
QC and Affymetrix data
1Claire Wilson, 2Stuart D Pepper, 1Crispin J Miller
1Bioinformatics Group, 2Moloecular Biology Core Facility
Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington,
Manchester M20 4BX UK.

Quality Control (QC) assessment is a crucial first step in successful data analysis: before
any comparisons can be performed it is necessary to check that there were no problems
with sample processing, and that arrays are of sufficient quality to be included in a study.
The Affymetrix platform has a collection of QC metrics and accompanying guidelines that
aid the identification of problematic arrays. Detailed information about these can be found
in the Affymetrix ‘Data Analysis Fundamentals Manual’ (located at
http://www.affymetrix.com). Here, we provide a summary (and our own interpretation) of
these metrics, and show how the QC functions within the simpleaffy package in
BioConductor can be used to assess array quality. Simpleaffy provides high level
functions for reading Affymetrix .CEL files, phenotypic data, and then computing simple
things from them, such as t-tests, fold changes etc. It makes heavy use of the affy
package within BioConductor and also has some basic scatter plot functions and
mechanisms for generating high resolution journal figures.

The example dataset
The data used for all the following examples is taken from Wilson et al. (2004) ‘Amplification
protocols introduce systematic but reproducible errors into gene expression studies’
(Biotechniques 36(3):498-506), and can be downloaded from http://bioinformatics.picr.man.ac.uk.
The experiment investigated how gene expression measurements changed when two different
(but related) protocols from Affymetrix were used to prepare the RNA, and also how the data
varied with different amounts of starting material. These data are useful here, because the
experiment was, in part, designed to investigate the limits of the small sample protocol, and as a
result, provides us with a subset of arrays that failed QC.

RNA from two cell lines (MCF7 and MCF10A) was extracted with replication to provide 3 large
pools of RNA for each cell line. Aliquots from these were taken and used for subsequent
processing. The ‘cell.line’ column specifies what cell line was used; the ‘rna’ column specifies the
amount of RNA processed. All arrays produced from 10µg of starting material were processed
using the standard protocol
(http://bioinformatics.picr.man.ac.uk/mbcf/downloads/GeneChip_Target_Prep_Protocol-CR-
UK_v3.pdf); those with 1, 10 or 100ng used the small sample protocol
(http://bioinformatics.picr.man.ac.uk/mbcf/downloads/GeneChip_Small_Sample_Target_Preparati
on_Protocol-CR-UK_v1.pdf). A description of the .CEL filenames and the RNA that was
hybridised to them is shown in the table below, and forms the basis of the ‘covdesc’ file used by
simpleaffy (a white-space delimited file that describes what samples went on what chips).

