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1 Introduction

This document provides an introduction to the power analysis of ChIP-seq data with the CSSP package. This R
package implements CSSP which stands for ChIP-seq Statistical Power and is developed in [Zuo and Keleş, 2012].
CSSP provides a Bayesian framework for modeling bin-level read counts in a ChIP-Seq experiment as Pois-
son processes. These bin-level local Poisson models utilize genome sequence features such as mappability and
GC-content.

In this vignette, we utilize an artificially constructed ChIP-seq data-set with 5 chromosomes contained in
the package. Another example using a real data-set from a mouse ChIP-seq experiment of GATA1 in the G1E-
ER4+E2 cell line ([Wu et al., 2011]) is shown on the package website http://code.google.com/p/chip-seq/

power.

2 Workflow

The power analysis by CSSP consist of two major steps:

1. Fitting the CSSP model: This step estimates parameters of the local Poisson models for the ChIP and
input samples.

2. Calculating power: This step implements power calculations based on estimated parameters for user
specified FDR (q), minimum fold change (r), and minimum ChIP read count thresholds (τ).

2.1 Constructing the Bin-level Data in R Environment

CSSP requires four input files for model fitting: bin-level ChIP data, bin-level input data, bin-level mappability
score, and bin-level GC content score. For human genome (hg18) and mouse genome (mm9), the mappability
and GC content scores are provided by the mosaics package ([Chung et al., 2012]). The corresponding files for
other genomes can be requested via http://code.google.com/p/chip-seq-power. We will be uploading these
files for other genomes, read lengths, and bin sizes as the demand arises.

There are two ways to prepare the bin-level data-set. The first method is to use the “constructBins” function
from the mosaics package. This function accommodates commonly used read alignment formats including
ELAND, BED, BOWTIE and SAM and computes bin-level data for user specified bin size and average fragment
length. It outputs the bin-level counting data in seperate text files, which can be loaded by either the “readBins”
function in mosaics or the “readBinFile” function in our package. Further details on the input arguments for
the “constructBins” and “readBins” functions are available through mosaics vignette at Bioconductor. Notice
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that “readBins” returns an object of S-4 class “BinData”, while “readBinFile” returns a “data.frame”. Both data
types are accepted for the down-stream analysis.

Here we show an example of importing text files through the “readBinFile” function, which uses a data.frame
object in this package “bindata.chr1” containing bin-level data for chip, input, M and GC data. For illustration
purposes, we break the data.frame into different text files and read them back. In the “readBinFile” function,
argument “type” specifies the data types of the files to be imported. The actual file names are specified by the
vector “fileName”. The vectors in both arguments should have the same length and ordering. The ”readBinFile”
function constructs a “data.frame” object with columns named “chip”, “input”, “M” and “GC”.

> library( CSSP )

> data( bindata.chr1 )

> #break the data.frame into different files

> write.table( bindata.chr1[,c(1,4)], file = "chr1_map.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> write.table( bindata.chr1[,c(1,5)], file = "chr1_gc.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> write.table( bindata.chr1[,c(1,2)], file = "chr1_chip.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> write.table( bindata.chr1[,c(1,3)], file = "chr1_input.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> #read the text files and construct a unified data.frame

> dat <- readBinFile ( type = c("chip", "input","M","GC"),

+ fileName = c("chr1_chip.txt", "chr1_input.txt",

+ "chr1_map.txt", "chr1_gc.txt" ) )

> file.remove( paste( "chr1_", c("chip", "input", "map", "gc" ), ".txt", sep = "" ) )

[1] TRUE TRUE TRUE TRUE

> head( dat )

pos input chip M GC

1 0 76 110 0.9464916 0.9464916

2 100 89 144 0.9372329 0.9372329

3 200 85 123 0.9406308 0.9406308

4 300 104 115 0.9154102 0.9154102

5 400 96 117 0.9152835 0.9152835

6 500 81 118 0.9418648 0.9418648

The second method to prepare the bin-level data-set is to use functions provided by the SPP package
([Kharchenko, 2008]), followed by the “tag2bin” and “createBinData” in our package. SPP provides a list of
functions “read.xxx.tags” that accomodates eland, bowtie, bam, tagalign formats and convert them to a list of
signed genome coordinates for each chromosome. The sign of each coordinate represent the strand informa-
tion for each read, with positive numbers representing the 5’ strand and negative numbers representing the 3’
strand. The output of “read.xxx.tags” can be imported by “tag2bin” function through the “tagdat” argument.
By accomodating the output format of the SPP package, we thus enable using the functionalities in SPP for
preprocessing and filtering raw alignment reads before generating bin-level data.

