
How to use weaver for Sweave document processing

Seth Falcon

8 June, 2006

1 Introduction

The weaver package provides extensions to the Sweave utilities included in R’s utils package. The focus
of the extensions is on caching computationally expensive (time consuming) code chunks in Sweave
documents.

Why would I want to cache code chunks? If your Sweave document includes one or more code chunks
that take a long time to compute, you may find it frustrating to make small changes to the document.
Each run requires recomputing the “expensive” code chunks. If these chunks aren’t changing, you can
benefit from the caching provided by weaver .

How does it work? The details are in the code, of course, but in a few words... You tell weaver which
code chunks you want cached by setting a chunk option (cache=TRUE). A digest (md5 sum) of the text
representation of each expression in the code chunk is computed and the result of the expression is stored
in a file named by the expression’s digest. Dependencies on previously cached expressions are determined
using functions from the codetools package. After the cache files have been created, subsequent runs
load the cache instead of evaluating the expression (this means side-effects are completely lost!). When
changes in the dependencies of an expression are detected (or when the expression itself has changed),
it is recomputed and the cache file is updated.

2 Using the expression caching feature

If you add the chunk option cache=TRUE, then caching will be turned on for all expressions in the chunk.
Here’s an example:

<<someChunk, cache=TRUE>>=

All expressions will be cached

NO SIDE EFFECTS

b <- rnorm(3)

c <- runif(3)

z <- b + c

@

Side-effects, such as printing, plotting, definging S4 classes or methods, or setting global options are
not captured by the caching mechanism. Avoid doing such things in a code chunk that has cache=TRUE.
Treat cached code chunks as if you had set the option results=hide.

2.1 Warnings about using the caching feature

Do not stare directly at the cache! May cause blindness, headache, shortness of breath, and dizzyness.

� Printing doesn’t work in cached chunks since it is a side effect.

1

� The dependency detection is imperfect and will fail you. When you’ve made important changes,
you should remove all cache files and rebuild the document. By default, the cache database
is stored in a directory named r_env_cache in the current working directory. Removing this
directory is the best way to be certain that the following run will not use any cached data. A log
file is produced in the current working directory named weaver_debug_log.txt. Reviewing it can
be useful in determining what the weaver system thinks the dependencies of a given expression
are.

� Caching is performed separately on each expression in a chunk which has the option cache=TRUE

set. Be especially careful with repeated calls to random number based functions like rnorm.
Repeated calls within cached chunks will pull from the cache rather than computing a new stream
of random numbers.

� The cache is not document specific. If you have two documents in the same working directory that
contain equivalent expressions within a chunk that has caching turned on, you will get the cached
value. I think this is a feature and will be useful for testing purposes, but could be surprising.

3 Processing a document from inside R

To process a document using weaver , load the weaver package and then use weaver() as the driver

argument to Sweave. Here is an example:

> library("weaver")

> testDocPath <- system.file("extdata/doc1.Rnw", package="weaver")

> curDir <- getwd()

> setwd(tempdir())

> z <- capture.output(Sweave(testDocPath, driver=weaver()),

+ file=tempfile())

> setwd(curDir)

Note that the calls to setwd are only needed here because we are processing an Sweave document
inside an Sweave document. Also, capture.output was used to keep this document short and to
encourage you to run the examples yourself1

Now we run another sample document.

> testDocPath <- system.file("extdata/doc2.Rnw", package="weaver")

> curDir <- getwd()

> setwd(tempdir())

> z <- capture.output(Sweave(testDocPath, driver=weaver()),

+ file=tempfile())

> setwd(curDir)

Finally, we run our first example document again. This time, you can see that data from the cache
is being used.

> testDocPath <- system.file("extdata/doc1.Rnw", package="weaver")

> curDir <- getwd()

> setwd(tempdir())

> z <- capture.output(Sweave(testDocPath, driver=weaver()),

+ file=tempfile())

> setwd(curDir)

1In addition, some of the output is sent to stderr and this is not captured when running Sweave inside Sweave.

2

4 Sample convenience shell script

You can use this shell script to make processing Rnw files with weaver easier.

#!/bin/bash

echo "library(weaver); Sweave(\"$1\", driver=weaver())" \

| R --no-save --no-restore

If you put that into a file weaver.sh, then you can do:

weaver.sh somefile.Rnw

to process somefile.Rnw with weaver . Another useful script is one that does the processing without
using any cached data. This is useful, for example, when you are ready to produce a final draft of your
document.

#!/bin/bash

echo "library(weaver); Sweave(\"$1\", driver=weaver(), use.cache=FALSE)" \

| R --no-save --no-restore

5 Session Info

> toLatex(sessionInfo())

� R version 3.0.0 (2013-04-03), i386-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, stats, tools, utils

� Other packages: codetools 0.2-8, digest 0.6.3, weaver 1.26.0

3

	Introduction
	Using the expression caching feature
	Warnings about using the caching feature

	Processing a document from inside R
	Sample convenience shell script
	Session Info

