
Preprocessing & Genotyping Affymetrix Arrays for Copy Number

Analysis

Rob Scharpf

September 19, 2012

Abstract

This vignette describes the setup needed to analyze Affymetrix 6.0 (or 5.0) CEL files and the steps for
preprocessing and genotyping. These steps must be completed prior to copy number analyses in crlmm.
After completing these steps, users can refer to the copynumber vignette.

1 Set up

> library(oligoClasses)

> library2(crlmm)

> library2(ff)

> if(!exists("useCache")) useCache <- TRUE

> if(useCache) library2(cacheSweave)

This vignette analyzes HapMap samples assayed on the Affymetrix 6.0 platform. The annotation package
for this platform is genomewidesnp6Crlmm. We assign the name of the annotation package without the Crlmm
postfix to the name cdfName. We use the R package cacheSweave to cache long computations in this vignette.
Users should refer to the cacheSweave package for additional details regarding cacheing.

> cdfName <- "genomewidesnp6"

The HapMap CEL files are stored in a local directory assigned to pathToCels in the following code. The
genotyping step will create several files with ff extensions. The ff objects contain the low-level, normalized
intensities as well as parameters used to subsequently estimate copy number and B allele frequencies. These
files should not be deleted or moved. We will store these files to the path indicated by outdir.

> pathToCels <- "/thumper/ctsa/snpmicroarray/hapmap/raw/affy/1m"

> outdir <- paste("/local_data/r00/crlmm/", getRversion(), "/affy_vignette", sep="")

> dir.create(outdir, recursive=TRUE, showWarnings=FALSE)

By providing the path in outdir as an argument to the R function ldPath, all of the ff files created
during the genotyping step will be stored in outdir.

> ldPath(outdir)

The R functions ocProbesets and ocSamples manage the RAM required for our analysis. See the
documentation for these functions and the CopyNumberOverview vignette for additional details.

> ocProbesets(100000)

> ocSamples(200)

Next we indicate the local directory that contains the CEL files. For the purposes of this vignette, we
only analyze the CEPH (’C’) and Yoruban (’Y’) samples.

1

> celFiles <- list.celfiles(pathToCels, full.names=TRUE, pattern=".CEL")

> celFiles <- celFiles[substr(basename(celFiles), 13, 13) %in% c("C", "Y")]

> if(exists("file.index")){

celFiles <- celFiles[file.index]

}

Finally, copy number analyses using crlmm require specification of a batch variable that is used to indicate
which samples were processed together. For example, if some of the samples were processed in April and
another set of samples were processed in June, we could name the batches ’April’ and ’June’, respectively.
A useful surrogate for batch is often the chemistry plate or the scan date of the array. For the HapMap CEL
files analyzed in this vignette, the CEPH (C) and Yoruban (Y) samples were prepared on separate chemistry
plates. In the following code chunk, we extract the population identifier from the CEL file names and assign
these identifiers to the variable plate.

> plates <- substr(basename(celFiles), 13, 13)

2 Preprocessing and genotyping.

The preprocessing steps for copy number estimation includes quantile normalization of the raw intensities for
each probe and a step that summarizes the intensities of multiple probes at a single locus. For example, the
Affymetrix 6.0 platform has 3 or 4 identical probes at each polymorphic locus and the normalized intensities
are summarized by a median. For the nonpolymorphic markers on Affymetrix 6.0, only one probe per locus
is available and the summarization step is not needed. After preprocessing the arrays, the crlmm package
estimates the genotype using the CRLMM algorithm and provides a confidence score for the genotype calls.
To begin, we initialize a container for the normalized intensities:

> cnSet <- constructAffyCNSet(celFiles, batch=plates,

cdfName="genomewidesnp6",

genome="hg19")

We quantile normalize the SNPs and nonpolymorphic markers separately. Since the normalized intensities
are ff objects, the functions cnrmaAffy and snprmaAffy write the normalized intensities to disk and nothing
is returned.