Table I: Description of the samples analysed in the amplification experiment

.CEL file cell.line rna

MCF10A_r1.CEL mcf10a 10ug

MCF10A_r2.CEL mcf10a 10ug

 1

MCF10A_r3.CEL mcf10a 10ug

MCF7_r1.CEL mcf7 10ug

MCF7_r2.CEL mcf7 10ug

MCF7_r3.CEL mcf7 10ug

a100MCF10A_r1.CEL mcf10a 100ng

a100MCF10A_r2.CEL mcf10a 100ng

a100MCF10A_r3.CEL mcf10a 100ng

a100MCF7_r1.CEL mcf7 100ng

a100MCF7_r2.CEL mcf7 100ng

a100MCF7_r3.CEL mcf7 100ng

a10MCF10A_r1.CEL mcf10a 10ng

a10MCF10A_r2.CEL mcf10a 10ng

a10MCF10A_r3.CEL mcf10a 10ng

a10MCF7_r1.CEL mcf7 10ng

a10MCF7_r2.CEL mcf7 10ng

a10MCF7_r3.CEL mcf7 10ng

a1MCF10A_r1.CEL mcf10a 1ng

a1MCF10A_r2_2.CEL mcf10a 1ng

a1MCF10A_r3.CEL mcf10a 1ng

a1MCF7_r1_2.CEL mcf7 1ng

a1MCF7_r2.CEL mcf7 1ng

a1MCF7_r3_2.CEL mcf7 1ng

 2

The QC metrics implemented in simpleaffy

The figure above shows the steps one might take processing a set of samples before analysing
the data using Affymetrix’s standard algorithms. It is important to be familiar with this process, not
only because the QC metrics are designed to identify issues that occur at different stages of the
process, but also because many of them are based around values calculated by the MAS 5.0
algorithms. Details of how these algorithms work can be found in Affymetrix’s ‘Data Analysis
Fundamentals Manual’ (located at http://www.affymetrix.com), and at
http://bioinformatics.picr.man.ac.uk.

The simpleaffy function, qc, generates the most commonly used metrics:

1. Average background
2. Scale factor
3. Number of genes called present
4. 3’ to 5’ ratios for β-actin and GAPDH
5. Values for spike-in control transcripts

All of these values are parameters computed for/from the MAS 5.0 algorithm. The standard
recommendations from Affymetrix are as follows:

Average background
This should be similar across all chips, if chips have significantly different average backgrounds
this could be for a number of reasons. It might be simply that the overall signal from the array is
greater, perhaps because different amounts of cRNA were present in the hybridisation cocktails,
or because the hybridisation was more efficient in one of the reactions, incorporating more label,
and producing a brighter chip.

Scale factors
The default normalisation used by MAS 5.0 (and many other algorithms) makes the assumption
that gene expression does not change significantly for the vast majority of transcripts in an
experiment. (Note that this assumption is also explicit in any analysis that looks for a relatively
small number of changing genes within a transcript population containing many thousands (for
example, looking for ~200 differentially expressed probesets from the ~54,000 found on the U133
plus 2 array)).

 3

One consequence of this is that the trimmed mean intensity for each array should be constant.,
and by default, MAS 5.0 scales the intensity for every sample so that each array has the same
mean. The amount of scaling applied is represented by the ‘scale factor’, which, therefore,
provides a measure of the overall expression level for an array, and (assuming all else remains
constant), a reflection of how much labelled RNA is hybridised to the chip. Large variations in
scale factors signal cases where the normalisation assumptions are likely to fail due to issues
with sample quality or amount of starting material. Alternatively, they might occur if there have
been significant issues with RNA extraction, labelling, scanning or array manufacture. In order to
successfully compare data produced using different chips, Affymetrix recommend that their scale
factors should be within 3-fold of one another.

Number of genes called present (% Present)
Present/Marginal/Absent calls are generated by looking at the difference between PM and MM
values for each probe pair in a probeset. Probesets are flagged Marginal or Absent when the PM
values for that probeset are not considered to be significantly above the MM probes. As with
scale factors, large differences between the numbers of genes called present on different arrays
can occur when varying amounts of labelled RNA have been successfully hybridized to the chips.
This can occur for similar reasons (differences in array processing pipelines, variations in the
amount of starting material, etc.). The ‘% Present’ call simply represents the percentage of
probesets called Present on an array. As with Scale Factors, significant variations in % Present
call across the arrays in a study should be treated with caution. Note that the absolute value is
generally not a good metric – some cells naturally express more genes than others.

3’ to 5’ ratios
Most cell types ubiquitously express β-actin and GAPDH. These are relatively long genes, and
the majority of Affymetrix chips contain separate probesets targeting the 5’, mid and 3’ regions of
their transcripts. By comparing the amount of signal from the 3’ probeset to either the mid or 5’
probesets, it is possible to obtain a measure of the quality of the RNA hybridised to the chip. If the
ratios are high then this indicates the presence of truncated transcripts. This may occur if the in
vitro transcription step has not performed well or if there is general degradation of the RNA.
Hence, the ratio of the 3’ and 5’ signal gives a measure of RNA quality. If RNA has been
prepared using the Affymetrix Small Sample protocol instead of the Affymetrix Standard Protocol,
it is recommended that the 3’ to mid ratios be used. This is because the extra amplification step
within the small sample protocol is likely to increase the frequency of short transcripts in solution
and unavoidably introduce some 3’ bias into the population of labelled transcripts.

