
An Introduction to the NarrowPeaks Package:

Narrowing Down Transcription Factor Binding

Site Candidates from Functional Data

Pedro Madrigal∗

January, 2013

Department of Biometry and Bioinformatics, Institute of Plant Genetics
Polish Academy of Sciences

Poznan, Poland

1 Introduction

State-of-the-art bioinformatic algorithms, so-called peak finders (see references
[2], [5] and [8]), are used to detect transcription factor binding sites in high-
throughput chromatin immunoprecipitation followed by sequencing (ChIP-seq).
The data analysis is usually based on peak-search criteria of the local maxima
over enriched candidate regions. For purposes of computation several assump-
tions are made regarding the distribution of sample and control reads.

It has been shown that, although most sites reported by peak finders could
be narrowed down to 100-400bp using merely visual inspection, this reduction
is not typically reflected by the regions provided by current methods, therefore
degrading the resolution [7]. It is widely accepted that the subdivision of long
regions into distinct subpeaks can further help to recognize individual true peaks
that were merged into a wide area of signal enrichment.

We present here the R package NarrowPeaks [3] able process WIG format1

data, and analyze it based on the theory of Functional Principal Component
Analysis (FPCA) [6].

The aim of this novel approach is to extract the most significant ChIP-seq
enriched regions according to their primary modes of variation in the binding
score profiles. It allows the user of this package to discriminate between binding
regions in close proximity and shorten the length of the transcription factor
binding sites preserving the information present in the the dataset at a desired
level of variance.

∗pm@engineering.com
1One of the most popular formats for ChIP-seq data visualization is the wiggle track (WIG).

1

http://genome.ucsc.edu/FAQ/FAQformat

2 Methods

The functional version of PCA establishes a method for estimating orthogonal
basis functions (principal components or eigenfunctions) from functional data
[6], in order to capture as much of the variation as possible in as few components
as possible. We can highlight the genomic locations contributing to maximum
variation (measured by an aproximation of the variance-covariance function)
from a list of peaks of a ChIP-seq experiment.

The proposed algorithm converts a continuous signal of enrichment (from a
WIG file into CSAR binary format), and extracts signal profiles of candidate
transcription factor binding sites. Afterwards, it characterizes the binding sig-
nals via spline basis functions expansion. Finally, functional PCA is performed
in order to measure the variation of the ChIP-seq signal profiles under study.
The output consists of a score-ranked list of sites according to their contribu-
tion to the total variation, which is accounted for by the trimmed (narrowed)
principal components (estimated from the data).

3 Example

We will use the example data set included in the NarrowPeaks package for this
demonstration. The data represents a small subset of a WIG file storing contin-
uous value scores based on a Poisson test [4] for the chromosome 1 of Arabidopsis
thaliana [1].

First, we load the NarrowPeaks package and the data NarrowPeaks-dataset ,
which contains a subsample of first 49515 lines of the original WIG file for
the full experiment. Using the function wig2CSARScore a set of binary files is
constructed storing the enrichment-score profiles.

R> library(NarrowPeaks)

R> data("NarrowPeaks-dataset")

R> head(wigfile_test)

[1] "track type=wiggle_0 autoScale=on name=\"CSAR track\" description=\"CSAR track\""

[2] "variableStep chrom=Chr1 span=1"

[3] "18732\t3.4"

[4] "18733\t3.4"

[5] "18734\t3.4"

[6] "18735\t3.4"

R> writeLines(wigfile_test, con="wigfile.wig")

R> wigScores <- wig2CSARScore(wigfilename="wigfile.wig", nbchr = 1,

chrle=c(30427671))

READING [wigfile.wig] : done

-NB_Chr = 1

-Summary :

2

| Chr1 | 1 | 30427671 |

CREATING BINARY FILES [CSAR Bioconductor pkg format] :

- Chr1 : done

R> print(wigScores$infoscores$filenames)

[1] "Chr1_ChIPseq.CSARScore"

Next, the candidate binding site regions are extracted using the R/Bioconductor
package CSAR [4]. CSAR predictions are contiguous genomic regions separated
by a maximum allowed of g base pairs, and score enrichment values greater than
t. Candidate regions are stored in a GRanges object (see Bioconductor package
GenomicRanges).