> cnrmaAffy(cnSet)

Any segment fault that occurs during the normalization can often be traced to a corrupt cel file. To
check if any of the files are corrupt, one can use the function validCEL that tries to read each files as in the
following unevaluated codechunk:

> validCEL(celFiles)

> snprmaAffy(cnSet)

The function genotypeAffy performs performs the genotyping.

> genotypeAffy(cnSet, gender=NULL)

The above function also imputes the gender from the chromosome X and Y intensities when the argument
gender is NULL. The imputed genders are

> table(c("male", "female")[cnSet$gender[]])

female male
31 29

2

The normalized intensities, genotype calls, and confidence scores are stored as ff objects in the assayData
slot. A concise summary of this object can be obtained throught the print or show methods.

> print(cnSet)

CNSet (assayData/batchStatistics elements: ff_matrix)
CNSet (storageMode: lockedEnvironment)
assayData: 1852215 features, 60 samples
element names: alleleA, alleleB, call, callProbability

protocolData
rowNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL ...
NA12239_GW6_C.CEL (60 total)

varLabels: ScanDate filename
varMetadata: labelDescription

phenoData
sampleNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL ...
NA12239_GW6_C.CEL (60 total)

varLabels: SKW SNR gender
varMetadata: labelDescription

featureData
featureNames: SNP_A-2131660 SNP_A-1967418 ... CN_954736
(1852215 total)

fvarLabels: isSnp position chromosome
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: genomewidesnp6
genome: hg19
batch: C:60
batchStatistics: 29 elements, 1852215 features, 1 batches

Note that the object is relatively small as the intensities and genotype calls are stored on disk rather
than in active memory.

> print(object.size(cnSet), units="Mb")

134.3 Mb

Copy number routines in the crlmm package are available for Affymetrix 5.0 and 6.0 platforms, as well
as several Illumina platforms. This vignette assumes that the arrays have already been successfully prepro-
cessed and genotyped as per the instructions in the AffymetrixPreprocessCN and IlluminaPreprocessCN
vignettes for the Affymetrix and Illumina platforms, respectively. While this vignette uses Affymetrix
6.0 arrays for illustration, the steps at this point are identical for both platforms. See [1] for details re-
garding the methodology implemented in crlmm for copy number analysis. In addition, a compendium
describing copy number analysis using the crlmm package is available from the author’s website: http:
//www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html.

Limitations: While a minimum number of samples is not required for preprocessing and genotyping,
copy number estimation in the crlmm package currently requires at least 10 samples per batch. The parameter
estimates for copy number and the corresponding estimates of raw copy number will tend to be more noisy
for batches with small sample sizes (e.g., < 50). Chemistry plate or scan date are often useful surrogates for
batch. Samples that were processed at similar times (e.g., in the same month) can be grouped together in
the same batch.

3 Quality control

The signal to noise ratio (SNR) estimated by the CRLMM genotyping algorithm is an overall measure of
the separation of the diallelic genotype clusters at polymorphic loci and can be a useful measure of array

3

quality. Small SNR values can indicate possible problems with the DNA. Depending on the size of the dataset
and the number of samples with low SNR, users may wish to rerun the preprocessing and genotyping steps
after excluding samples with low SNR. The SNR is stored in the phenoData slot of the CNSet object and is
available after preprocessing and genotyping. SNR values below 5 for Affymetrix or below 25 for Illumina
may indicate poor sample quality. The following code chunk makes a histogram of the SNR values for the
HapMap samples.

> library(lattice)

> invisible(open(cnSet$SNR))

> snr <- cnSet$SNR[]

> close(cnSet$SNR)

[1] TRUE

> print(histogram(~snr,

panel=function(...){

panel.histogram(...)},

breaks=25, xlim=range(snr), xlab="SNR"))

4 Copy number estimation

As described in [1], the CRLMM-CopyNumber algorithm fits a linear model to the normalized intensities
stratified by the diallic genotype call. The intercept and slope from the linear model are both SNP- and
batch-specific. The implementation in the crlmm package is encapsulated by the function crlmmCopynumber
that, using the default settings, can be called by passing a single object of class CNSet . See the appropriate
preprocessing/genotyping vignette for the construction of an object of class CNSet .

