rank))

[1] 0.8923437

The following classic edgeR procedure (i.e., the TMM-edgeR combination) make it clear that
the DEGES-based normalization method (i.e., the DEGES/edgeR pipeline) outperforms the
default normalization method (i.e., TMM) implemented in edgeR.

41

> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue(tcc)

[1] 0.8778813

The following is an alternative procedure for edgeR users.

> d <- DGEList(counts = tcc$count, group = tcc$group$group)

> d <- calcNormFactors(d)

> d$samples$norm.factors <- d$samples$norm.factors /

+ mean(d$samples$norm.factors)

> d <- estimateCommonDisp(d)

> d <- estimateTagwiseDisp(d)

> result <- exactTest(d)

> result$table$PValue[is.na(result$table$PValue)] <- 1

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),

+ data = -rank(result$table$PValue)))

[1] 0.8778813

As can be expected from the similarity of the normalization factors of DEGES/TbT (3.1.1)
and DEGES/edgeR (3.1.2), the AUC value (0.8923437) of DEGES/edgeR is quite similar to the
AUC value (0.8935125) of the original TbT method (i.e., DEGES/TbT):

> set.seed(1000)

> samplesize <- 100

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",

+ iteration = 1, samplesize = samplesize)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue(tcc)

[1] 0.8935125

5.2 Two-group data without replicates

Let us generate tag count data without replicates, such as those used in section 3.2 For simplicity,
we first generate simulation data whose conditions are essentially the same as those in the previous
section (i.e., 5.1), except for the number of replicates in each group: (i) the number of genes is
1, 000 (i.e., Ngene = 1000), (ii) the first 20% of genes are DEGs (PDEG = 0.2), (iii) the first 90%
of the DEGs are up-regulated in G1, and the remaining 10% are up-regulated in G2 (DEG.assign
= c(0.9, 0.1)), (iv) the levels of DE are four-fold in both groups (DEG.foldchange = c(4,

4)), and (v) there are a total of two samples (one from G1 and the other from G2) (replicates
= c(1, 1)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,

42

+ DEG.assign = c(0.9, 0.1),

+ DEG.foldchange = c(4, 4),

+ replicates = c(1, 1))

> dim(tcc$count)

[1] 1000 2

> head(tcc$count)

G1_rep1 G2_rep1

gene_1 168 29

gene_2 10 2

gene_3 64 2

gene_4 350 90

gene_5 92 5

gene_6 561 74

> tcc$group

group

G1_rep1 1

G2_rep1 2

Now let us see how the DEGES/DESeq-DESeq combination with the original DESeq-DESeq
combination performs. First, we calculate the AUC value for the ranked gene list obtained from
the DEGES/DESeq-DESeq combination.

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",

+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "deseq")

> calcAUCValue(tcc)

[1] 0.7845375

Next, we calculate the corresponding value using the original DESeq procedure (i.e., the
DESeq-DESeq combination).

> tcc <- calcNormFactors(tcc, norm.method = "deseq", iteration = 0)

> tcc <- estimateDE(tcc, test.method = "deseq")

> calcAUCValue(tcc)

[1] 0.78265

It can be seen that the DEGES/DESeq-DESeq combination outperforms the original procedure
under the given simulation conditions. The following is an alternative approach for DESeq users.

43

> cds <- newCountDataSet(tcc$count, tcc$group$group)

> cds <- estimateSizeFactors(cds)

> norm.factors <- sizeFactors(cds) / colSums(tcc$count)

> norm.factors <- norm.factors / mean(norm.factors)

> sizeFactors(cds) <- colSums(tcc$count) * norm.factors

> cds <- estimateDispersions(cds, method="blind", sharingMode="fit-only")

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),

+ data = -rank(result$pval)))

[1] 0.78265

This procedure is completely the same as the one in TCC that gives normalization factors
corresponding to those in edgeR for different packages. However, the following commands from
the DESeq manual are of practical value because they give approximately the same AUC value
as above.

> cds <- newCountDataSet(tcc$count, tcc$group$group)

> cds <- estimateSizeFactors(cds)

> cds <- estimateDispersions(cds, method="blind", sharingMode="fit-only")

> result <- nbinomTest(cds, 1, 2)

> result$pval[is.na(result$pval)] <- 1

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),

+ data = -rank(result$pval)))

[1] 0.78265

5.3 Multi-group data with and without replicates

The simulateReadCounts function can generate simulation data with a more complex design.
First, we generate a dataset consisting of three groups. The simulation conditions for this dataset
are as follows: (i) the number of genes is 1, 000 (i.e., Ngene = 1000), (ii) the first 30% of genes
are DEGs (PDEG = 0.3), (iii) the breakdowns of the up-regulated DEGs are respectively 70%,
20%, and 10% in Groups 1-3 (DEG.assign = c(0.7, 0.2, 0.1)), (iv) the levels of DE are 3-,
10-, and 6-fold in individual groups (DEG.foldchange = c(3, 10, 6)), and (v) there are a total
of nine libraries (2, 4, and 3 replicates for Groups 1-3) (replicates = c(2, 4, 3)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.3,

