BiSeq: A package for analyzing targeted bisulfite sequencing data

Katja Hebestreit, Hans-Ulrich Klein ${\it April~11,~2013}$

Contents

1	Introduction	2
2	Data import and classes	3
	2.1 Sample data	
	2.2 Import of Bismark's methylation output files	3
	2.3 The $BSraw$ and $BSrel$ classes	3
	2.3.1 The BSraw class	3
	2.3.2 The BSrel class	
	2.4 Data handling	
3	Quality control	10
4	Detection of DMRs within groups of samples	12
	4.1 Definition of CpG clusters	12
	4.2 Smooth methylation data	
	4.3 Model and test group effect	
	4.4 Test CpG clusters for differential methylation	
	4.5 Trim significant CpG clusters	
	4.6 Definition of DMR boundaries	
5	Detection of DMRs between two samples	26
6	Further data processing	27

1 Introduction

The *BiSeq* package provides useful classes and functions to handle and analyze targeted bisulfite sequencing (BS) data such as reduced representation bisulfite sequencing (RRBS) data. In particular, it implements an algorithm to detect differentially methylated regions (DMRs), as described in detail in [1]. The package takes already aligned BS data from one or multiple samples. Until now, it was used for the analysis of CpG methylation of human and mouse samples only.

2 Data import and classes

2.1 Sample data

As sample data we use a small part of a recently published data set, see [2]. It comprises RRBS data from 10 samples of CpG sites from genomic regions on p arms of chromosome 1 and 2 covered in at least one sample. Data was obtained from 5 bone marrow probes of patients with acute promyelocytic leukemia (APL) and 5 control samples (APL in remission). RRBS data was preprocessed with the Bismark software version 0.5 [3].

2.2 Import of Bismark's methylation output files

Bismark [3] a bisulfite read mapper and methylation caller. BiSeq allows the import of Bismark output files.

> library(BiSeq)

readBismark imports the CpG context output files created by the methylation extractor of Bismark:

> readBismark(files, colData)

The argument files point to files created by Bismark's methylation_extractor and bismark2bedGraph (see the man page of readBismark for details on how to retrieve the right input files). colData specifies the sample names and additional phenotype information. This method returns a BSraw object.

2.3 The BSraw and BSrel classes

The BiSeq package contains the classes BSraw and BSrel, both derived from SummarizedExperiment.

2.3.1 The BSraw class

The BSraw class is a container for 'raw' RRBS data. It comprises sample information together with CpG positions and numbers of reads spanning the CpG positions as well as the number of methylated reads.

A BSraw object consists of four slots:

- 1. A SimpleList of arbitrary content describing the overall experiment, accessible with exptData.
- 2. A *GRanges* of the positions of CpG-sites covered by BS in at least one sample, accessible with rowData.
- 3. A *DataFrame* of samples and the values of variables measured on those samples, accessible with colData.
- 4. An assays slot containing a *SimpleList* of two matrices, one containing the numbers of reads (accessible with totalReads) and the other the numbers of methylated reads (accessible with methReads).

A new *BSraw* object can also be created by hand:

Nevertheless, users will most likely create *BSraw* objects when use readBismark to load data.

We load and show the APL data:

> data(rrbs)

```
> rrbs

class: BSraw
dim: 10502 10
exptData(0):
assays(2): totalReads methReads
rownames(10502): 1456 1457 ... 4970981 4970982
```

```
rowData metadata column names(0):
colnames(10): APL1 APL2 ... APL11624 APL5894
colData names(1): group
```

We show the sample characteristics slot:

> colData(rrbs)

DataFrame with 10 rows and 1 column

group <factor> APL1 APL APL2 APL APL3 APL APL7 APL APL8 APL APL10961 control APL11436 control APL11523 control APL11624 control APL5894 control

The first CpG sites on chromosome 1 which were covered:

> head(rowData(rrbs))

GRanges with 6 ranges and 0 metadata columns:

strand	ranges		seqnames	
<rle></rle>	IRanges>	<	<rle></rle>	
+	870425]	[870425,	chr1	1456
+	870443]	[870443,	chr1	1457
+	870459]	[870459,	chr1	1458
+	870573]	[870573,	chr1	1459
+	870584]	[870584,	chr1	1460
+	870599]	[870599,	chr1	1461

seqlengths:

chr1 chr10 chr11 chr12 chr13 ... chr9 chrM chrX chrY NA NA NA NA NA NA NA NA NA

The coverage of the first CpG sites per sample:

> head(totalReads(rrbs))

