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1 Introduction

maSigPro is a R package that initially was developed for the analysis of single and multiseries
time course microarray experiments. Recently maSigPro has been adapted to deal also with
Next Generation-Sequencing (NGS) series of data in a proper way. The usage of this opcion
is explained in 5 section.
maSigPro follows a two steps regression strategy to find genes with significant temporal
expression changes and significant differences between experimental groups. The method de-
fines a general regression model for the data where the experimental groups are identified by
dummy variables. The procedure first adjusts this global model by the least-squared technique

1



to identify differentially expressed genes and selects significant genes applying false discov-
ery rate control procedures. Secondly, stepwise regression is applied as a variable selection
strategy to study differences between experimental groups and to find statistically significant
different profiles. The coefficients obtained in this second regression model will be useful to
cluster together significant genes with similar expression patterns and to visualize the results.
This document is a example-based guide for the use of maSigPro. We recommend to open
a R sesion and go through this tutorial running the code given at the different sections. The
guide does not provide a detailed description of the functions of the package or demonstrates
the statistical basis of the methodology. The later is described in the work by (Conesa et al.,
2006).

2 Getting started

The maSigPro package can be obtained from the Bioconductor repository or downloaded
from http://www.ua.es/personal/mj.nueda and http://bioinfo.cipf.es/downloads. Load
maSigPro by typing at the R prompt:

> library(maSigPro) # load maSigPro library

The on-line help of maSigPro can be started by typing at the R prompt:

>help(package="maSigPro") #for package help

>?p.vector #for function help

The analysis approach implemented in maSigPro is executed in 5 major steps (Figure 1)
which are run by the package core functions make.design.matrix(), p.vector(), T.fit(),
get.siggenes() and see.genes(). Additionally, the package provides the wrapping function
maSigPro() which executes the entire analysis in one go.
In the following section we will explain the usage of each of these funcions using as example a
data set from a multiple series time course experiment. At the end of this document we will
also explain how to apply maSigPro to other experimental designs.

3 Multiple Series Time Course Experiment

For this section we will use a public data set from a plant abiotic stress study performed at
the TIGR Institute by (Rensink et al., 2005). In this study, potato plants were subjected
to three different types of abiotic stresses and gene expression was monitored at three time
points after the start of the treatments. RNA was also collected from non-stressed plants at
the same time points and all samples where hybridased against a common control on a 11K
cDNA potato chip. There are three biological replicates for each experimental condition. For
speed in this example we will use a random 1000 genes data subset of this study. This data
set is part of the data supplied by the maSigPro package. The original data can be found
at http://www.tigr.org/tdb/potato/index.shtml.

Before proceeding with this tutorial we will define some of the terms that will be used along
this document. We denote experimental groups as the experimental factor for which temporal
profiles are defined, like ”Treatment A”, ”Tissue1”, etc; conditions are each experimental group
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Figure 1: maSigPro pipeline. Major functions.

vs. time combination like ”Treatment A at Time 0” conditions can have or not replicates.
Variables are the regression variables defined by the maSigPro approach for the experi-
ment regression model. maSigPro defines dummy variables to model differences between
experimental groups. Dummy variables, Time and their interactions are the variables of the
regression model. Load the data in your workspace:

> data(data.abiotic)

> data(edesign.abiotic)

The edesign.abiotic object describes the experimental design of this experiment in maSig-
Pro format.

> edesign.abiotic

Time Replicate Control Cold Heat Salt

Control_3H_1 3 1 1 0 0 0

Control_3H_2 3 1 1 0 0 0

Control_3H_3 3 1 1 0 0 0

Control_9H_1 9 2 1 0 0 0

Control_9H_2 9 2 1 0 0 0

Control_9H_3 9 2 1 0 0 0

Control_27H_1 27 3 1 0 0 0

Control_27H_2 27 3 1 0 0 0

Control_27H_3 27 3 1 0 0 0

Cold_3H_1 3 4 0 1 0 0

Cold_3H_2 3 4 0 1 0 0

Cold_3H_3 3 4 0 1 0 0

Cold_9H_1 9 5 0 1 0 0
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Cold_9H_2 9 5 0 1 0 0