+ DEG.assign = c(0.7, 0.2, 0.1),

+ DEG.foldchange = c(3, 10, 6),

+ replicates = c(2, 4, 3))

> dim(tcc$count)

[1] 1000 9

44

> tcc$group

group

G1_rep1 1

G1_rep2 1

G2_rep1 2

G2_rep2 2

G2_rep3 2

G2_rep4 2

G3_rep1 3

G3_rep2 3

G3_rep3 3

> head(tcc$count)

G1_rep1 G1_rep2 G2_rep1 G2_rep2 G2_rep3 G2_rep4 G3_rep1 G3_rep2 G3_rep3

gene_1 126 86 17 38 24 35 4 19 71

gene_2 7 3 5 4 5 4 1 7 3

gene_3 48 17 3 15 57 12 4 9 10

gene_4 264 331 122 116 135 108 97 83 84

gene_5 69 51 32 7 15 22 4 33 11

gene_6 426 211 58 19 65 179 20 115 88

The pseudo-color image for the generated simulation data regarding the DEGs can be obtained
from the plotFCPseudocolor function. The right bar (from white to magenta) indicates the
degree of fold-change (FC). As expected, it can be seen that the first 210, 60, and 30 genes are
up-regulated in G1, G2, and G3, respectively.

> plotFCPseudocolor(tcc)

45

Now let us see how the DEGES/edgeR-edgeR combination with the original edgeR-edgeR
combination performs. First we calculate the AUC value for the ranked gene list obtained from
the DEGES/edgeR-edgeR combination.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 1)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue(tcc)

[1] 0.8748548

Next, we calculate the corresponding value using the original edgeR procedure for single factor
experimental design (i.e., the edgeR-edgeR combination).

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 0)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue(tcc)

[1] 0.8692167

46

It can be seen that the DEGES/edgeR-edgeR combination outperforms the original edgeR
procedure under the given simulation conditions. Note that the test.method argument will be
ignored when iteration = 0 is specified.

Next, let us generate another dataset consisting of a total of eight groups. The simulation
conditions for this dataset are as follows: (i) the number of genes is 10, 000 (i.e., Ngene = 10000),
(ii) the first 34% of genes are DEGs (PDEG = 0.34), (iii) the breakdowns of the up-regulated
DEGs are respectively 10%, 30%, 5%, 10%, 5%, 21%, 9%, and 10% in Groups 1-8 (DEG.assign
= c(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1)), (iv) the levels of DE are 3.1-, 13-, 2-,
1.5-, 9-, 5.6-, 4-, and 2-fold in individual groups (DEG.foldchange = c(3.1, 13, 2, 1.5, 9,

5.6, 4, 2)), and (v) there are a total of nine libraries (except for G3, none of the groups have
replicates) (replicates = c(1, 1, 2, 1, 1, 1, 1, 1)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 10000, PDEG = 0.34,

+ DEG.assign = c(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1),

+ DEG.foldchange = c(3.1, 13, 2, 1.5, 9, 5.6, 4, 2),

+ replicates = c(1, 1, 2, 1, 1, 1, 1, 1))

> dim(tcc$count)

[1] 10000 9

> tcc$group

group

G1_rep1 1

G2_rep1 2

G3_rep1 3

G3_rep2 3

G4_rep1 4

G5_rep1 5

G6_rep1 6

G7_rep1 7

G8_rep1 8

> head(tcc$count)

G1_rep1 G2_rep1 G3_rep1 G3_rep2 G4_rep1 G5_rep1 G6_rep1 G7_rep1 G8_rep1

gene_1 253 32 16 14 27 93 25 17 26

gene_2 17 3 4 4 6 7 9 2 2

gene_3 51 17 10 9 9 4 15 10 9

gene_4 289 83 105 84 121 78 76 126 99

gene_5 43 4 4 11 0 19 34 42 15

gene_6 491 99 137 101 55 104 224 105 86

> plotFCPseudocolor(tcc)

47

This kind of simulation data may be useful for evaluating methods aimed at identifying
tissue-specific (or tissue-selective) genes.

5.4 Multi-factor data

The simulateReadCounts function can also generate simulation data in multi-factor experimen-
tal design. Different from above single-factor experimental design, the group argument should be
used instead of replicates for specifying sample conditions (or factors) when generating sim-
ulation data in multi-factor design. In relation to the group specification, the DEG.foldchange

argument should also be specified as a data frame object.
We generate a dataset consisting of two factors for comparing (i) two Groups (i.e., ”WT” vs.