The output of the “tag2bin” function is a list of bin-level counts for each chromosome. After the outputs
for both ChIP and input samples are generated, they can be merged with the external text files containing M,
GC and N scores by the “createBinData” function. The external files can be either genome-wide files containing
data from all chromosomes, or lists of files for single chromosomes. If the external files are seperate for each
chromosome, they should have the common prefix specified by arguments “mfile”, “gcfile” and “nfile”, as well as
the common suffix specified by arguments “m.suffic”, “gc.suffic” and “n.suffic”. The name of each chromosome
file should be in format “xfile[chr]x.suffix”, where “x” stands for “m”, “gc” or “n”, and “chr” is the name of
the chromosome. The names of the chromosomes must be consistent with “names(dat.chip)”. Alternatively, if
“x.suffix” is NULL, then a genome-wide file containing all chromosomes named “xfile” is imported. The output
of “createBinData” function is an object of class “BinData”.

The following example utilizes an artificially constructed data-set containing starting positions for both
ChIP and input samples, following the format of the “tag2bin” input. It then constructs both genome-wide and
chromosome-level M, GC and N files, and shows how to use the “createBinData” with both seperate files for
each chromosome and genome-wide files.

> #convert read alignments to bin-level counts

> data( tagdat_chip )
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> data( tagdat_input )

> dat_chip <- tag2bin( tagdat_chip, binS = 100, fragL = 100 )

> dat_input <- tag2bin( tagdat_input, binS = 100, fragL = 100 )

> #construct M, GC and N text files

> numBins <- as.integer( runif(5, 190, 220 ))

> mapdat <- gcdat <- ndat <- list(1:5)

> allmapdat <- allgcdat <- allndat <- NULL

> for(i in 1:5){

+ mapdat[[i]] <- data.frame( pos = ( 0:(numBins[i]-1 ) ) * 100,

+ M = runif( numBins[i], 0.9, 1 ) )

+ gcdat[[i]] <- data.frame( pos = ( 0:( numBins[i]-1 ) ) * 100,

+ GC = runif( numBins[i], 0.5, 1 ) )

+ ndat[[i]] <- data.frame( pos = ( 0:( numBins[i]-1 ) ) * 100,

+ N = rbinom( numBins[i], 1, 0.01 ) )

+ allmapdat <- rbind( allmapdat,

+ cbind( paste("chr", i, sep="" ), mapdat[[i]] ))

+ allgcdat <- rbind( allgcdat,

+ cbind( paste( "chr", i, sep=""), gcdat[[i]] ))

+ allndat <- rbind( allndat,

+ cbind( paste("chr", i, sep=""), ndat[[i]]))

+

+ write.table(mapdat[[i]], file = paste( "map_chr", i, ".txt", sep = "" ),

+ sep = "\t", row.names = FALSE, col.names = FALSE)

+ write.table(gcdat[[i]], file = paste( "gc_chr", i, ".txt", sep = "" ),

+ sep = "\t", row.names = FALSE, col.names = FALSE)

+ write.table(ndat[[i]], file = paste( "n_chr", i, ".txt", sep = "" ),

+ sep = "\t", row.names = FALSE, col.names = FALSE)

+ }

> write.table( allmapdat, file = "allmap.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> write.table( allgcdat, file = "allgc.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> write.table( allndat, file = "alln.txt", sep = "\t",

+ row.names = FALSE, col.names = FALSE )

> #construct BinData object

> #all M, GC, N files are seperate for each chromosome

> bindata1 <- createBinData( dat_chip, dat_input, mfile = "map_", gcfile = "gc_",

+ nfile = "n_", m.suffix = ".txt", gc.suffix = ".txt",

+ n.suffix = ".txt", chrlist = NULL,

+ dataType = "unique" )