GAPDH is the smaller of the two genes and the 3’:5’ ratio should always be at or around 1. In the
examples below, we have set a threshold of 1.25, based on our own experiences. It is frequently
observed at just under 1; this should not be taken to mean that there is more of the 5’ probeset
than the 3’ probeset. Affymetrix suggest that a β-actin 3’:5’ ratio of less than 3 is acceptable.
Because of the inherent 3’ bias in the transcript population, it is known that data quality is not
significantly affected when 3’:5’ or 3’:mid ratios fall within these bounds.

Spike-in probesets (Hybridisation controls)
In order to verify the efficiency of the hybridisation step, some additional labelled cRNAs are
added during the latter stages of the sample preparation protocol. These transcripts (BioB, BioC,
BioD and CreX) are derived from Bacillus subtiliis: nothing else within the hybridisation cocktail
should bind to their probesets. They are spiked into the solution just prior to it being placed on an
array, and their intensity is dependent on the hybridisation/scanning steps. BioB is added at a
concentration of 1.5pM, corresponding to approximately three transcripts per cell, the lower limit
of detection for the system. BioC, BioD and CreX are spiked in at increasing concentrations.
Ideally, BioB should be called present on every array: with the newer arrays and protocols we
have found this to be the case, however an acceptable level is for it to be called present on 70%
of the chips in an experiment. If BioB is routinely absent then the assay is performing with
suboptimal sensitivity.

 4

Assessing QC measures using simpleaffy
1. Calling qc function

The function qc within simpleaffy analyses either normalised expression data, or raw data
held within an AffyBatch object. It produces an object of class QCStats that contains QC metrics
for each array in a project.

Load the simpleaffy library
> library (simpleaffy)
 # view the help pages for the function qc
> ?qc

NOTE: The function can be called with raw data and normalised data (an AffyBatch object) ONLY
if the normalized data was generated using call.exprs and the mas5 method. This is because
call.exprs generates a list of scale factors for each chip and these are stored within the
AffyBatch’s description@preprocessing slot. Scale factors are automatically written out to
screen when call.exprs is applied using mas5.

Read in all the .CEL files in the current directory and attach a phenoData object
covdesc describes the samples and is used to create the phenoData object
for more information type ?read.affy
> ampli.data <- read.affy(”covdesc”)
Normalise the data using call.exprs and mas5.
All chips will be scaled so that their mean intensity is 100
For more information type ?call.exprs
> ampli.eset <- call.exprs(ampli.data,"mas5")
Background correcting
Retrieving data from AffyBatch...done.
Computing expression calls...
........................done.
scaling to a TGT of 100 ...Scale factor for: ./MCF10A_r1.CEL 0.420253004956145
Scale factor for: ./MCF10A_r2.CEL 0.578922235057308
Scale factor for: ./MCF10A_r3.CEL 0.394833649674273
Scale factor for: ./MCF7_r1.CEL 0.291660288551772
Scale factor for: ./MCF7_r2.CEL 0.347797229427576
Scale factor for: ./MCF7_r3.CEL 0.318539156223863
Scale factor for: ./a100MCF10A_r1.CEL 0.451200408149428
Scale factor for: ./a100MCF10A_r2.CEL 0.374087365216242
Scale factor for: ./a100MCF10A_r3.CEL 0.487207458186858
Scale factor for: ./a100MCF7_r1.CEL 0.287589038443532
Scale factor for: ./a100MCF7_r2.CEL 0.284974495606986
Scale factor for: ./a100MCF7_r3.CEL 0.376484876958665
Scale factor for: ./a10MCF10A_r1.CEL 0.945369717387057
Scale factor for: ./a10MCF10A_r2.CEL 1.96143998371977
Scale factor for: ./a10MCF10A_r3.CEL 0.841535921004799
Scale factor for: ./a10MCF7_r1.CEL 0.38546207789797
Scale factor for: ./a10MCF7_r2.CEL 0.413217979099816
Scale factor for: ./a10MCF7_r3.CEL 0.48270303222115
Scale factor for: ./a1MCF10A_r1.CEL 0.923881708561097
Scale factor for: ./a1MCF10A_r2_2.CEL 2.29265382455517
Scale factor for: ./a1MCF10A_r3.CEL 4.02474782730734
Scale factor for: ./a1MCF7_r1_2.CEL 3.59230194412852
Scale factor for: ./a1MCF7_r2.CEL 3.1613079022588
Scale factor for: ./a1MCF7_r3_2.CEL 2.01330394340637
Getting probe level data...
Computing p-values
Doing PMA Calls

