
seqbias

Assessing and Adjusting for Technical Bias
in High Throughput Sequencing Data

Daniel Jones
<dcjones@cs.washington.edu>

Computer Science & Engineering

University of Washington

April 4, 2013

1 Introduction

This package is designed as a means to assess and adjust for technical bias
in high-throughput sequencing datasets, RNA-Seq being a specific target. As
noted in previous studies, RNA-Seq is often subject to protocol specific bias.
That is, the number of reads mapping to a particular position of the genome is
dependent on the the surrounding nucleotide sequence (as well as the abun-
dance of the RNA transcript) [1] [3]. Accounting for this bias increases unifor-
mity of coverage and may result in more accurate quantification.

The approach implemented here trains a simple Bayesian network clas-
sifier and uses it to evaluate the per position bias. This builds off work done
by Hansen, et. al. [1], available in the Genominator Bioconductor package.
Another approach is taken by Li, et. al. [3] in the mseq package, available from
CRAN.

For this vignette, we will use some example data taken from Mortazavi, et.
al. [4] (NCBI accession number SRR001358). Because of space constraints, we
have mapped the reads (using Bowtie [2]) to an artificial genome consisting
of approximately 100kb of exonic DNA.

This “artificial genome” is given as,

> library(seqbias)

> library(Rsamtools)

> ref_fn <- system.file("extra/example.fa", package = "seqbias")

> ref_f <- FaFile(ref_fn)

> open.FaFile(ref_f)

And the mapped reads,

> reads_fn <- system.file("extra/example.bam", package = "seqbias")

1

2 Assessment

As a natural first step, we would like to assess whether our sample is signifi-
cantly biased. If this proves to be the case, we may wish to correct for this. A
simple procedure to do so will be covered in the next section.

To assess the nucleotide frequency we will use a very simple procedure:

1. Generate a random sample of intervals across our reference genome.

2. Extract sequences for these intervals from a FASTA file.

3. Extract read counts across these intervals from a BAM file.

4. Using these sequences and counts, compute and plot nucleotide or k-
mer frequencies.

Sampling

For this step, we could use collection of known exons, but trustworthy anno-
tations are not always available, and biasing the analysis by known exons may
be a concern in some instances. Fortunately, seqbias provides a function to
generate random intervals.

First, we extract a vector of sequence lengths, in the reference genome.
Given an FASTA file than has been indexed with the samtools faidx com-
mand, we can use the Rsamtools package to read off the sequence lengths
and to extract the sequence. First, the lengths,

> ref_seqs <- scanFaIndex(ref_f)

Once we have this, we generate 5 intervals of 100kb. It most cases we
would want to generate a larger sample, but since we are working here with
small reference sequence with dense coverage, we can get an accurate mea-
surement with a few intervals.

> I <- random.intervals(ref_seqs, n = 5, m = 100000)

Sequences

Next we extract the nucleotide sequences,

> seqs <- scanFa(ref_f, I)

The scanFa function does not respect strand, so we must be sure to per-
form the reverse complement ourselves.

> neg_idx <- as.logical(I@strand == '-')

> seqs[neg_idx] <- reverseComplement(seqs[neg_idx])

2

Counts

Finally, we count the number of reads mapping to each position in our sam-
pled intervals.

> counts <- count.reads(reads_fn, I, binary = T)

Unless the binary argument is FALSE, this function returns a 0-1 vector,
where a position is 0 if no reads map to it, and 1 if at least one read maps to
it. This is a more robust way to measure sequencing bias, as the frequencies
can not get dominated by a few very high peaks.

Frequencies

At last, we compute the k-mer frequency (where k = 1, by default).

> freqs <- kmer.freq(seqs, counts)

A nice way to plot this is with the ggplot2 package, if available.

> if(require(ggplot2)) {

+ P <- qplot(x = pos,

+ y = freq,

+ ylim = c(0.15,0.4),

+ color = seq,

+ data = freqs,

+ geom = "line")

+ P <- P + facet_grid(seq ~ .)

+ print(P)

+ } else {

+ par(mar = c(5,1,1,1), mfrow = c(4,1))

+ with(subset(freqs, seq == "a"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "a", type = 'l'))

+ with(subset(freqs, seq == "c"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "c", type = 'l'))

+ with(subset(freqs, seq == "g"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "g", type = 'l'))

+ with(subset(freqs, seq == "t"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "t", type = 'l'))

+ }

Doing so will produce the following plot,

3

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

a
c

g
t

−50 −25 0 25 50
pos

fr
eq

seq

a

c

g

t

The x-axis shows the nucleotide position relative to the read start. Nega-
tive number occur in the genome to the left of mapped reads. In this set, the
reads consist of positions 0-24.