> #GC, N files seperate for each chromosome, M file is genome-wide

> bindata2 <- createBinData( dat_chip, dat_input, mfile = "allmap.txt",

+ gcfile = "gc_", nfile = "n_", m.suffix = NULL,

+ gc.suffix = ".txt", n.suffix = ".txt",

+ chrlist = NULL, dataType = "unique" )

> #M, N files seperate for each chromosome, GC file is genome-wide

> bindata3 <- createBinData( dat_chip, dat_input, mfile = "map_",

+ gcfile = "allgc.txt", nfile = "n_", m.suffix = ".txt",

+ gc.suffix = NULL, n.suffix = ".txt",

+ chrlist = NULL, dataType = "unique" )

> #GC, M files seperate for each chromosome, N file is genome-wide

> bindata4 <- createBinData( dat_chip, dat_input, mfile = "map_", gcfile = "gc_",

+ nfile = "alln.txt", m.suffix = ".txt",

+ gc.suffix = ".txt", n.suffix = NULL,

+ chrlist = NULL, dataType = "unique" )

> #only imports data for chr1 and chr2

> bindata5 <- createBinData( dat_chip, dat_input, mfile = "map_", gcfile = "gc_",

+ nfile = "n_", m.suffix = ".txt", gc.suffix = ".txt",

+ n.suffix = ".txt", chrlist = c("chr1", "chr2"),

+ dataType = "unique" )
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2.2 Fitting the CSSP model

Now we are in a position to fit the CSSP model using the above bin-level data in either a “data.frame” or a
“BinData” object. We provide two methods for fitting the CSSP model: Minimum Distance Estimation and
generalized EM method. The default is the Minimum Distance Estimation, which can be applied by:

> sampleFit <- cssp.fit( bindata1, ngc=0, beta.init=NULL, e0.init=0.9, p2=0.99,

+ p1=0.5, tol=0.01)

Here, “beta.init” and “e0.init” specify the initial values of b and e0. “p1” and “p2” specify a range of p-values
where the expected distribution is uniform. When testing the ChIP read counts against the background read
distribution, the p-values in this region should be uniformly distributed. “tol” specifies the tolerance level of
iterations. “ngc” is the number of knots to use when fitting a spline model for the GC-content scores. For
deeply sequenced data, “ngc=2” provides reasonably good fits. For data with low sequencing depths, “ngc=0” is
recommended since larger values might result in ill defined model matrices. Because our fitting algorithm can
be time consuming for large datasets, during the fitting process we print out the information for each step of
our algorithm.

The sample data-set in our package is in no way comaprable with the real data-sets which contain millions of
reads. For computational purposes we provide additional options to accomodate large genome size. The related
two arguments are “useGrid” (default: FALSE) and “nsize” (default: NULL). If “useGrid=TRUE” is specified,
the gridding method is used for fitting the input model. In this case, we adaptively grid the covariate space
spanned by mappability and GC-content scores into a certain number of bins, and choose one representative
observation within each bin to fit the regression model. The ”nsize” argument specifies the number of randomly
sampled observations used for fitting the normalization parameter. By default, “nsize=NULL”, and all bins are
used for fitting the normalization parameter. For genome-wide data, we suggest using “useGrid=TRUE” and
“nsize=5000”. This usually enables us to fit the model within one hour. The following code shows how to fit
the model for genome-wide data:

> sampleFit.grid <- cssp.fit( bindata1, useGrid = TRUE, nsize = 500 )

In the current version of CSSP, two additional arguments are provided to support different practical settings.
First, “nonpa” (default: FALSE) specifies whether a nonparametric model is used instead of a GLM to fit the
input data. Second, “zeroinfl” (default: FALSE) specifies whether a zero-inflated model is fitted for the ChIP
sample. A zero-inflated model is particularly useful for data with low sequencing depth and thus having lots of
zero-count bins.

> sampleFit.np <- cssp.fit( bindata1, nonpa = TRUE )

> sampleFit.zi <- cssp.fit( bindata1, nonpa = TRUE, zeroinfl = TRUE )

An alternative method is to use the generalized EM method described in [Zuo and Keleş, 2012] by specifying
the “method=’gem’” argument. In [Zuo and Keleş, 2012], we notice that although this method is less time
consuming than MDE, its model estimate is not robust in many practical settings. Therefore, in our package,
we provide this method for exploratory purposes only.