see what data is stored in ampli.eset@description@preprocessing
> names(ampli.eset@description@preprocessing)
[1] "filenames" "affyversion" "sfs" "tgt"

access each piece of information within ampli.eset@description@preprocessing
scale factors
> ampli.eset@description@preprocessing$sfs
 [1] 0.4202530 0.5789222 0.3948336 0.2916603 0.3477972 0.3185392 0.4512004

 5

 [8] 0.3740874 0.4872075 0.2875890 0.2849745 0.3764849 0.9453697 1.9614400
[15] 0.8415359 0.3854621 0.4132180 0.4827030 0.9238817 2.2926538 4.0247478
[22] 3.5923019 3.1613079 2.0133039
filenames so that the scale factors can be related to their chips
> ampli.eset@description@preprocessing$filenames
 [1] "./MCF10A_r1.CEL" "./MCF10A_r2.CEL" "./MCF10A_r3.CEL"
 [4] "./MCF7_r1.CEL" "./MCF7_r2.CEL" "./MCF7_r3.CEL"
 [7] "./a100MCF10A_r1.CEL" "./a100MCF10A_r2.CEL" "./a100MCF10A_r3.CEL"
[10] "./a100MCF7_r1.CEL" "./a100MCF7_r2.CEL" "./a100MCF7_r3.CEL"
[13] "./a10MCF10A_r1.CEL" "./a10MCF10A_r2.CEL" "./a10MCF10A_r3.CEL"
[16] "./a10MCF7_r1.CEL" "./a10MCF7_r2.CEL" "./a10MCF7_r3.CEL"
[19] "./a1MCF10A_r1.CEL" "./a1MCF10A_r2_2.CEL" "./a1MCF10A_r3.CEL"
[22] "./a1MCF7_r1_2.CEL" "./a1MCF7_r2.CEL" "./a1MCF7_r3_2.CEL"
tgt is the target intensity each chip was scaled to
> ampli.eset@description@preprocessing$tgt
[1] 100
which version of the affy package was used
> ampli.eset@description@preprocessing$affyversion
[1] "1.4.30"
> qc.data <- qc(ampli.data, ampli.eset)

Alternatively, you can call qc with just the raw data, in which case it will be normalized using
mas5 so that the scale factors can be calculated. This will obviously take a little more time to run.

2. Data stored within the object created by calling qc()

qc returns an object containing scale-factors, % present, average, minimum, maximum and mean
background intensities, and bioB, bioC, bioD and creX present calls (1=present; 0=not present). It
also stores 3’, 5’ and mid values for the QC probes, ratios(qc) generates a table of qc ratios
for these probes. See ?qc for more details.