Cold_9H_3 9 5 0 1 0 0

Cold_27H_1 27 6 0 1 0 0

Cold_27H_2 27 6 0 1 0 0

Cold_27H_3 27 6 0 1 0 0

Heat_3H_1 3 7 0 0 1 0

Heat_3H_2 3 7 0 0 1 0

Heat_3H_3 3 7 0 0 1 0

Heat_9H_1 9 8 0 0 1 0

Heat_9H_2 9 8 0 0 1 0

Heat_9H_3 9 8 0 0 1 0

Heat_27H_1 27 9 0 0 1 0

Heat_27H_2 27 9 0 0 1 0

Heat_27H_3 27 9 0 0 1 0

Salt_3H_1 3 10 0 0 0 1

Salt_3H_2 3 10 0 0 0 1

Salt_3H_3 3 10 0 0 0 1

Salt_9H_1 9 11 0 0 0 1

Salt_9H_2 9 11 0 0 0 1

Salt_9H_3 9 11 0 0 0 1

Salt_27H_1 27 12 0 0 0 1

Salt_27H_2 27 12 0 0 0 1

Salt_27H_3 27 12 0 0 0 1

Note that arrays are given in rows and experiment descriptors are provided in columns. The
first column shows the value that variable Time takes in each array. Replicates column
is an index column that indicates the replicated arrays: all arrays belonging to the same
experimental condition must be given the same number. The remaining columns are binary
columns that give the assignment of arrays to experimental groups. There are as many binary
columns as experimental groups and arrays take the value 1 or 0 whether they belong or not
to that experimental group.
The data.abiotic object is a matrix with normalized gene expression data. Genes must
be in rows and arrays in columns. maSigPro uses row and colunm names of the data and
edesign objects throughout the package. Array names are the labels of the rows of the edesign
object and columns of the data object that must be in the same order. GeneIDs are the labels
of the rows in the data object. And experiment descriptors are put in the column names of
the edesign object.

> colnames(data.abiotic)

> rownames(edesign.abiotic)

> colnames(edesign.abiotic)

> rownames(data.abiotic)

3.1 Defining the regression model

Create a regression matrix for the full regression model:

> design <- make.design.matrix(edesign.abiotic, degree = 2)
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This example has three time points, so we can consider up to a quadratic regression model
(degree = 2). Larger number of time points would potentially allow a higher polynomial de-
gree. design is a list. Its element dis is the actual regression design matrix. groups.vector
contains the assignment of regression variables to experimental groups.

> design$groups.vector

[1] "ColdvsControl" "HeatvsControl" "SaltvsControl"

[4] "Control" "ColdvsControl" "HeatvsControl"

[7] "SaltvsControl" "Control" "ColdvsControl"

[10] "HeatvsControl" "SaltvsControl"

3.2 Finding significant genes

The next step is to compute a regression fit for each gene. This is done by the function
p.vector(). This function also computes the p-value associated to the F -Statistic of the
model, which is used to select significant genes. By default maSigPro corrects this p-value
for multiple comparisons by applying the linear step-up (B-H) false discovery rate (FDR) pro-
cedure (Benjamini and Hochberg, 1995). This procedure can be modified by choosing another
option of the p.adjust function that is controlled by the function parameter MT.adjust of
p.vector. The level of FDR control is given by the function parameter Q.

> fit <- p.vector(data.abiotic, design, Q = 0.05, MT.adjust = "BH", min.obs = 20)

p.vector() returns a list of values:

> fit$i # returns the number of significant genes

> fit$alfa # gives p-value at the Q false discovery control level

> fit$SELEC # is a matrix with the significant genes and their expression values

3.3 Finding significant differences

Once significant genes have been found, maSigPro applies a variable selection procedure to
find significant variables for each gene. This will ultimatelly be used to find which are the
profile differences between experimental groups. This step is done by the T.fit() function.

> tstep <- T.fit(fit, step.method = "backward", alfa = 0.05)

T.fit() executes stepwise regression. The step.method can be ”backward” or ”forward” in-
dicating whether the step procedure starts from the model with all or none variables. Use
method ”two.ways.backward” and ”two.ways.forward” to allow variables to both get in and
out. At each regression step the p-value of each variable is computed and variables get in/out
the model when this p-value is lower or higher than the given cut-off value alfa. tstep is also
a list. Its element sol is a matrix of statistical results obtained by the stepwise regression.
For each selected gene the following values are given:

p-value of the regression ANOVA

R-squared of the model

p-value of the regression coefficients of the selected variables
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3.4 Obtaining lists of significant genes

The following step is to generate lists of significant genes according to the way we want to see
results. This is done by the function get.siggenes(). This function has two major arguments,
rsq and vars.

rsq: is a cutt-off value for the R-squared of the regression model.

vars: is used to indicate how to group variables to show results. There are 3 possible values:

”groups”: This will generate a list of significant genes for each experimental group.
The list corresponding to the reference group will contain genes whose expression
profile is significantly different from a 0 profile. The lists corresponding to the
remaining experimental groups will contain genes whose profiles are different from
the reference group.