”KO”) as the first factor, at (ii) two time points (i.e., ”1d” vs. ”2d”) as the second factor, with
all samples obtained from independent subjects. There are a total of four conditions (”WT 1d”,
”WT 2d”, ”KO 1d”, and ”KO 2d”) each of which has two biological replicates, comprising a total
of eight samples. The group argument for this experimental design can be described as follows:

> group <- data.frame(

+ GROUP = c("WT", "WT", "WT", "WT", "KO", "KO", "KO", "KO"),

+ TIME = c("1d", "1d", "2d", "2d", "1d", "1d", "2d", "2d")

+)

48

Next, we design the number of types of DEGs and the levels of fold-change by the DEG.foldchange
argument. We here introduce three types of DEGs: (a) 2-fold up-regulation in the first four sam-
ples (i.e., ”WT”), (b) 3-fold up-regulation in the last four samples (i.e., ”KO”), and (c) 2-fold
down-regulation at ”2d” in ”WT” and 4-fold up-regulation at ”2d” in ”KO”. This implies that the
first two types of DEGs are related to the first factor (i.e., ”WT” vs. ”KO”) and the third type
of DEG is related to the second factor (i.e., ”1d” vs. ”2d”).

> DEG.foldchange <- data.frame(

+ FACTOR1.1 = c(2, 2, 2, 2, 1, 1, 1, 1),

+ FACTOR1.2 = c(1, 1, 1, 1, 3, 3, 3, 3),

+ FACTOR2 = c(1, 1, 0.5, 0.5, 1, 1, 4, 4)

+)

The other simulation conditions for this dataset are as follows: (1) the number of gene is
1,000 (i.e., Ngene = 1000), (2) the first 20% of genes are DEGs (i.e., PDEG = 0.2), and (3) the
breakdowns of the three types of DEGs are 50%, 20%, and 30% (i.e., DEG.assign = c(0.5,

0.2, 0.3)).

> set.seed(1000)

> tcc <- simulateReadCounts(Ngene = 10000, PDEG = 0.2,

+ DEG.assign = c(0.5, 0.2, 0.3),

+ DEG.foldchange = DEG.foldchange,

+ group = group)

Since the first six rows in the dataset corresponds to the first type of DEGs, we can see the
2-fold up-regulation in the first four columns (i.e., WT-related samples) compared to the last
four columns (i.e., KO-related samples).

> head(tcc$count)

WT1d_rep1 WT1d_rep2 WT2d_rep1 WT2d_rep2 KO1d_rep1 KO1d_rep2 KO2d_rep1

gene_1 162 70 32 31 27 93 25

gene_2 12 5 7 7 6 7 11

gene_3 40 34 20 20 9 4 18

gene_4 210 141 286 163 121 78 52

gene_5 37 8 9 22 0 19 0

gene_6 205 204 43 216 55 104 123

KO2d_rep2

gene_1 49

gene_2 3

gene_3 10

gene_4 113

gene_5 3

gene_6 39

> tcc$group

49

GROUP TIME

WT1d_rep1 WT 1d

WT1d_rep2 WT 1d

WT2d_rep1 WT 2d

WT2d_rep2 WT 2d

KO1d_rep1 KO 1d

KO1d_rep2 KO 1d

KO2d_rep1 KO 2d

KO2d_rep2 KO 2d

> plotFCPseudocolor(tcc)

5.5 Other utilities

Recall that the simulation framework can handle different levels of DE for DEGs in individual
groups, and the shape of the distribution for these DEGs is the same as that of non-DEGs. Let us
confirm those distributions by introducing more drastic simulation conditions for comparing two
groups (G1 vs. G2) with biological replicates; i.e., (i) the number of genes is 20, 000 (i.e., Ngene
= 20000), (ii) the first 30% of genes are DEGs (PDEG = 0.30), (iii) the first 85% of the DEGs
are up-regulated in G1 and the remaining 15% are up-regulated in G2 (DEG.assign = c(0.85,

50

0.15)), (iv) the levels of DE are eight-fold in G1 and sixteen-fold in G2 (DEG.foldchange =

c(8, 16)), and (v) there are a total of four samples (two biological replicates for G1 and two
biological replicates for G2) (replicates = c(2, 2)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 20000, PDEG = 0.30,

+ DEG.assign = c(0.85, 0.15),

+ DEG.foldchange = c(8, 16),

+ replicates = c(2, 2))

> head(tcc$count)