> sampleFit.gem <- cssp.fit( bindata1, ngc = 0, beta.init = NULL, e0.init = 0.9,

+ tol = 0.01, method = "gem" )

The function returns an object of S4 class “CSSPFit” which includes estimates of the model parameters.
For example, “e0” is the proportion of ChIP read counts that are generated by the background model. “b” and
“mu.chip” are the shape parameter and the mean for the Negative Binomial distribution of the background reads
in the ChIP sample, respectively.

> slotNames( sampleFit )

[1] "lambdax" "lambday" "e0" "pi0"

[5] "a" "b" "mu.chip" "mu.input"

[9] "mean.sig" "size.sig" "p.sig" "prob.zero"

[13] "post.p.sig" "post.p.bind" "post.p.zero" "post.shape.sig"

[17] "post.shape.back" "post.scale.sig" "post.scale.back" "n"

[21] "k" "map.id" "pvalue" "cum.pval"

> sampleFit@b

[1] 96.55489
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> sampleFit@e0

[1] 0.9132031

> head( sampleFit@mu.chip )

1 2 3 4 5 6

115.7206 116.3892 116.1595 116.2650 116.1405 116.6877

To check the model fit, we suggest plotting the empirical distribution of continuously-corrected p-values
obtained by testing the ChIP counts against the fitted background (Fig. 1):

> slotNames( sampleFit )

[1] "lambdax" "lambday" "e0" "pi0"

[5] "a" "b" "mu.chip" "mu.input"

[9] "mean.sig" "size.sig" "p.sig" "prob.zero"

[13] "post.p.sig" "post.p.bind" "post.p.zero" "post.shape.sig"

[17] "post.shape.back" "post.scale.sig" "post.scale.back" "n"

[21] "k" "map.id" "pvalue" "cum.pval"

> ## code for Fig 1

> plot( sampleFit@pvalue, seq( 0, 1, length = length( sampleFit@pvalue ) ),

+ xlab = "P-value", ylab = "Cumulative Probability", cex = 0.3 )

null device

1

In addition, we may compute the frequency of ChIP counts using the estimated posterior distribution, and
compare that to the empirical frequency of the ChIP counts, as shown in Fig. 2.

> freqFit <- fit.freq(sampleFit, bindata1@tagCount)

> ## code for Fig 2

> plot( freqFit$freq ~ freqFit$count, ylab = "Frequency",

+ xlab = "Count", lty = 2, type = "l" )

> lines( freqFit$freq.est ~ freqFit$count, lty = 1 )

> legend( "topright", c( "Empirical", "Fitted" ), lty = 2:1 )

null device

1

2.3 Power Computation

After the CSSP model is fitted, function “cssp.power” enables computing power at a given sequencing depth
and FDR level specified by “qval” (default 0.05). In the below script, “x=sampleFit@lambday/10” specifies the
sequencing depth at which the power is evaluated, “fold=2” and “min.count=0” specify the fold change (r) and
minimum count thresholds (τNy), respectively:

> cssp.power( fit = sampleFit, x = sampleFit@lambday, ite = 5, fold = 2,

+ min.count = 0, useC = TRUE )

[1] 0.8851772

We can compute the power at various sequencing depths, ranging from 20% to 100% of the full data se-
quencing depth, as shown in Fig. 3, as follows:

> power.fit<-sapply( (1:5)/5, function(x)

+ {

+ cssp.power( fit = sampleFit, x = sampleFit@lambday*x,

+ ite = 5, fold = 0, min.count = 0,useC = TRUE )

+ })

null device

1
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Figure 1: Empirical distribution of the p-values obtained by testing the ChIP bin-level counts against the fitted
background model.

> power.fit

[1] 0.02779057 0.08397210 0.14225365 0.16756492 0.20241723

> plot(power.fit~seq(20,100,length=5), ylab="Power", type="l",

+ xlab="Sequencing Depth")

In the above power computation, the use of minimum count threshold “min.count” should adapt to the
underlying sequencing depth of the data. In practice, we can use the values of intensity percentiles of the
bin-level Poisson processes. Such values can be estimated by function “qBBT”. This function estimates the
percentiles of bin-level Poisson distributions based on their estimated posterior distributions.