We can see a clear bias here in positions 0-15, approximately. The rest of
the plot looks relatively flat, as we would expect if the experiment was mea-
suring abundance only and not a biased by the nucleotide sequence. In the
next section we will adjust read counts to account for this.

3 Compensation

Training

To begin, we must fit a seqbias model to our dataset. This done very easily
with the seqbias.fit function. This will take only a few seconds, but when
more reads are available a more accurate model can be trained at the expense
of the training procedure taking up to several minutes.

> sb <- seqbias.fit(ref_fn, reads_fn, L = 5, R = 15)

The L and R arguments control the maximum number of positions to the
left and right of the read start that may be considered. The model tries to con-
sider only informative positions, so increasing these numbers will increase
training time, but should never have a negative effect the accuracy of the
model.

Prediction

Once we have trained the seqbias model, we can use it to predict the sequenc-
ing bias across a set of intervals.

4

> bias <- seqbias.predict(sb, I)

Adjustment

To adjust, we will can simply divide the counts vectors by the bias vectors.

> counts.adj <- mapply(FUN = `/`, counts, bias, SIMPLIFY = F)

The post-adjustment nucleotide frequencies can then be measured as be-
fore,

> freqs.adj <- kmer.freq(seqs, counts.adj)

And plotted,

> if(require(ggplot2)) {

+ P <- qplot(x = pos,

+ y = freq,

+ ylim = c(0.15,0.4),

+ color = seq,

+ data = freqs.adj,

+ geom = "line")

+ P <- P + facet_grid(seq ~ .)

+ print(P)

+ } else {

+ par(mar = c(5,1,1,1), mfrow = c(4,1))

+ with(subset(freqs.adj, seq == "a"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "a", type = 'l'))

+ with(subset(freqs.adj, seq == "c"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "c", type = 'l'))

+ with(subset(freqs.adj, seq == "g"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "g", type = 'l'))

+ with(subset(freqs.adj, seq == "t"),

+ plot(freq ~ pos, ylim = c(0.15,0.4), sub = "t", type = 'l'))

+ }

The plot below results,

5

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

a
c

g
t

−50 −25 0 25 50
pos

fr
eq

seq

a

c

g

t

Compared to the first figure, the improvement is clear.

4 Save / Load

If the model is fit using a large number of reads, it can take several minutes
to train. To avoid repeatedly refitting the model, seqbias provides a mecha-
nism to save and load the model to a YAML file with the seqbias.save and
seqbias.load functions.

> seqbias.save(sb, "my_seqbias_model.yml")

> # load the model sometime later

> sb <- seqbias.load(ref_fn, "my_seqbias_model.yml")

Note when loading the model, we need to provide a reference sequence.
The seqbiasobject keeps track of the reference sequence to make seqbias.predict
more convenient.

5 Session Info

> sessionInfo()

R version 3.0.0 (2013-04-03)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

6

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] ggplot2_0.9.3.1 Rsamtools_1.12.0 seqbias_1.8.0

[4] Biostrings_2.28.0 GenomicRanges_1.12.0 IRanges_1.18.0

[7] BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] MASS_7.3-26 RColorBrewer_1.0-5 bitops_1.0-5 colorspace_1.2-1

[5] dichromat_2.0-0 digest_0.6.3 grid_3.0.0 gtable_0.1.2

[9] labeling_0.1 munsell_0.4 plyr_1.8 proto_0.3-10

[13] reshape2_1.2.2 scales_0.2.3 stats4_3.0.0 stringr_0.6.2

[17] tools_3.0.0 zlibbioc_1.6.0

References

[1] Kasper Hansen, Steven Brenner, and Sandrine Dudoit. Biases in Illumina
transcriptome sequencing caused by random hexamer priming. Nucleic
acids research, pages 1–7, April 2010.

[2] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg. Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome. Genome biology, 10(3):R25, 2009.

[3] Jun Li, Hui Jiang, and Wing Hung Wong. Modeling non-uniformity in
short-read rates in RNA-Seq data. Genome Biology, 11(5):R50, 2010.

[4] Ali Mortazavi, Brian Williams, Kenneth Mccue, Lorian Schaeffer, and Bar-
bara Wold. Mapping and quantifying mammalian transcriptomes by
RNA-Seq. Nature Methods, 5(7):1–8, 2008.

7