> slotNames(qc.data)
[1] "scale.factors" "target" "percent.present"
[4] "average.background" "minimum.background" "maximum.background"
[7] "spikes" "qc.probes" "bioBCalls"

scale.factors contains a list of scale factors applied to each chip;
> qc.data@scale.factors
 [1] 0.4202530 0.5789222 0.3948336 0.2916603 0.3477972 0.3185392 0.4512004
 [8] 0.3740874 0.4872075 0.2875890 0.2849745 0.3764849 0.9453697 1.9614400
[15] 0.8415359 0.3854621 0.4132180 0.4827030 0.9238817 2.2926538 4.0247478
[22] 3.5923019 3.1613079 2.0133039

target is the target intensity that each chip was scaled to;
> qc.data@target
[1] 100

percent.present is a list of the percentage of probesets called present on each chip;
> qc.data@percent.present
 ./MCF10A_r1.CEL.present ./MCF10A_r2.CEL.present ./MCF10A_r3.CEL.present
 53.22892 51.65373 52.91029
 ./MCF7_r1.CEL.present ./MCF7_r2.CEL.present ./MCF7_r3.CEL.present
 57.24543 56.10106 55.37405
 ./a100MCF10A_r1.CEL.present ./a100MCF10A_r2.CEL.present ./a100MCF10A_r3.CEL.present
 47.58785 48.04560 48.35076
 ./a100MCF7_r1.CEL.present ./a100MCF7_r2.CEL.present ./a100MCF7_r3.CEL.present
 50.53628 52.21469 49.03738
 ./a10MCF10A_r1.CEL.present ./a10MCF10A_r2.CEL.present ./a10MCF10A_r3.CEL.present
 41.87048 33.24059 40.26837
 ./a10MCF7_r1.CEL.present ./a10MCF7_r2.CEL.present ./a10MCF7_r3.CEL.present
 48.12189 48.64695 48.58861
 ./a1MCF10A_r1.CEL.present ./a1MCF10A_r2_2.CEL.present ./a1MCF10A_r3.CEL.present
 41.40825 33.62653 27.55913
 ./a1MCF7_r1_2.CEL.present ./a1MCF7_r2.CEL.present ./a1MCF7_r3_2.CEL.present
 32.76938 31.13136 35.28699

average.background, minimum.background, maximum.background are all lists detailing
the average, minimum and maximum background for each chip;

 6

> qc.data@average.background
 ./MCF10A_r1.CEL ./MCF10A_r2.CEL ./MCF10A_r3.CEL ./MCF7_r1.CEL
 63.33604 59.67562 63.08459 54.79780
 ./MCF7_r2.CEL ./MCF7_r3.CEL ./a100MCF10A_r1.CEL ./a100MCF10A_r2.CEL
 56.55383 59.26790 82.39357 80.43839
./a100MCF10A_r3.CEL ./a100MCF7_r1.CEL ./a100MCF7_r2.CEL ./a100MCF7_r3.CEL
 72.82438 82.97151 80.14180 82.91695
 ./a10MCF10A_r1.CEL ./a10MCF10A_r2.CEL ./a10MCF10A_r3.CEL ./a10MCF7_r1.CEL
 64.83461 61.27757 116.11719 77.48265
 ./a10MCF7_r2.CEL ./a10MCF7_r3.CEL ./a1MCF10A_r1.CEL ./a1MCF10A_r2_2.CEL
 76.41997 75.32842 81.97728 78.91661
 ./a1MCF10A_r3.CEL ./a1MCF7_r1_2.CEL ./a1MCF7_r2.CEL ./a1MCF7_r3_2.CEL
 68.31636 59.52758 81.64647 93.72851
> qc.data@minimum.background
 ./MCF10A_r1.CEL ./MCF10A_r2.CEL ./MCF10A_r3.CEL ./MCF7_r1.CEL
 58.56850 56.92324 58.85309 51.95272
 ./MCF7_r2.CEL ./MCF7_r3.CEL ./a100MCF10A_r1.CEL ./a100MCF10A_r2.CEL
 53.21018 54.04524 77.05848 70.90370
./a100MCF10A_r3.CEL ./a100MCF7_r1.CEL ./a100MCF7_r2.CEL ./a100MCF7_r3.CEL
 69.39079 75.62456 74.40889 70.72456
 ./a10MCF10A_r1.CEL ./a10MCF10A_r2.CEL ./a10MCF10A_r3.CEL ./a10MCF7_r1.CEL
 61.17076 58.02036 95.00356 71.73734
 ./a10MCF7_r2.CEL ./a10MCF7_r3.CEL ./a1MCF10A_r1.CEL ./a1MCF10A_r2_2.CEL
 70.98562 71.13894 76.71987 70.66398
 ./a1MCF10A_r3.CEL ./a1MCF7_r1_2.CEL ./a1MCF7_r2.CEL ./a1MCF7_r3_2.CEL
 61.93977 55.82989 75.88498 84.54410
> qc.data@maximum.background
 ./MCF10A_r1.CEL ./MCF10A_r2.CEL ./MCF10A_r3.CEL ./MCF7_r1.CEL
 68.30370 62.90242 67.32432 56.89239
 ./MCF7_r2.CEL ./MCF7_r3.CEL ./a100MCF10A_r1.CEL ./a100MCF10A_r2.CEL
 59.84686 64.49775 87.14364 86.77520
./a100MCF10A_r3.CEL ./a100MCF7_r1.CEL ./a100MCF7_r2.CEL ./a100MCF7_r3.CEL
 76.66844 89.24477 86.83688 97.07952
 ./a10MCF10A_r1.CEL ./a10MCF10A_r2.CEL ./a10MCF10A_r3.CEL ./a10MCF7_r1.CEL
 67.90226 64.38952 135.87939 80.52142
 ./a10MCF7_r2.CEL ./a10MCF7_r3.CEL ./a1MCF10A_r1.CEL ./a1MCF10A_r2_2.CEL
 81.11707 78.84590 90.65008 87.51111
 ./a1MCF10A_r3.CEL ./a1MCF7_r1_2.CEL ./a1MCF7_r2.CEL ./a1MCF7_r3_2.CEL
 79.99243 62.54194 87.70483 103.33656