	APL1	APL2	APL3	APL7	APL8	APL10961	APL11436	APL11523
1456	39	6	10	0	0	48	31	65
1457	39	6	10	0	0	48	31	65
1458	39	6	10	0	0	48	27	65
1459	20	26	49	48	39	27	23	34
1460	20	26	49	48	39	27	23	34
1461	20	26	49	48	39	27	22	34
	APL1	1624 <i>I</i>	APL589	94				
1456		39	2	29				
1457		39	2	29				
1458		39	2	29				
1459		29	1	L5				
1460		28	1	L5				
1461		29	1	L5				

The number of methylated reads of the first CpG sites per sample:

> head(methReads(rrbs))

	APL1	APL2	APL3	APL7	APL8	APL10961	APL11436	APL11523
1456	32	6	7	0	0	15	23	16
1457	33	6	7	0	0	18	10	19
1458	33	6	10	0	0	20	10	19
1459	13	20	34	41	32	3	8	8
1460	14	18	35	37	33	2	4	4
1461	14	16	35	40	31	5	5	5
	APL1	1624 <i>I</i>	APL589	94				
1456		7		7				
1457		2		7				
1458		2		3				
1459		6		4				
1460		3		0				
1461		1		2				

2.3.2 The BSrel class

The *BSrel* is a container for 'relative' methylation levels of BS data. It comprises sample information together with CpG positions and the relative methylation values (between 0 and 1).

A BSrel object consists of four slots:

- 1. A SimpleList of arbitrary content describing the overall experiment, accessible with exptData.
- 2. A *GRanges* of the positions of CpG-sites covered by BS in at least one sample, accessible with rowData.
- 3. A *DataFrame* of samples and the values of variables measured on those samples, accessible with colData.
- 4. An assays slot containing a *SimpleList* of a matrix with the relative methylation levels (between 0 and 1), accessible with methLevel.

A new *BSraw* object can be created by:

```
> rrbs.rel <- rawToRel(rrbs)
> rrbs.rel

class: BSrel
dim: 10502 10
exptData(0):
assays(1): methLevel
rownames(10502): 1456 1457 ... 4970981 4970982
rowData metadata column names(0):
colnames(10): APL1 APL2 ... APL11624 APL5894
colData names(1): group
```

The relative methylation values of the first CpG sites:

> head(methLevel(rrbs.rel))

	APL1	APL2	APL3	APL7	APL8
1456	0.8205128	1.0000000	0.7000000	NaN	NaN
1457	0.8461538	1.0000000	0.700000	NaN	NaN
1458	0.8461538	1.0000000	1.0000000	NaN	NaN
1459	0.6500000	0.7692308	0.6938776	0.8541667	0.8205128
1460	0.700000	0.6923077	0.7142857	0.7708333	0.8461538
1461	0.700000	0.6153846	0.7142857	0.8333333	0.7948718
	APL10961	APL11436	APL11523	3 APL1162	4 APL5894
1456	0.31250000	0.7419355	0.2461538	3 0.1794871	8 0.2413793
1457	0.37500000	0.3225806	0.2923077	7 0.0512820	5 0.2413793
1458	0.41666667	0.3703704	0.2923077	7 0.0512820	5 0.1034483
1459	0.1111111	0.3478261	0.2352941	0.2068965	5 0.2666667
1460	0.07407407	0.1739130	0.117647	1 0.1071428	6 0.0000000
1461	0.18518519	0.2272727	0.1470588	3 0.0344827	6 0.1333333

2.4 Data handling

All methods for Summarized Experiment objects are applicable for BSraw and BSrel objects:

```
> dim(rrbs)
```

```
[1] 10502 10
```

> colnames(rrbs)

```
[1] "APL1" "APL2" "APL3" "APL7" "APL8" [6] "APL10961" "APL11436" "APL11523" "APL11624" "APL5894"
```

We can return subsets of samples or CpG sites:

```
> rrbs[,"APL2"]
> ind.chr1 <- which(seqnames(rrbs) == "chr1")
> rrbs[ind.chr1,]
```

We can also subset by overlaps with a *GRanges* object:

- > findOverlaps(rrbs, region)
- > subsetByOverlaps(rrbs, region)

We can sort BSraw and BSrel objects into ascending order of CpG sites positions on chromosomes:

> sort(rrbs)

BSraw and BSrel objects can be combined and splitted:

```
> combine(rrbs[1:10,1:2], rrbs[1:1000, 3:10])
```

> split(rowData(rrbs),

f = as.factor(as.character(seqnames(rrbs))))

3 Quality control

Via two very simple methods it is possible to compare the sample's coverages. covStatistics lists the number of CpG sites that were covered per sample together with the median of the coverage of these CpG sites. covBoxplots represent the coverage distributions per sample.