”all”: One unique list of significant genes a any model variable will be produced.

”each”: There will be as many lists as variables in the regression model. This can be
used to analyze specific differences, for example genes that have linear or saturation
kinetics.

> sigs <- get.siggenes(tstep, rsq = 0.6, vars = "groups")

> sigs$summary

The element summary is a data frame containing the significant genes for the selected vars

You can further explore your results by:

> names(sigs$sig.genes)

[1] "Control" "ColdvsControl" "HeatvsControl" "SaltvsControl"

> names(sigs$sig.genes$ColdvsControl)

[1] "sig.profiles" "coefficients" "group.coeffs" "sig.pvalues"

[5] "g" "edesign" "groups.vector"

3.5 Graphical display

maSigPro has a number of functions for the visual exploration of the results.
suma2Venn() displays the summary result as a Venn diagram. For example, the following
command will make a Venn diagram of the significant genes for the three stress experimental
groups (Figure 2).

> suma2Venn(sigs$summary[, c(2:4)])

PlotGroups() creates a plot of gene expression profiles by experimental group. For example,
STMDE66 is a gene which shows significant profile differences between the control and the
cold and salt strees experimental groups, but not significant differences between control and
heat experimental groups (Figure 3).
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Figure 2: Venn Diagram for Cold, Heat and Salt stress significant genes

> STMDE66 <- data.abiotic[rownames(data.abiotic)=="STMDE66", ]

> PlotGroups (STMDE66, edesign = edesign.abiotic)

We can also add to the plot the regression curve computed for this gene.

> PlotGroups (STMDE66, edesign = edesign.abiotic, show.fit = T,

+ dis = design$dis, groups.vector = design$groups.vector)

Use see.genes() to visualize the result of a group of genes, for example, to visualize the
significant genes of the ControlvsSalt comparison. see.genes() performs a cluster analysis
to group genes by similar profiles. The resulting clusters are then plotted in two fashions:
as experiment-wide expression profiles and as by-groups profiles. The first plot (Figure 4)
will help to evaluate the consistency of the clusters while the second plot shows clearly the
differences between groups (Figure 5).

see.genes(sigs$sig.genes$ColdvsControl, main = "ColdvsControl", show.fit = T,

dis =design$dis, cluster.method="kmeans" ,cluster.data = 1, k = 9)

3.6 The maSigPro wrapper function

The five analyse steps decribed in the previous sections can be executed jointly by the function
maSigPro(). The minimal sintax is:

> ts.analysis <- maSigPro (data.abiotic, edesign.abiotic)

Note that the default option directs the graphical output to a pdf. Set graphics off by pdf =

FALSE. Other arguments are those of the different called functions. For example:

> ts.analysis <- maSigPro (data.abiotic, edesign.abiotic,

step.method = "two.ways.backward",

vars = "all", cluster.method = "hclust")
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Figure 3: PlotGroups of gene STMDE66 without and with display or regression curves

4 Other designs

4.1 Single Series Time Course

The use of maSigPro in Single Series Time Course experiment is straightforward. Make
a edesign object with just one group column containing all 1s and proceed as described
above. Note that when using the get.siggenes() funcion the options ”all” and ”groups” of
the argument vars will return the same result. You can use option ”each” to analyze the type
of responses present in the significant genes: significant genes at the ”intercept” term will have
a significant expression value at the starting time; genes associated to the variable ”Time”
will have a significant linear component, which can be induction or repression depending on
the sign of their coefficient; genes associated to the variable ”Time2” will show a change in
the linear response that might be indicating transitory or saturation reponses, etc...
Here follows an example of a Single Series analysis.