R> library(CSAR)

R> candidates <- sigWin(experiment=wigScores$infoscores, t=1.0, g=30)

R> head(candidates)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | posPeak score

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] Chr1 [18732, 19486] * | 19046 38

[2] Chr1 [20117, 21252] * | 20691 50

[3] Chr1 [26477, 26580] * | 26544 4

[4] Chr1 [27881, 27890] * | 27881 3

[5] Chr1 [52613, 52620] * | 52613 3

[6] Chr1 [52659, 52665] * | 52659 3

seqlengths:

Chr1

30427671

If CSAR [4] is used first to analyze ChIP-seq data, from its results we can
obtain the false discovery rate (FDR) for a given threshold. For example, for
the complete experiment described in [1], t = 10.81 corresponds to FDR =
0.01 and t = 6.78 corresponds to FDR = 0.1.

Now we want to narrow down the candidate sites obtaining shortened peaks
with the function narrowpeaks, representing each candidate signal as a linear
combination of nbf B-spline basis functions with no derivative penalization [6].
We can specify the amount of miminum variance pv we want to describe in form
of npcomp principal components, and establish a cutoff pmaxscor for trimming
of scoring functions of the candidate sites [3].

We will run the function for three different values of the cutoff: pmaxscor =

0 (no cutoff), pmaxscor = 3 (cutoff is at 3% level of the maximum value relative
to the scoring PCA functions) and pmaxscor = 100 (cutoff is at the maximum
value relative to the scoring PCA functions).

3

R> shortpeaksP0 <- narrowpeaks(inputReg=candidates,

scoresInfo=wigScores$infoscores, lmin=0, nbf=150, rpenalty=0,

nderiv=0, npcomp=2, pv=80, pmaxscor=0.0, ms=0)

R> head(shortpeaksP0$broadPeaks)

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71

[2] Chr1 [20117, 21252] * | 50 15.91

[3] Chr1 [26477, 26580] * | 4 2.4

[4] Chr1 [27881, 27890] * | 3 3

[5] Chr1 [52613, 52620] * | 3 3

[6] Chr1 [52659, 52665] * | 3 3

fpcaScore

<numeric>

[1] 254868.17

[2] 418319.55

[3] 264.37

[4] 1.37

[5] 0.77

[6] 0.56

seqlengths:

Chr1

30427671

R> head(shortpeaksP0$narrowPeaks)

GRanges with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak

<Rle> <IRanges> <Rle> | <character>

[1] Chr1 [18732, 19486] * | 1.1

[2] Chr1 [20117, 21252] * | 2.1

[3] Chr1 [26477, 26580] * | 3.1

[4] Chr1 [27881, 27890] * | 4.1

[5] Chr1 [52613, 52620] * | 5.1

[6] Chr1 [52659, 52665] * | 6.1

trimmedScore narrowedDownTo merged

<numeric> <character> <logical>

[1] 505.11 100% FALSE

[2] 649.77 100% FALSE

[3] 15.80 100% FALSE

[4] 1.56 100% FALSE

[5] 1.17 100% FALSE

[6] 0.98 100% FALSE

4

seqlengths:

Chr1

30427671

R> shortpeaksP3 <- narrowpeaks(inputReg=candidates,

scoresInfo=wigScores$infoscores, lmin=0, nbf=150, rpenalty=0,

nderiv=0, npcomp=2, pv=80, pmaxscor=3.0, ms=0)

R> head(shortpeaksP3$broadPeaks)