> covStatistics(rrbs)

\$Covered_	\$Covered_CpG_sites								
APL1	APL2	APL3	APL7	APL8	APL10961				
5217	4240	4276	3972	3821	5089				
APL11436	APL11523	APL11624	APL5894						
5169	6922	6483	7199						
\$Median_o	coverage								
APL1	APL2	APL3	APL7	APL8	APL10961				
12	5	12	15	11	10				
APL11436	APL11523	APL11624	APL5894						
6	8	4	5						

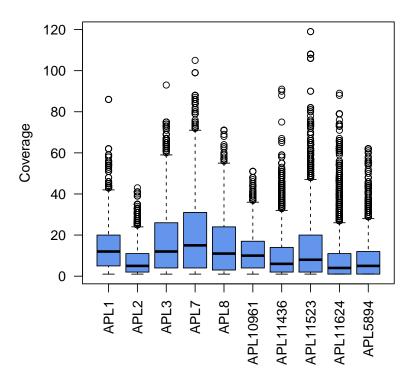


Figure 1: Sample wise coverage distributions

4 Detection of DMRs within groups of samples

The algorithm to detect differentially methylated regions (DMRs) within two groups of samples (e.g. cancer and control) is described in detail in [1]. To better understand this User's guide it is helpful to know the rough procedure. The DMR detection is a five-steps approach:

- 1. Definition of CpG clusters
- 2. Smooth methylation data within CpG clusters
- 3. Model and test group effect for each CpG site within CpG clusters
- 4. Apply hierarchical testing procedure:
 - (a) Test CpG clusters for differential methylation and control weighted FDR on cluster
 - (b) Trim rejected CpG clusters and control FDR on single CpGs
- 5. Define DMR boundaries

Please see [1] for more details.

4.1 Definition of CpG clusters

In order to smooth the methylation data we first have to detect CpG clusters (regions with a high spatial density of covered CpG sites). Within a BSraw object clusterSites searches for agglomerations of CpG sites across all samples. In a first step the data is reduced to CpG sites covered in round(perc.samples*ncol(object)) samples (here: 4 samples), these are called 'frequently covered CpG sites'. In a second step regions are detected where not less than min.sites frequently covered CpG sites are sufficiently close to each other (max.dist. Note, that the frequently covered CpG sites are considered to define the boundaries of the CpG clusters only. For the subsequent analysis the methylation data of all CpG sites within these clusters are used.

We perform the analysis on a subset of our data to save time:

 ${\tt rrbs.clust.unlim}$ is a again BSraw object but restricted to CpG sites within CpG clusters. Each CpG site is assigned to a cluster:

> head(rowData(rrbs.clust.unlim))

GRanges with 6 ranges and 1 metadata column:

O		O					
	seqnames		ranges	strand		cluster.id	
	<rle></rle>	Ranges		<rle></rle>		<character></character>	
1513	chr1	[872335,	872335]	*		chr1_1	
1514	chr1	[872369,	872369]	*		chr1_1	
401911	chr1	[872370,	872370]	*		chr1_1	
1515	chr1	[872385,	872385]	*		chr1_1	
401912	chr1	[872386,	872386]	*		chr1_1	
1516	chr1	[872412,	872412]	*		chr1_1	
seqlen	gths:						
chr1	chr10 chi	r11 chr12	chr13 .	chr9)	chrM chrX	chrY

The underlying CpG clusters can also be converted to a *GRanges* object with the start and end positions:

NA ...

NA

NA

NA

NA

> clusterSitesToGR(rrbs.clust.unlim)

NΑ

NA

NA

NA

GRanges with 6 ranges and 1 metadata column:

cluster.id	strand	ranges	seqnames	
<factor></factor>	<rle> </rle>	Ranges	<rle></rle>	
chr1_1	*	[872335, 872616]	chr1	[1]
chr1_2	*	[875227, 875470]	chr1	[2]
chr1_3	*	[875650, 876028]	chr1	[3]
chr1_4	*	[876807, 877458]	chr1	[4]
chr1_5	*	[877684, 877932]	chr1	[5]

```
[6]
        chr2 [ 45843, 46937]
                                      * |
                                              chr2_1
seqlengths:
  chr1 chr10 chr11 chr12 chr13 ...
                                       chr9
                                             chrM
                                                    chrX
    NA
          NA
                 NA
                        NA
                                         NA
                                                NA
                                                      NA
                                                             NA
                              NA ...
```

4.2 Smooth methylation data

In the smoothing step CpG sites with high coverages get high weights. To reduce bias due to unusually high coverages we limit the coverage, e.g. to the 90% quantile:

```
> ind.cov <- totalReads(rrbs.clust.unlim) > 0
> quant <- quantile(totalReads(rrbs.clust.unlim)[ind.cov], 0.9)
> quant
90%
32
```