G1_rep1 G1_rep2 G2_rep1 G2_rep2

gene_1 368 243 67 39

gene_2 56 23 9 3

gene_3 140 147 11 18

gene_4 720 932 167 83

gene_5 56 165 50 11

gene_6 504 487 80 133

An M-A plot for the simulation data can be viewed as follows; the points for up-regulated
DEGs in G1 and G2 are colored blue and red, respectively. The non-DEGs are in black:

> plot(tcc)

51

This plot is generated from simulation data that has been scaled in such a way that the
library sizes of each sample are the same as the mean library size of the original data. That is,

> normalized.count <- getNormalizedData(tcc)

> colSums(normalized.count)

G1_rep1 G1_rep2 G2_rep1 G2_rep2

4474229 4474229 4474229 4474229

> colSums(tcc$count)

G1_rep1 G1_rep2 G2_rep1 G2_rep2

5704644 5813812 3108335 3270126

> mean(colSums(tcc$count))

[1] 4474229

52

The summary statistics for non-DEGs and up-regulated DEGs in G1 and G2 are upshifted
compared with the original intentions of the user (i.e., respective M values of 0, −3, and 4 for
non-DEGs and up-regulated DEGs in G1 and G2). Indeed, the median values, indicated as
horizontal lines, are respectively 0.865, −2.125, and 4.797 for non-DEGs and up-regulated DEGs
in G1 and G2.

> plot(tcc, median.lines = TRUE)

These upshifted M values for non-DEGs can be modified after performing the iDEGES/edgeR
normalization, e.g., the median M value (= 0.033) for non-DEGs based on the iDEGES/edgeR-
normalized data is nearly zero.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",

+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> plot(tcc, median.line = TRUE)

53

The comparison of those values obtained from different normalization methods might be
another evaluation metric.

54

6 Session info

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] splines parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] TCC_1.2.0 ROC_1.38.0 baySeq_1.16.0

[4] GenomicRanges_1.14.0 XVector_0.2.0 IRanges_1.20.0

[7] edgeR_3.4.0 limma_3.18.0 DESeq_1.14.0

[10] lattice_0.20-24 locfit_1.5-9.1 Biobase_2.22.0

[13] BiocGenerics_0.8.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.24.0 DBI_0.2-7 EBSeq_1.2.0

[4] RColorBrewer_1.0-5 RSQLite_0.11.4 XML_3.98-1.1

[7] annotate_1.40.0 genefilter_1.44.0 geneplotter_1.40.0

[10] grid_3.0.2 samr_2.0 stats4_3.0.2

[13] survival_2.37-4 tools_3.0.2 xtable_1.7-1

55

7 References

[1] Robinson MD, McCarthy DJ, and Smyth GK. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 2010, 26(1): 139-140

[2] Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C,
Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Schaëffer
B, Le Crom S, Guedj M, Jaffrézic F; on behalf of The French StatOmique Consortium.
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA
sequencing data analysis. Brief Bioinform, in press

[3] Kadota K, Nishiyama T, and Shimizu K. A normalization strategy for comparing tag count
data. Algorithms Mol Biol. 2012, 7:5

[4] Robinson MD and Oshlack A. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 2010, 11: R25

[5] Kadota K, Nakai Y, Shimizu K: A weighted average difference method for detecting differ-
entially expressed genes from microarray data. Algorithms Mol Biol. 208, 3: 8

[6] Hardcastle TJ and Kelly KA. baySeq: empirical Bayesian methods for identifying differential
expression in sequence count data. BMC Bioinformatics 2010, 11: 422

[7] Kadota K, Nishimura SI, Bono H, Nakamura S, Hayashizaki Y, Okazaki Y, Takahashi K: De-
tection of genes with tissue-specific expression patterns using Akaike’s Information Criterion
(AIC) procedure. Physiol Genomics 2003, 12: 251-259

[8] Anders S and Huber W. Differential expression analysis for sequence count data. Genome
Biol. 2010, 11(10): R106

[9] McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Res. 2012, 40(10): 4288-4297

[10] Glaus P, Honkela A, and Rattray M. Identifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioinformatics 2012, 28(13): 1721-1728

[11] Kadota K, Ye J, Nakai Y, Terada T, Shimizu K: ROKU: a novel method for identification
of tissue-specific genes. BMC Bioinformatics 2006, 7: 294

[12] Ueda T. Simple method for the detection of outliers. Japanese J Appl Stat 1996, 25: 17-26

[13] Robinson MD and Smyth GK. Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics 2008, 9: 321-332

[14] Sun J, Nishiyama T, Shimizu K, and Kadota K. TCC: an R package for comparing tag
count data with robust normalization strategies. BMC Bioinformatics 2013, 14: 219

[15] Di Y, Schafer DW, Cumbie JS, and Chang JH. The NBP negative binomial model for
assessing differential gene expression from RNA-Seq. Stat Appl Genet Mol Biol. 2011, 10:
art24

56