spikes is a matrix containing normalised values for each of the spike controls
> colnames(qc.data@spikes)
[1] "AFFX-r2-Ec-bioB-3_at" "AFFX-r2-Ec-bioC-3_at" "AFFX-r2-Ec-bioD-3_at"
[4] "AFFX-r2-P1-cre-3_at"

A note on GAPDH and β-actin probesets

For some arrays, more than one probeset targets the GAPDH and β-actin transcripts. In this
situation, we’ve attempted to make a sensible choice as to which probeset to use in calculating
3’:5’ ratios. To find out which probesets are used for your arrays use the following methods on the
AffyBatch object that contains the raw data and the syntax described below:
getGapdh3, getGapdhM, getGapdh5, getActinb3, getActinbM, getActinb5,
getBioB, getBioC, getBioD, getCreX.
e.g. to find out which probeset best represents the GAPDH 3’ region:
> getGapdh3(cleancdfname(cdfName(ampli.data)))

A note of warning!
The qc function has not been tested on every possible chip type – the majority of development
has been on HGU95A arrays and newer. Again, for a list of which chips it has been tested on,
how the testing was done, and the results of the comparisons, see the simpleaffy website
(http://bioinformatics.picr.man.ac.uk/simpleaffy/index.jsp).

 7

3. Visualising data stored in a QCStats object

A plot of qc data is obtained by plot(qc.data). The resultant image takes a bit of explaining,
but the data is portrayed in a way that makes outlier chips easily identifiable. In the following
examples a subset of the amplification dataset is first used to illustrate the different features of the
qc plot, before we consider all the qc data for the amplification dataset. Finally, ways to customise
the qc plot are described.

generate a subset of the amplification data
contains only data on MCF10A cells
> subset <- ampli.data[,c(1:3,7:9,13:15,19:21)]
> subset.eset <- call.exprs(subset, “mas5”)
> qc.subset <- qc(subset, subset.eset)

plot the qc graph
> plot(qc.subset)
to view options for plotting the qc plot
> ?plot.qc.stats

to save the diagram in a .png format use the journalpng function
view help files for journalpng function
> ?journalpng
> journalpng(file=”qc_subset.png”, height=6, width=6)
> plot(qc.subset)
> dev.off()

 8

The figure is plotted from the bottom up with the first chip being at the base of the diagram and
the last chip in the QCStats object at the top. If the standard steps for generating a QCStats
object are followed, then this corresponds to the order of your samples in the AffyBatch object.
Dotted horizontal lines separate the plot into rows, one for each chip. Dotted vertical lines provide
a scale from -3 to 3.