> rrbs.clust.lim <- limitCov(rrbs.clust.unlim, maxCov = quant)</pre>

We then smooth the methylation values of CpG sites within the clusters with the default bandwidth h = 80 base pairs. It is possible - and recommended - to parallelize this step by setting mc.cores, to 6 cores for instance, if there are 6 available.

```
> predictedMeth <- predictMeth(object = rrbs.clust.lim)
```

predictedMeth is a BSrel object with smoothed relative methylation levels for each CpG site within CpG clusters:

> predictedMeth

```
class: BSrel
dim: 344 10
exptData(0):
assays(1): methLevel
rownames(344): 1 2 ... 343 344
rowData metadata column names(1): cluster.id
colnames(10): APL1 APL2 ... APL11624 APL5894
colData names(1): group
```

> covBoxplots(rrbs.clust.lim, col = "cornflowerblue", las = 2)

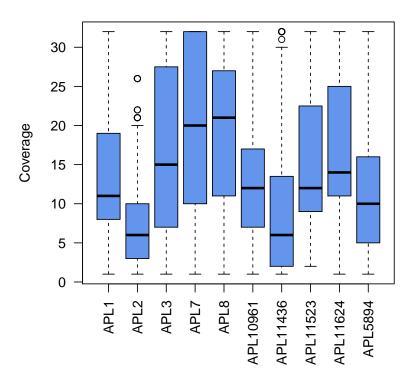


Figure 2: Sample wise coverage distributions after coverage limitation

The effect of the smoothing step can be shown with the plotMeth function:

APL10961

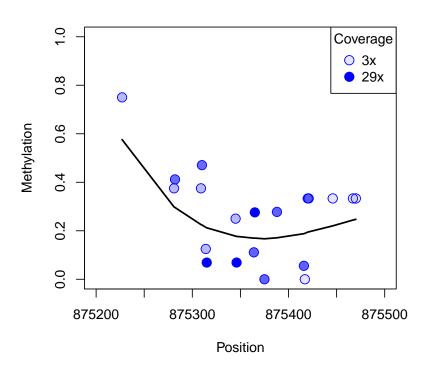


Figure 3: Raw data together with smoothed methylation levels

4.3 Model and test group effect

We observe a differential methylation between cancer and control for some CpG sites:

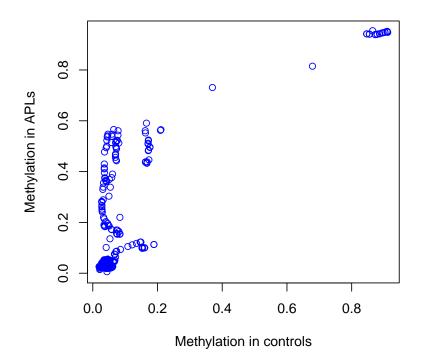


Figure 4: Smoothed methylation levels in APL and control samples

To detect the CpG sites where the DNA methylation differs between APL and control samples we model the methylation within a beta regression with the group as explanatory variable and use the Wald test to test if there is a

group effect:

- > ## OR:
- > data(betaResults)

betaResults is a *data.frame* containing model and test information for each CpG site:

> head(betaResults)

```
chr
               pos
                          p.val meth.group1 meth.group2
chr1.1 chr1 872335 0.0011317652
                                   0.9525098
                                               0.8635983
chr1.2 chr1 872369 0.0007678027
                                   0.9414368
                                               0.8444060
chr1.3 chr1 872370 0.0008347451
                                   0.9414314
                                               0.8448725
chr1.4 chr1 872385 0.0010337477
                                   0.9412217
                                               0.8521862
chr1.5 chr1 872386 0.0010975571
                                   0.9410544
                                               0.8526863
chr1.6 chr1 872412 0.0035114839
                                   0.9378250
                                               0.8718024
        meth.diff
                    estimate std.error pseudo.R.sqrt
chr1.1 0.08891149 -0.5730618 0.1760266
                                            0.6304051
chr1.2 0.09703074 -0.5542171 0.1647422
                                            0.6291904
chr1.3 0.09655890 -0.5522164 0.1652843
                                            0.6246474
chr1.4 0.08903549 -0.5192564 0.1582531
                                            0.6108452
chr1.5 0.08836810 -0.5156622 0.1579728
                                            0.6090794
chr1.6 0.06602261 -0.4018161 0.1376551
                                            0.5851744
       cluster.id
chr1.1
           chr1_1
           chr1_1
chr1.2
chr1.3
           chr1_1
chr1.4
           chr1_1
chr1.5
           chr1_1
chr1.6
           chr1_1
```

By setting type = "BR" the maximum likelihood with bias reduction is called. This is especially useful, when the sample size is small, see [4]. The

mean of the response (methylation) is linked to a linear predictor described by $\tilde{x}1 + x2$ using a link function while the precision parameter is assumed to be constant. Sometimes the variance of DNA methylation is dependent on the group factor, e.g. the methylation variance in cancer samples is often higher than in normal samples. These additional regressors can be linked to the precision parameter within the formula of type $\tilde{x}1 + x2 + y1 + y2$ where the regressors in the two parts can be overlapping, see the documentation in the betareq package.