## make a single series edesign

> Time <- rep(c(1,5,10,24), each = 3)

> Replicates <- rep(c(1:4), each = 3)

> Group <- rep(1,12)

> ss.edesign <- cbind(Time,Replicates,Group)

> rownames(ss.edesign) <- paste("Array", c(1:12), sep = "")

## Create data set

> ss.GENE <- function(n, r, var11 = 0.01, var12 = 0.02, var13 = 0.02,

var14 = 0.02, a1 = 0, a2 = 0, a3 = 0, a4 = 0) {

tc.dat <- NULL

for (i in 1:n) {
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Figure 4: Cluster Analysis ColdvsControl significant genes
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Figure 5: Expression Profiles ColdvsControl significant genes
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gene <- c(rnorm(r, a1, var11), rnorm(r, a1, var12),

rnorm(r, a3, var13), rnorm(r, a4, var14))

tc.dat <- rbind(tc.dat, gene)

}

tc.dat }

> flat <-ss.GENE(n = 85, r = 3) # flat

> induc <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 0.2, a3 = 0.6, a4 = 1) # induction

> sat <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 1, a3 = 1.1, a4 = 1.2) # saturation

> ord <- ss.GENE(n = 5, r = 3, a1 = -0.8, a2 = -1, a3 = -1.3, a4 =-0.9) # intercept

> ss.DATA <- rbind(flat, induc,sat,ord)

> rownames(ss.DATA) <- paste("feature", c(1:100), sep = "")

> colnames(ss.DATA) <- paste("Array", c(1:12), sep = "")

# run maSigPro

> ss.example <- maSigPro(ss.DATA, ss.edesign, vars="each")

4.2 Common Starting Time

The following example illustrates how to build the edesign matrix when a common 0 time is
applicable to the different experimental groups.

> data(edesignCT)

In this example Array1 and Array2 do not belong to any treatment. They are a common
reference for all groups, values without any treatment at time 0.

4.3 Using Measured Parameters as Independent Variable

The regression approach followed by maSigPro allows that gene expression profile differences
can not only be evaluated as a function of Time but another variables, such as a physiological
parameter measured at the experimental condition, can be used as well as the independent
variable.
The following example illustrates how to build the edesign matrix in such case. In this
experiment gene expression was analyzed as a response to a temperature shift in a growing
E.coli culture. The culture OD was measured for each sample.

> data(edesign.OD)

5 Next Generation-Sequencing series

maSigPro uses lm() function to fit a linear model where statistics for inference use normal
distribution. This is the right treatment when dealing with normal distributed data or big
samples. However, for non-normal small samples, results can not be correct.
The statistical distribution for tag counts data as RNA-Seq data may be Poisson or Binomial.
However, the overdispersion of the data suggest the Negative Binomial (NB) can model these
distributions in a better way. This distribution depends on a θ parameter to model the
overdispersion that is related to the mean(µ) in the following way:

Y ∼ NB(θ), V ar(Y ) = µ+
µ

θ
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maSigPro has been adapted to take into account non-normal distribution of the data. New
arguments have been added in p.vector function to deal with this type of data in a proper
way:

counts: a logical indicating whether your data are counts. By default is FALSE for mi-
croarray treatment.

theta: θ parameter for negative.binomial family. By default θ = 10.

family: the distribution function to be used in the GLM. It must be specified as a func-
tion: gaussian(), poisson(), negative.binomial(theta)... If NULL family will be nega-
tive.binomial(theta) when counts=TRUE or gaussian() when counts=FALSE.

The recommended analysis to deal with RNA-Seq data is the GLM with negative.binomial
family. θ must be specified and it can be computed by using available methods as edgeR
((Robinson et al., 2010)). The application of maSigPro with several values of θ to the same
datasets did not reveal significant differences in gene selection. Taking this into consideration
we have put by default θ = 10 for being an average value. Moreover we give to the user the
option of applying whatever exponential family to explore other possibilities.
NBdata is a subset of a bigger normalized dataset with 2 experimental groups, 6 time-points
and 3 replicates. Simulation has been done by using a negative binomial distribution with
θ = 5 to illustrate this section. The first 20 genes are simulated with changes among time.
NBdesign is the design matrix.

> data(NBdata)

> data(NBdesign)

> d <- make.design.matrix(NBdesign)

If we can use maSigPro with theta = 10:

> library(MASS)

> NBp <- p.vector(NBdata, d, counts=TRUE)

> NBt <- T.fit(NBp)

> get<-get.siggenes(NBt, vars="all")

> get$summary

These genes can be grouped in 4 clusters 6:

see.genes(get$sig.genes, k = 4)

If we can use maSigPro with a specific theta, in this case, theta = 5:

> NBp <- p.vector(NBdata, d, counts=TRUE, theta=5)

Also, a specific family, for instance, poisson can be specified. In such case counts and theta
parameters are omitted.

> NBp <- p.vector(NBdata, d, family=poisson() )

Changing this arguments in p.vector is enough. Further functions will take these arguments
from a p.vector object.
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Figure 6: Cluster Analysis significant genes
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