Each row shows the %present, average background, scale factors and GAPDH / β-actin ratios for
an individual chip.

• GAPDH 3’:5’ values are plotted as circles. According to Affymetrix they should be about
1. GAPDH values that are considered potential outliers (ratio > 1.25) are coloured red,
otherwise they are blue.

• β-actin, 3’:5’ ratios are plotted as triangles. Because this is a longer gene, the
recommendation is for the 3’:5’ ratios to be below 3; values below 3 are coloured blue,
those above, red.

• The blue stripe in the image represents the range where scale factors are within 3-fold of
the mean for all chips. Scale factors are plotted as a line from the centre line of the
image. A line to the left corresponds to a down-scaling, to the right, to an up-scaling. If
any scale factors fall outside this ‘3-fold region’, they are all coloured red, otherwise they
are blue.

• %present and average background, are listed to left of the figure. These are discussed in
more detail below.

4. Analysing QC data for the amplification experiment
R code used to generate the data
Read in the data, for more information type ?read.affy
> ampli.data <- read.affy(”covdesc”)
Normalise the data using call.exprs and mas5.
All chips will be scaled so that their mean intensity is 100
For more information type ?call.exprs
> ampli.eset <- call.exprs(ampli.data,"mas5")
> qc.data <- qc(ampli.eset, ampli.data)
> plot(qc.data)

 9

In order to assess the quality of data generated in this experiment, we will consider four out of the
five metrics mentioned at the start.

1. Average background
The average background for each chip shows a considerable amount of variation. This is
represented in the figure above by colouring the average background values for all chips red.
However upon closer inspection it is clear that the average background is higher for those
samples that were processed using the amplification protocol compared to those samples
processed using the standard protocol. In particular the average background for the 3rd replicate
in the ‘MCF10A amplified from 10ng’ set has a value around 116, while all other values tend to be
between 55 and 95. Although this may indicate that there is a problem with this sample all other
QC measures correlate well with those of its peers (as seen below).

2. Scale factor
The scale factors for all ‘MCF7 amplified from 1ng’ replicates and replicates 2 and 3 of the
‘MCF10A amplified from 1ng’ samples are all greater than 3-fold away from the average scale
factor for all samples. This suggests that the overall intensity of these samples was lower,
resulting in higher scale factors. This in turn may result from there being less RNA present in
these samples.

3. Number of genes called present
Although the number of genes called present (% present calls) shows a broad spread in values
across the whole experiment (27-57%) there is good general agreement between samples in
each replicate group and between each experimental condition. The qc plot has coloured these

 10

numbers red to indicate that there is a spread of more than 10% across the whole experiment,
but this needs to be considered in conjunction with the other qc metrics. If we consider percent
present and scale factor together, it can be seen that the 1ng samples that have lower % present
calls also have higher scale factors (all 1ng MCF7 samples and replicates 2,3 of the MCF10 set
These factors certainly warrant further attention. Higher scale factors in conjunction with lower
percent present calls may indicate that less RNA has been hybridised to these chips.

4. 3’ to 5’ ratios for β-actin and GAPDH
At first glance the results for the 3’:5’ ratios in the above figure appear to be less than satisfactory,
with many of the GAPDH and β-actin ratios being flagged.. This may indicate that theses samples
contain degraded RNA. However these also coincide with samples prepared using the
amplification protocol, and Affymetrix suggest that in these situations it is often more appropriate
to assess the 3’:mid ratios. All samples prepared using the standard protocol have β-actin and
GAPDH 3’:5’ ratios that fall within the recommended values.