4.4 Test CpG clusters for differential methylation

The aim is to detect CpG clusters containing at least one differentially methylated location. To do so the P values p from the Wald tests are transformed to Z scores: $z = \Phi^{-1}(1-p)$, which are normally distributed under Null hypothesis (no group effect). As cluster test statistic a standardized Z score average is used. To estimate the standard deviation of the Z scores we have to estimate the correlation and hence the variogram of methylation between two CpG sites within a cluster. The estimation of the standard deviation requires that the distribution of the Z scores follows a standard normal distribution. However, if methylation in both groups differs for many CpG sites the density distribution of P values shows a peak near 0. To ensure that the P values are roughly uniformly distributed to get a variance of the Z scores that is Gaussian with variance 1 we recommend to estimate the variogram (and hence the correlation of Z scores) under the null hypothesis. To do so we model the beta regression again for resampled data:

We estimate the variogram for the Z scores obtained for the resampled data:

- > vario <- makeVariogram(betaResultsNull)</pre>
- > ## OR:
- > data(vario)

Based on the variogram plot we evaluate the sill (usually near 1) of the variogram and smooth the curve:

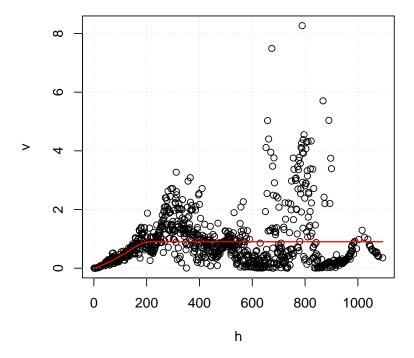


Figure 5: Estimated variogram together with the smoothed curve

The vario.sm object is a list of two:

```
> names(vario.sm)
```

[1] "variogram" "pValsList"

> head(vario.sm\$variogram)

```
h v v.sm

1 1 4.944347e-05 0.0000000000

2 2 5.178567e-04 0.0000000000

3 3 1.190225e-03 0.0000000000

4 4 1.698055e-03 0.0001815849

5 5 2.850229e-03 0.0017187953

6 6 3.997020e-03 0.0036089200
```

> head(vario.sm\$pValsList[[1]])

```
pos
        chr
                       p.val meth.group1 meth.group2
chr1.1 chr1 872335 0.8567258
                                0.9267336
                                            0.9191601
chr1.2 chr1 872369 0.7910594
                                0.9180561
                                            0.9056264
chr1.3 chr1 872370 0.7855283
                                0.9187319
                                            0.9060236
chr1.4 chr1 872385 0.7462536
                                0.9225722
                                            0.9080750
chr1.5 chr1 872386 0.7462667
                                0.9225955
                                            0.9081423
chr1.6 chr1 872412 0.8575813
                                0.9165966
                                            0.9093737
         meth.diff
                      estimate std.error pseudo.R.sqrt
chr1.1 0.007573505 -0.05244358 0.2904759
                                            0.006696118
chr1.2 0.012429670 -0.07781982 0.2937315
                                            0.013223677
chr1.3 0.012708263 -0.07993265 0.2937384
                                            0.013863179
chr1.4 0.014497213 -0.09359431 0.2892434
                                            0.020416968
chr1.5 0.014453228 -0.09334700 0.2884945
                                            0.020484807
chr1.6 0.007222875 -0.04562887 0.2542651
                                            0.006457349
       cluster.id
                     z.score pos.new
chr1.1
           chr1_1 -1.0657239
                                    1
chr1.2
           chr1_1 -0.8101026
                                   35
chr1.3
           chr1_1 -0.7910010
                                   36
chr1.4
           chr1_1 -0.6627467
                                   51
           chr1_1 -0.6627876
                                   52
chr1.5
chr1.6
           chr1_1 -1.0695155
                                   78
```