> crlmmCopynumber(cnSet)

The following steps were performed by the crlmmCopynumber function:

� sufficient statistics for the genotype clusters for each batch

� unobserved genotype centers imputed

� posterior summaries of sufficient statistics

� intercept and slope for linear model

Depending on the value of ocProbesets(), these summaries are computed for subsets of the markers to
reduce the required RAM. Note that the value returned by the crlmmCopynumber function in the above
example is TRUE. The reason the function returns TRUE in the above example is that the elements of the
batchStatistics slot have the class ff matrix . Rather than keep the statistical summaries in memory,
the summaries are written to files on disk using protocols described in the ff package. Hence, while the
cnSet object itself is unchanged as a result of the crlmmCopynumber function, the data on disk is updated
accordingly. Users that are interested in accessing these low-level summaries can refer to the Infrastructure
vignette. Note that the data structure depends on whether the elements of the batchStatistics slot are ff
objects or ordinary matrices. In this example, the elements of batchStatistics have the class ff matrix .

> nms <- ls(batchStatistics(cnSet))

> cls <- rep(NA, length(nms))

> for(i in seq_along(nms)) cls[i] <- class(batchStatistics(cnSet)[[nms[i]]])[1]

> all(cls == "ff_matrix")

[1] TRUE

4

The batch-specific statistical summaries computed by crlmmCopynumber are written to files on disk using
protocols described in the R package ff. The value returned by crlmmCopynumber is TRUE, indicating that the
files on disk have been successfully updated. Note that while the cnSet object is unchanged, the values on
disk are different. On the other hand, subsetting the cnSet with the ‘[’ method coerces all of the elements to
class matrix . The batch-specific summaries are now ordinary matrices stored in RAM. The object returned
by crlmmCopynumber is an object of class CNSet with the matrices in the batchStatistics slot updated.

> chr1.index <- which(chromosome(cnSet) == 1)

> open(cnSet)

[1] TRUE

> cnSet2 <- cnSet[chr1.index,]

> close(cnSet)

> for(i in seq_along(nms)) cls[i] <- class(batchStatistics(cnSet2)[[nms[i]]])[1]

> all(cls == "matrix")

[1] TRUE

> cnSet3 <- crlmmCopynumber(cnSet2)

> class(cnSet3)

4.1 Marker-specific estimates

Raw total copy number. Several functions are available that will compute relatively quickly the allele-
specific, raw copy number estimates. At allele k, marker i, sample j, and batch p, the estimate of allele-
specific copy number is computed by subtracting the estimated background from the normalized intensity
and scaling by the slope coefficient. More formally,

ĉk,ijp = max

{
1

φ̂k,ip

(Ik,ijp − ν̂k,ip) , 0

}
for k ∈ {A,B}. (1)

See [1] for details.
The function totalCopynumber translates the normalized intensities to an estimate of raw copy number

by adding the allele-specific summaries in Equation (1). For large datasets, the calculation will not be
instantaneous as the I/O can be substantial. Users should specify either a subset of the markers or a subset
of the samples to avoid using all of the available RAM. For example, in the following code chunk we compute
the total copy number at all markers for the first 2 samples, and the total copy number for chromosome 20
for the first 50 samples.

> tmp <- totalCopynumber(cnSet, i=seq_len(nrow(cnSet)), j=1:2)

> dim(tmp)

[1] 1852215 2

> tmp2 <- totalCopynumber(cnSet, i=which(chromosome(cnSet) == 20), j=seq_len(ncol(cnSet)))

> dim(tmp2)

[1] 43000 60

Alternatively, the functions CA and CB compute the allele-specific copy number. For instance, the following
code chunk computes the allele-specific summaries at all polymorphic loci for the first 2 samples.