If 3’:mid ratios are plotted (using the command plot(qc.data,usemid=T); see figure below)
then all samples have acceptable β-actin 3’:mid ratios. However, some of the samples still have
high GAPDH ratios.

R code used to generate the plot
> plot(qc.data, usemid=T)

QC conclusions
For both cell lines, all 1ng samples were discounted from any further analysis on the basis of
these QC data. This was because the majority of the replicates in this group (all the MCF7
replicates and MCF10A replicates 2 and 3) had higher scale factors than the any of the other
groups of samples, lower % present calls and higher GAPDH 3’:mid ratios. These observations
suggested that there could be degraded RNA present within the, samples or that the amplification

 11

protocol had not worked successfully for for the 1ng samples, resulting in less RNA being
hybridised to the chip. Furthermore because of its lower percent present call and higher scale
factor, the 2nd replicate in MCF10A amplified from 10ng was repeated, and the original chip
discarded from any further analysis. The QC plot for the new data set is shown below and uses
3’:mid ratios for both β-actin and GAPDH.

R code used to generate the plot
> new.eset <- call.exprs(new.ampli, "mas5")
> qc.new <- qc(new.ampli, new.eset)
> plot(qc.new,usemid=T)

Although there is still a spread in the average background, because in general, the remaining QC
metrics fall within the current guidelines (in particular the scale factors for all chips are within 3-
fold of one another) this was not considered significant enough to reject arrays. Similarly, two
samples (replicate 1 MCF10A amplified from 10ng and replicate 3 MCF7 amplified from 100ng)
have higher GAPDH ratios, however, this threshold is fairly stringent, and in the context of the
other QC metrics, it was decided not to fail these arrays.

Customising the QC plot
Although the qc plot is generated using a call to plot(), what actually happens is that the
QCStats object is passed to the plot.qc.stats function that does the work. This function can
take a number of parameters, detailed below.

 12

fc.line.col: the colour to mark the dotted horizontal dotted lines with, default is black
sf.ok.region: the colour to mark the region in which scale factors lie within appropriate
bounds, default is pale blue
chip.label.col: the colour to mark the fold change lines with, default is black
sf.thresh: Scale factors must be within this threshold of the mean scale factor for all chips,
default is 3. If any scale factors fall outside this region, then the line connecting them to the
horizontal dotted 0 line is coloured red if they all fall within 3-fold of the mean scale factor then
this line is coloured blue.
gdh.thresh: GAPDH ratios (either 3’:5’ or 3’:mid, depending on whether or not usemid is set
to true or not) must be within this threshold of the mean scale factor for all chips, default is 1.25. If
they fall within this limit then they are plotted in blue if they fall outside this limit they are plotted in
red.
ba.thresh: β-actin ratios (either 3’:5’ or 3’:mid, depending on whether or not usemid is set to
true or not) must be within this threshold of the mean scale factor for all chips, default is 3. If they
fall within this limit then they are plotted in blue if they fall outside this limit they are plotted in red.
present.thresh: The percentage of genes called present must lie within this range, the
default is 10%.
bg.thresh: Array backgrounds must lie within this range, the default is 20 units.
label: A vector containing alternative sample names.
main: A title for the plot, the default is “QC Stats”.
usemid: If true then the 3’Mid ratios of β-actin and GAPDH are plotted otherwise the 3’:5’ ratios
are plotted.
type: If ‘l’ then the plot is constructed as detailed above and it is displayed vertically, if ‘c’ then
the plot is displayed as a circle and chips are numbered sequentially from 1.

 13

 14

	QC and Affymetrix data
	The example dataset
	Table I: Description of the samples analysed in the amplific

	The QC metrics implemented in simpleaffy
	Assessing QC measures using simpleaffy
	1. Calling qc function
	2. Data stored within the object created by calling qc()
	A note on GAPDH and (-actin probesets
	A note of warning!
	3. Visualising data stored in a QCStats object
	4. Analysing QC data for the amplification experiment
	QC conclusions

	Customising the QC plot