We replace the pValsList object (which consists of the test results of the resampled data) by the test results of interest (for group effect):

```
> ## auxiliary object to get the pValsList for the test
> ## results of interest:
> vario.aux <- makeVariogram(betaResults, make.variogram=FALSE)
> vario.sm$pValsList <- vario.aux$pValsList
> head(vario.sm$pValsList[[1]])
                          p.val meth.group1 meth.group2
        chr
               pos
chr1.1 chr1 872335 0.0011317652
                                  0.9525098
                                               0.8635983
chr1.2 chr1 872369 0.0007678027
                                  0.9414368
                                               0.8444060
chr1.3 chr1 872370 0.0008347451
                                  0.9414314
                                               0.8448725
chr1.4 chr1 872385 0.0010337477
                                  0.9412217
                                               0.8521862
chr1.5 chr1 872386 0.0010975571
                                   0.9410544
                                               0.8526863
chr1.6 chr1 872412 0.0035114839
                                  0.9378250
                                               0.8718024
        meth.diff
                    estimate std.error pseudo.R.sqrt
chr1.1 0.08891149 -0.5730618 0.1760266
                                            0.6304051
chr1.2 0.09703074 -0.5542171 0.1647422
                                            0.6291904
chr1.3 0.09655890 -0.5522164 0.1652843
                                            0.6246474
chr1.4 0.08903549 -0.5192564 0.1582531
                                            0.6108452
chr1.5 0.08836810 -0.5156622 0.1579728
                                            0.6090794
chr1.6 0.06602261 -0.4018161 0.1376551
                                            0.5851744
       cluster.id z.score pos.new
chr1.1
           chr1_1 3.053282
                                 1
chr1.2
                                35
           chr1_1 3.167869
chr1.3
                                36
           chr1_1 3.143485
chr1.4
           chr1_1 3.080361
                                51
chr1.5
           chr1_1 3.062480
                                52
chr1.6
           chr1_1 2.695753
                                78
```

vario.sm now contains the smoothed variogram under the Null hypothesis together with the P values (and Z scores) from the Wald test, that the group has no effect on methylation. The correlation of the Z scores between two locations in a cluster can now be estimated:

> locCor <- estLocCor(vario.sm)</pre>

We test each CpG cluster for the presence of at least one differentially methylated location at q what can be interpreted as the size-weighted FDR on clusters:

1

> clusters.rej\$clusters.reject

GRanges with 3 ranges and 1 metadata column:

```
segnames
                        ranges strand |
                                                value
                     <IRanges>
                                 <Rle> | <character>
       <Rle>
[1]
        chr1 [872335, 872616]
                                     * |
                                               chr1_1
[2]
        chr1 [875227, 875470]
                                               chr1_2
[3]
        chr2 [ 45843,
                        46937]
                                               chr2_1
seqlengths:
 chr1 chr2
```

NA NA

4.5 Trim significant CpG clusters

We then trim the rejected CpG clusters that is to remove the not differentially methylated CpG sites at q_1 what can be interpreted as the location-wise FDR:

> head(clusters.trimmed)

```
chr
                                  p.val meth.group1
                       pos
chr1_1.chr1.1 chr1 872335 0.0011317652
                                          0.9525098
chr1_1.chr1.2 chr1 872369 0.0007678027
                                          0.9414368
chr1_1.chr1.3 chr1 872370 0.0008347451
                                          0.9414314
chr1_1.chr1.4 chr1 872385 0.0010337477
                                          0.9412217
chr1_1.chr1.5
               chr1 872386 0.0010975571
                                          0.9410544
chr1_2.chr1.21 chr1 875227 0.0003916052
                                          0.7175829
               meth.group2 meth.diff
                                        estimate std.error
chr1_1.chr1.1
                 0.8635983 0.08891149 -0.5730618 0.1760266
chr1_1.chr1.2
                 0.8444060 0.09703074 -0.5542171 0.1647422
chr1_1.chr1.3
                 0.8448725 0.09655890 -0.5522164 0.1652843
                 0.8521862 0.08903549 -0.5192564 0.1582531
chr1_1.chr1.4
```

```
0.8526863 0.08836810 -0.5156622 0.1579728
chr1_1.chr1.5
                 0.3648251 0.35275781 -0.9212669 0.2598282
chr1_2.chr1.21
               pseudo.R.sqrt cluster.id z.score pos.new
                   0.6304051
                                  chr1_1 3.053282
chr1_1.chr1.1
                                                         1
                   0.6291904
                                  chr1_1 3.167869
                                                        35
chr1_1.chr1.2
chr1_1.chr1.3
                                  chr1_1 3.143485
                                                        36
                   0.6246474
chr1_1.chr1.4
                   0.6108452
                                  chr1_1 3.080361
                                                        51
chr1_1.chr1.5
                   0.6090794
                                  chr1_1 3.062480
                                                        52
chr1_2.chr1.21
                                  chr1_2 3.358661
                                                         1
                   0.6818046
                      p.li
chr1_1.chr1.1
               0.019626645
chr1_1.chr1.2
               0.019915413
chr1_1.chr1.3
               0.021640728
chr1_1.chr1.4
               0.028832605
chr1_1.chr1.5
               0.030618961
chr1_2.chr1.21 0.004882098
```

clusters.trimmed is a *data.frame* object containing all differentially methylated CpG sites. The p.li column contains the P values estimated in the cluster trimming step, see [1].