> fit.tail1 <- qBBT( fit = sampleFit, prob = 0.99, depth = sampleFit@lambday )

> fit.tail2 <- qBBT( fit = sampleFit, prob = 0.99, depth = sampleFit@lambday/10 )

> fit.tail1

[1] 187.9458

> fit.tail2

[1] 18.79458

For example, we may compute the power for our example data at 10% of its current sequencing depth,
with fold change threshold being 2 and minimum count threshold being the 99% of the ChIP sample bin-level
intensities by the code below. Notice that the sequencing depth of the “x” argument in the “cssp.power” function
must be the same as the “depth” argument in the “qBBT” function before.

> cssp.power( fit = sampleFit, x = sampleFit@lambday*0.1, ite = 5,

+ fold = 2, min.count = fit.tail2, useC = TRUE )

2.4 Supplementary Functions

CSSP package can be used to estimate an upper bound on the power of other peak callers. We notice that many
peak callers do not explicitly report the underlying fold change and minimum thresholds. In this situation, it
is important to estimate these two thresholds required by our model. It is desirable to summarize the total
number of reads overlapping these binding positions. Here, we introduce the additional functionalities provided
by CSSP for mapping tag counts to binding positions.
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Figure 2: The frequency plots for ChIP bin-level counts.

Binding positions can be reported at either the nucleotide level or as peak intervals. Function “bindcount”
maps aligned reads to binding positions reported at the nucleotide level. The argument “bindpos” is a list of
genome coordinates of binding positions for each chromosome. The “bindcount” function calculates the number
of reads mapping to regions within a distance specified by “whs” of these coordinates. The following example
uses an artificially constructed dataset “bindpos”, which contains binding positions on 5 chromosomes:

> data( bindpos )

> bind.count <- bindcount( tagdat_chip, tagdat_input, bindpos = bindpos, fragL = 100,

+ whs = 200 )

> summary( bind.count[["chr1"]] )

Length Class Mode

chip 93 -none- numeric

input 93 -none- numeric

Alternatively, for binding positions reported as peak intervals, the number of reads mapping to each interval
can be computed by function “peakcount”. The argument “peakpos” is a list of 2-column matrices representing
the genome coordinates of peak intervals for each chromosome. The following example uses an artificially
constructed dataset “peakpos”, which contains peak intervals on 5 chromosomes:

> data( peakpos )

> peak.count <- peakcount( tagdat_chip, tagdat_input, peakpos = peakpos, fragL = 100 )

> summary( peak.count[["chr1"]] )

Length Class Mode

chip 93 -none- numeric

input 93 -none- numeric

After we obtain the number of reads mapping to all binding sites, the underlying fold change and minimum
count thresholds can be computed as follows.

> thr.fold <- min( c( bind.count[[1]]$chip / bind.count[[1]]$input,

+ bind.count[[2]]$chip / bind.count[[2]]$input,

+ bind.count[[3]]$chip / bind.count[[3]]$input,

+ bind.count[[4]]$chip / bind.count[[4]]$input,

+ bind.count[[5]]$chip / bind.count[[5]]$input ) )*

+ sampleFit@lambdax / sampleFit@lambday / sampleFit@e0

> thr.count <- min( c( bind.count[[1]]$chip, bind.count[[2]]$chip,

+ bind.count[[3]]$chip, bind.count[[4]]$chip, bind.count[[5]]$chip ) )
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Figure 3: Estimated power for the sample ChIP-seq data at different percentiles of the full data sequencing
depth.

Using these values in the arguments of “cssp.power” function, an estimate of the power for the binding
positions in data ”bindpos” can be obtained by the following code. Here “qval” specifies the desired FDR level
for peak calling:

> cssp.power( fit = sampleFit, x = sampleFit@lambday, ite = 5, fold = thr.fold,

+ min.count = thr.count, qval = 0.05, useC = TRUE )

3 Session Information

R version 3.0.3 (2014-03-06)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] CSSP_1.1.2

loaded via a namespace (and not attached):

[1] splines_3.0.3 tools_3.0.3

References

[Chung et al., 2012] Chung, D., Kuan, P.-F., and Keleş, S. (2012). mosaics: MOSAiCS (MOdel-based one and
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