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71

[2] Chr1 [20117, 21252] * | 50 15.91

[3] Chr1 [26477, 26580] * | 4 2.4

[4] Chr1 [27881, 27890] * | 3 3

[5] Chr1 [52613, 52620] * | 3 3

[6] Chr1 [52659, 52665] * | 3 3

fpcaScore

<numeric>

[1] 254868.17

[2] 418319.55

[3] 264.37

[4] 1.37

[5] 0.77

[6] 0.56

seqlengths:

Chr1

30427671

R> head(shortpeaksP3$narrowPeaks)

GRanges with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak

<Rle> <IRanges> <Rle> | <character>

[1] Chr1 [18947, 18991] * | 1.1

[2] Chr1 [19008, 19116] * | 1.2

[3] Chr1 [20522, 20529] * | 2.1

[4] Chr1 [20587, 20788] * | 2.2

[5] Chr1 [78000, 78012] * | 20.1

[6] Chr1 [78023, 78028] * | 20.2

trimmedScore narrowedDownTo merged

<numeric> <character> <logical>

[1] 73.03 5.96% FALSE

[2] 195.56 14.44% FALSE

[3] 12.41 0.7% FALSE

5

[4] 447.19 17.78% FALSE

[5] 20.28 1.71% FALSE

[6] 8.96 0.79% FALSE

seqlengths:

Chr1

30427671

R> shortpeaksP100 <- narrowpeaks(inputReg=candidates,

scoresInfo=wigScores$infoscores, lmin=0, nbf=150, rpenalty=0,

nderiv=0, npcomp=2, pv=80, pmaxscor=100, ms=0)

R> head(shortpeaksP100$broadPeaks)

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71

[2] Chr1 [20117, 21252] * | 50 15.91

[3] Chr1 [26477, 26580] * | 4 2.4

[4] Chr1 [27881, 27890] * | 3 3

[5] Chr1 [52613, 52620] * | 3 3

[6] Chr1 [52659, 52665] * | 3 3

fpcaScore

<numeric>

[1] 254868.17

[2] 418319.55

[3] 264.37

[4] 1.37

[5] 0.77

[6] 0.56

seqlengths:

Chr1

30427671

R> head(shortpeaksP100$narrowPeaks)

GRanges with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak

<Rle> <IRanges> <Rle> | <character>

[1] Chr1 [725315, 725315] * | 158.1

trimmedScore narrowedDownTo merged

<numeric> <character> <logical>

[1] 8.18 0.16% FALSE

seqlengths:

Chr1

30427671

6

As we can see, there is no difference between broadPeaks and narrowPeaks

for pmaxscor = 0, whereas for pmaxscor = 100 just one punctual source of
variation is reported. The number of components (reqcomp) required, as well
as the variance (pvar) achieved, are the same for all three cases (pmaxscor of
0, 3 and 100).

R> print(shortpeaksP0$reqcomp)

[1] 2

R> print(shortpeaksP0$pvar)

[1] 91.65208

Now, we can do the same for pmaxscor = 90 and the result consists of 3
peaks very close to each other. We can tune the parameter ms to merge the sites
into a unique peak:

R> shortpeaksP90 <- narrowpeaks(inputReg=candidates,

scoresInfo=wigScores$infoscores, lmin=0, nbf=150, rpenalty=0,

nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=0)

R> shortpeaksP90ms20 <- narrowpeaks(inputReg=candidates,

scoresInfo=wigScores$infoscores, lmin=0, nbf=150, rpenalty=0,

nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=20)

We can make use of the class GRangesLists in the package GenomicRanges
to create a compound structure:

R> library(GenomicRanges)

R> exampleMerge <- GRangesList("narrowpeaksP90"=shortpeaksP90$narrowPeaks,

"narrowpeaksP90ms20"=shortpeaksP90ms20$narrowPeaks);

R> exampleMerge

GRangesList of length 2:

$narrowpeaksP90

GRanges with 3 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak

<Rle> <IRanges> <Rle> | <character>

[1] Chr1 [725257, 725262] * | 158.1

[2] Chr1 [725277, 725289] * | 158.2

[3] Chr1 [725307, 725324] * | 158.3

trimmedScore narrowedDownTo merged

<numeric> <character> <logical>

[1] 46.29 0.95% FALSE

[2] 100.81 2.06% FALSE

[3] 139.21 2.85% FALSE

7

$narrowpeaksP90ms20

GRanges with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak

[1] Chr1 [725257, 725324] * | 158.1-158.2-158.3

trimmedScore narrowedDownTo merged

[1] 286.31 10.76% TRUE

seqlengths:

Chr1

30427671

Finally, we can export GRanges objects or GRangesLists into WIG, bed-
Graph, bigWig or other format files using the package rtracklayer. For example:

R> library(GenomicRanges)

R> names(elementMetadata(shortpeaksP3$broadPeaks))[3] <- "score"

R> names(elementMetadata(shortpeaksP3$narrowPeaks))[2] <- "score"

R> library(rtracklayer)

R> export.bedGraph(object=candidates, con="CSAR.bed")

R> export.bedGraph(object=shortpeaksP3$broadPeaks, con="broadPeaks.bed")

R> export.bedGraph(object=shortpeaksP3$narrowPeaks, con="narrowpeaks.bed")

References

[1] Kerstin Kaufmann, Frank Wellmer, Jose Muino, Thilia Ferrier, Samuel
Wuest, Vijaya Kumar, Antonio Serrano-Mislata, Francisco Madueno, Pawel
Krajewski, Elliot Meyerowitz, Gerco Angenent, and Jose-Luis Riechmann.
Orchestration of floral initiation by apetala1. Science, 328:85–89, 2010.

[2] Teemu Laajala, Sunil Raghav, Soile Tuomela, Riitta Lahesmaa, Tero Ait-
tokallio, and Laura Elo. A practical comparison of methods for detecting
transcription factor binding sites in chip-seq experiments. BMC Genomics,
10(1):618, 2009.

[3] Pedro Madrigal and Pawel Krajewski. Narrowpeaks: an r/bioconductor
package for quantitative analysis of variation in chip-seq datasets. (submit-
ted).

[4] Jose Muino, Kerstin Kaufmann, Roeland van Ham, Gerco Angenent, and
Pawel Krajewski. Chip-seq analysis in r (csar): An r package for the sta-
tistical detection of protein-bound genomic regions. Plant Methods, 7(1):11,
2011.

[5] Shirley Pepke, Barbara Wold, and Ali Mortazavi. Computation for chip-seq
and rna-seq studies. Nature Methods, 6:S22–S32, 2009.

8

[6] Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer-
Verlag, New York, 2nd edition, 2005.

[7] Morten-Beck Rye, Pal Saetrom, and Finn Drablos. A manually curated chip-
seq benchmark demonstrates room for improvement in current peak-finder
programs. Nucleic Acids Research, 39(4):e25, 2011.

[8] Elizabeth Wilbanks and Marc Facciotti. Evaluation of algorithm perfor-
mance in chip-seq peak detection. PLoS ONE, 5(7):e11471, 2010.

4 Details

This document was written using:

R> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel splines stats graphics grDevices

[6] utils datasets methods base

other attached packages:

[1] rtracklayer_1.22.0 CSAR_1.14.0

[3] GenomicRanges_1.14.0 XVector_0.2.0

[5] IRanges_1.20.0 BiocGenerics_0.8.0

[7] NarrowPeaks_1.6.0

loaded via a namespace (and not attached):

[1] BSgenome_1.30.0 Biostrings_2.30.0 Matrix_1.0-14

[4] RCurl_1.95-4.1 Rsamtools_1.14.0 XML_3.98-1.1

[7] bitops_1.0-6 fda_2.3.8 grid_3.0.2

[10] lattice_0.20-24 stats4_3.0.2 tools_3.0.2

[13] zlibbioc_1.8.0

9

	Introduction
	Methods
	Example
	Details