4.6 Definition of DMR boundaries

We can now define the boundaries of DMRs as rejected CpG sites within which rejected CpG sites solely are located. Within the DMRs the distance between neighbored rejected CpG sites should not exceed max.dist base pairs (usually the same as for max.dist in clusterSites), otherwise, the DMR is splitted. DMRs are also splitted if the methylation difference switches from positive to negative, or vice versa, if diff.dir = TRUE. That way we ensure that within a DMR all CpG sites are hypermethylated, and hypomethylated respectively.

```
<Rle>
                             <Rle> |
                   <!Ranges>
       chr1 [872335, 872386]
[1]
                                  * |
[2]
       chr1 [875227, 875470]
                                  * |
[3]
       chr2 [ 46126, 46718]
                                  * |
[4]
       chr2 [ 46915, 46937]
               median.p median.meth.group1
              <numeric>
                                 <numeric>
[1]
     0.0010337476937105
                          0.94143135870377
[2] 6.67719258580069e-06
                         0.502443544206678
[3]
    3.9604046820675e-05
                         0.438629367812053
[4]
     0.0148459621327497
                          0.13636374336524
   median.meth.group2
                        median.meth.diff
            <numeric>
                               <numeric>
[1]
    0.852186207117906 0.0890354930388882
[2]
    [3] 0.0776818250851119
                       0.355363178661131
[4] 0.0369197526986237 0.099443990666616
seqlengths:
chr1 chr2
  NA
       NA
```

5 Detection of DMRs between two samples

If there are two samples only to be compared we can use the compareTwoSamples function which determines the differences per CpG site and aggregates the sites surpassing the minimum difference minDiff:

Some of the DMRs detected within these two samples overlap with the group-wise DMRs:

```
> sum(overlapsAny(DMRs.2,DMRs))
[1] 1
```

6 Further data processing

The plotMethMap function is helpful to evaluate DMRs graphically. Via zlim = c(0,1) that is passed to the heatmap function we ensure that green stands for a relative methalytion of 0 and red stands for a relative methylation of 1:

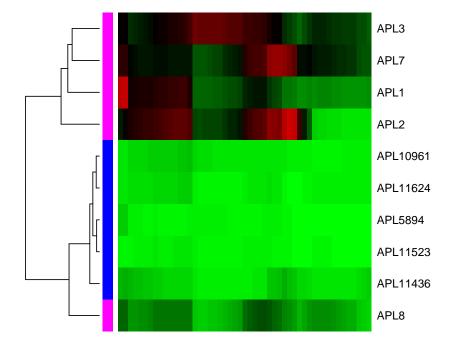


Figure 6: Methylation map of smoothed methylation data within a detected DMR together with hierarchical clustering of the samples

To represent the smoothed methylation curves we can use the plotSmooth-

Meth function:

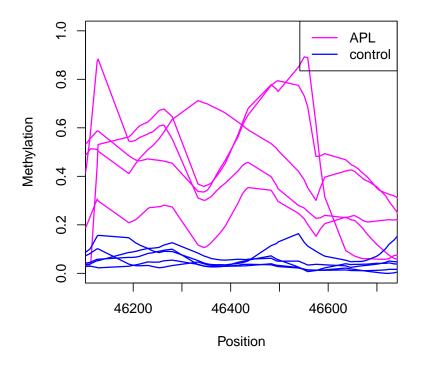


Figure 7: The smoothed methylation curves for all samples within a detected ${\rm DMR}$

We can annotate the detected DMRs by means of a *GRanges* object, e.g. a list of promoter regions. In case of an overlapping of both *GRanges* objects the DMR is marked as TRUE, or with the respective identifier in the promoter list:

- > data(promoters)
- > head(promoters)

```
GRanges with 6 ranges and 1 metadata column:
```

```
segnames
                            ranges strand |
                                                    acc_no
       <Rle>
                         <IRanges>
                                     <Rle> |
                                               <character>
        chr1 [66998824, 67000324]
[1]
                                                 NM_032291
[2]
        chr1 [ 8383389,
                          8384889]
                                           | NM_001080397
[3]
        chr1 [16766166, 16767666]
                                           | NM_001145277
[4]
        chr1 [16766166, 16767666]
                                         * | NM_001145278
[5]
        chr1 [16766166, 16767666]
                                         * |
                                                 NM_018090
[6]
        chr1 [50489126, 50490626]
                                                 NM_032785
```

seqlengths:

```
chr1
                           chr5 ... chr21 chr22
      chr2
              chr3
                     chr4
                                                     chrX
                                                            chrY
  NA
         NA
                NA
                       NA
                              NA ...
                                         NA
                                                NA
                                                       NA
                                                              NA
```

> DMRs.anno

[2]

GRanges with 4 ranges and 5 metadata columns:

0.5024435

```
segnames
                        ranges strand |
                                             median.p
       <Rle>
                     <IRanges>
                                 <Rle> |
                                             <numeric>
[1]
        chr1 [872335, 872386]
                                     * | 1.033748e-03
[2]
        chr1 [875227, 875470]
                                     * | 6.677193e-06
[3]
        chr2 [ 46126,
                        46718]
                                     * | 3.960405e-05
[4]
        chr2 [ 46915,
                        46937]
                                     * | 1.484596e-02
    median.meth.group1 median.meth.group2
             <numeric>
                                  <numeric>
[1]
             0.9414314
                                 0.85218621
```

0.18208201

```
[3]
             0.4386294
                                 0.07768183
[4]
             0.1363637
                                 0.03691975
    median.meth.diff
                          Promoter
           <numeric>
                       <character>
[1]
          0.08903549
                               <NA>
[2]
          0.31947418
                               <NA>
[3]
          0.35536318 NM_001077710
[4]
          0.09944399 NM_001077710
seqlengths:
 chr1 chr2
   NA
        NA
```

plotBindingSites plots the average methylation around given genomic regions, e.g. protein binding sites. Here, we compare the methyation in and around promoter regions between APL and controls:

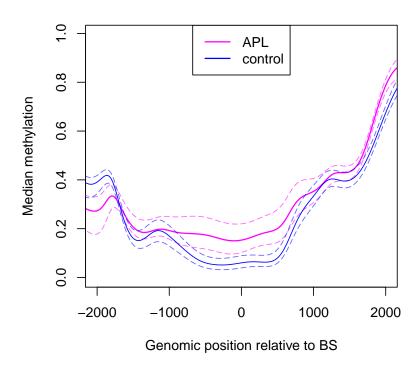


Figure 8: Methylation around 1,000 promoters; Position 0 refers to the centers of the promoters

The raw and relative methylation data can also be viewed in the Integra-

tive Genomics Viewer (IGV; freely available for download from www.broadinstitute.org/igv) [5]. To do so we first write the methylation information of each sample within the *BSraw* or *BSrel* object to a bed file:

We can load the bed files of the raw data in the IGV. The integers beneath the CpG marks represent the numbers of sequencing reads covering the CpG sites:

Figure 9: IGV snapshot of the raw data in and around a detected DMR

We can also load the smoothed methylation levels:

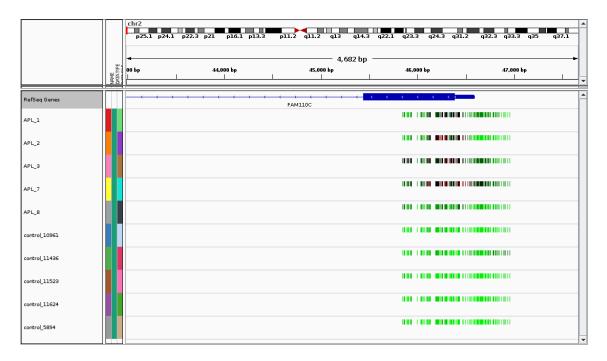


Figure 10: IGV snapshot of the smoothed data in and around a detected ${\rm DMR}$

References

- [1] Katja Hebestreit, Martin Dugas, and Hans-Ulrich Klein. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. *Bioinformatics*, 29(13):1647–1653, Jul 2013. URL: http://dx.doi.org/10.1093/bioinformatics/btt263, doi:10.1093/bioinformatics/btt263.
- [2] Till Schoofs, Christian Rohde, Katja Hebestreit, Hans-Ulrich Klein, Stefanie Göllner, Isabell Schulze, Mads Lerdrup, Nikolaj Dietrich, Shuchi Agrawal-Singh, Anika Witten, Monika Stoll, Eva Lengfelder, Wolf-Karsten Hofmann, Peter Schlenke, Thomas Büchner, Klaus Hansen, Wolfgang E Berdel, Frank Rosenbauer, Martin Dugas, and Carsten Müller-Tidow. Dna methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. *Blood*, Nov 2012. URL: http://dx.doi.org/10.1182/blood-2012-08-448860, doi:10.1182/blood-2012-08-448860.
- [3] Felix Krueger and Simon R Andrews. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. *Bioinformatics*, 27(11):1571–1572, Jun 2011. URL: http://dx.doi.org/10.1093/bioinformatics/btr167, doi:10.1093/bioinformatics/btr167.
- [4] Bettina Grün, Ioannis Kosmidis, and Achim Zeileis. Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned, 2012.
- [5] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov. Integrative genomics viewer (igv): high-performance genomics data visualization and exploration. *Brief Bioinform*, Apr 2012. URL: http://dx.doi.org/10.1093/bib/bbs017, doi:10.1093/bib/bbs017.