> snp.index <- which(isSnp(cnSet) & !is.na(chromosome(cnSet)))

> ca <- CA(cnSet, i=snp.index, j=1:2)

> cb <- CB(cnSet, i=snp.index, j=1:2)

5

4.2 Container for log R ratios and B allele frequencies

A useful container for storing the crlmm genotypes, genotype confidence scores, and the total or relative copy
number at each marker is the oligoSetList class. Coercion of a CNSet object to a oligoSnpSet object can
be acheived by using the function constructOligoSetFrom as illustrated below. Users should note that if
the assayData elements in the CNSet instance are ff objects, the assayData elements of each element in
the oligoSetList object will be ff-dervied objects (a new total_cn*.ff file will be created in the ldPath()
directory).

> library(VanillaICE)

> open(cnSet3)

[1] TRUE

> oligoSetList <- constructOligoSetListFrom(cnSet3, batch.name=batch(cnSet3)[1])

> close(cnSet3)

NULL

> show(oligoSetList)

oligoSetList of length 1

> class(oligoSetList)

[1] "oligoSetList"
attr(,"package")
[1] "oligoClasses"

> ## oligoSnpSet of first chromosome

> oligoSetList[[1]]

oligoSnpSet (storageMode: lockedEnvironment)
assayData: 144293 features, 60 samples
element names: baf, call, callProbability, copyNumber

protocolData: none
phenoData
sampleNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL ...
NA12239_GW6_C.CEL (60 total)

varLabels: SKW SNR gender
varMetadata: labelDescription

featureData
featureNames: CN_473963 CN_473964 ... CN_479920 (144293
total)

fvarLabels: isSnp position chromosome
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: genomewidesnp6
genome: hg19

Note that log R ratios stored in the oligoSnpSet object can be retrieved by the copyNumber accessor. B
allele frequences are retrieved by the baf accessor.

> lrrList <- copyNumber(oligoSetList)

> class(lrrList)

[1] "list"

6

> dim(lrrList[[1]]) ## log R ratios for chromosome 1.

[1] 144293 60

> bafList <- baf(oligoSetList)

> dim(bafList[[1]]) ## B allele frequencies for chromosome 1

[1] 144293 60

A sample-specific estimate of the signal to noise ratio (SNR) measuring the overall separation of the
genotypes provides a measure of sample quality. Samples with SNRs below 5 typically indicate poor quality,
and typically have genotypes with lower confidence scores and noisier copy number estimates. The SNR is
stored in the phenoData slot of the CNSet class and can be accessed using the “$” operator.

5 Session information

> toLatex(sessionInfo())

� R version 2.15.1 Patched (2012-07-01 r59713), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=en_US.iso885915, LC_MESSAGES=en_US.iso885915,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.iso885915,
LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.16.0, BiocGenerics 0.2.0, bit 1.1-8, cacheSweave 0.6-1, crlmm 1.15.28,
ff 2.2-7, filehash 2.2-1, lattice 0.20-6, oligoClasses 1.19.42, stashR 0.3-5, VanillaICE 1.19.36

� Loaded via a namespace (and not attached): affyio 1.24.0, annotate 1.34.1, AnnotationDbi 1.18.1,
BiocInstaller 1.4.7, Biostrings 2.24.1, codetools 0.2-8, compiler 2.15.1, DBI 0.2-5, digest 0.5.2,
ellipse 0.3-7, foreach 1.4.0, genefilter 1.38.0, GenomicRanges 1.8.7, grid 2.15.1, IRanges 1.14.4,
iterators 1.0.6, msm 1.1.1, mvtnorm 0.9-9992, preprocessCore 1.18.0, RSQLite 0.11.1, splines 2.15.1,
stats4 2.15.1, survival 2.36-14, XML 3.9-4, xtable 1.7-0, zlibbioc 1.2.0

References

[1] Robert B Scharpf, Ingo Ruczinski, Benilton Carvalho, Betty Doan, Aravinda Chakravarti, and Rafael A
Irizarry. A multilevel model to address batch effects in copy number estimation using snp arrays. Bio-
statistics, 12(1):33–50, Jan 2011.

7

SNR

D
en

si
ty

0.0

0.5

1.0

1.5

6.0 6.5 7.0 7.5 8.0 8.5 9.0

Figure 1: The signal to noise ratio (SNR) for 180 HapMap samples. For Affymetrix platforms, SNR values
below 5 can indicate possible problems with sample quality.

8

