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Here we illustrate several uses of the package gaga, including simulation,
differential expression analysis, class prediction and sample size calculations.
In Section 1 we review the GaGa and MiGaGa models. In Section 2 we
simulate gene expression data, which we use to fit the GaGa model in Section
3. Diagnostics for model goodness-of-fit are presented in Section 4. Section 5
shows how to find differentially expressed genes, Section 6 how to obtain fold
change estimates and Section 7 how to classify samples into groups. Finally,
in Section 8 we perform fixed and sequential sample size calculations.

1 Introduction

Newton et al. [2001] and Kendziorski et al. [2003] introduced the Gamma-
Gamma model to analyze microarray data, an elegant and parsimonious hi-
erachical model that allows for the borrowing of information between genes.
Rossell [2009] showed that the assumptions of this model are too simplistic,
which resulted in a rather poor fit to several real datasets, and developed
two extensions of the model: GaGa and MiGaGa. The gaga library imple-
ments the GaGa and MiGaGa generalizations, which can be used both to
find differentially expressed genes and to predict the class of a future sample
(e.g. given the mRNA measurements for a new patient, predict whether the
patient has cancer or is healthy).

We now briefly outline the GaGa and MiGaGa models. Let xij be the
expression measurement for gene i in array j, and let zj indicate the group
to which array belongs to (e.g. zj = 0 for normal cells and zj = 1 for cancer
cells). The GaGa models envisions the observations as arising from a gamma
distribution, i.e. xij ∼ Ga(αi,zj , αi,zj/λi,zj) (λi,zj is the mean), where αi,zj and
λi,zj arise from a gamma and an inverse gamma distribution, respectively:
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λi,k|δi, α0, ν ∼ IGa(α0, α0/ν), indep. for i = 1 . . . n

αi,k|δi, β, µ ∼ Ga(β, β/µ), indep. for i = 1 . . . n

δi|π ∼ Mult(1,π), indep. for i = 1 . . . n. (1)

δ1 . . . δn are latent variables indicating what expression pattern each gene
follows (see Section 3 for more details). For example, if there are only two
groups δi indicates whether gene i is differentially expressed or not.

In principle, both the shape and mean parameters are allowed to vary
between groups, and δi compares both parameters between groups (i.e. the
GaGa model allows to compare not only mean expression levels but also the
shape of the distribution between groups). However, the gaga library also
implements a particular version of the model which assumes that the shape
parameter is constant across groups, i.e. αi,k = αi for all k.

The coefficient of variation in the Gamma distribution is equal to the
inverse square root of the shape parameter, and hence assuming constant
αi,k is equivalent to assuming constant CV across groups.

In most routines the user can choose the constant CV model with the
option equalcv=TRUE (the default), and the varying CV model with the
option equalcv=FALSE.

The Bayesian model is completed by specifying priors on the hyper-
parameters that govern the hierarchy:

α0 ∼ Ga(aα0 , bα0); ν ∼ IGa(aν , bν)

β ∼ Ga(aβ, bβ);µ ∼ IGa(aµ, bµ)

π ∼ Dirichlet(p). (2)

The gaga library provides some default values for the prior parameters
that are a reasonable choice when the data has been normalized via the
function just.rma from the R library affy or just.gcrma from the R library
just.gcrma. The MiGaGa model extends GaGa by specifying a mixture of
inverse gammas for ν.

Both models are fit using the routine fitGG: the argument nclust indi-
cates the number of components in the mixture (nclust=1 corresponds to
the GaGa model).

2 Simulating the data

We start by loading the library and simulating mRNA expression levels for
n=100 genes and 2 groups, each with 6 samples. We set the seed for random



number generation so that you can reproduce the results presented here. We
use the parameter estimates obtained from the Armstrong dataset (Arm-
strong, 2002) as described in (Rossell, 2009) As we shall see in the future
sections, we use the first five samples from each group to fit the model. We
will then use the model to predict the class for the sixth sample.

> library(gaga)

> set.seed(10)

> n <- 100; m <- c(6,6)

> a0 <- 25.5; nu <- 0.109

> balpha <- 1.183; nualpha <- 1683

> probpat <- c(.95,.05)

> xsim <- simGG(n,m=m,p.de=probpat[2],a0,nu,balpha,nualpha,equalcv=TRUE)

The object xsim is an ExpressionSet. The simulated expression val-
ues are accessible through exprs(xsim), the parameters through feature-

Data(xsim) and the group that each observation belongs through pData(xsim).
We save in a a matrix containing the gene-specific α parameters (a[,1] con-
tains parameters for the first group, a[,2] for the second). Similarly, we save
the gene-specific means λ in l and the expression values in x.

> xsim

ExpressionSet (storageMode: lockedEnvironment)

assayData: 100 features, 12 samples

element names: exprs

protocolData: none

phenoData

sampleNames: Array 1 Array 2 ... Array 12 (12 total)

varLabels: group

varMetadata: labelDescription

featureData

featureNames: Gene 1 Gene 2 ... Gene 100 (100 total)

fvarLabels: alpha.1 alpha.2 mean.1 mean.2

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

> featureData(xsim)

An object of class 'AnnotatedDataFrame'

featureNames: Gene 1 Gene 2 ... Gene 100 (100 total)

varLabels: alpha.1 alpha.2 mean.1 mean.2

varMetadata: labelDescription
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Figure 1: (a): marginal density of the simulated data; (b): plot of the simu-
lated (α, λ) pairs

> phenoData(xsim)

An object of class 'AnnotatedDataFrame'

sampleNames: Array 1 Array 2 ... Array 12 (12 total)

varLabels: group

varMetadata: labelDescription

> a <- fData(xsim)[,c("alpha.1","alpha.2")]

> l <- fData(xsim)[,c("mean.1","mean.2")]

> x <- exprs(xsim)

Figure 1(a) shows the marginal distribution (kernel density estimate) of
the simulated gene expression levels. Figure 1(b) plots the simulated mean
and coefficient of variation for group 1. The plots can be obtained with the
following syntax:

> plot(density(x),xlab='Expression levels',main='')

> plot(l[,1],1/sqrt(a[,1]),xlab='Group 1 Mean',ylab='Group 1 CV')



3 Model fit

To fit the model we use the function fitGG. First, we define the vector groups,
which indicates the group each sample belongs to. Second, we specify the
gene expression patterns or hypotheses that we wish to entertain. In our ex-
ample, since we have two groups there really are only two possible expression
patterns:

Pattern 0 (null hypotheses): group 1 = group 2

Pattern 1 (alternative hypothesis): group 1 6= group 2.

More precisely, under pattern 0 we have that αi1 = αi2 and λi1 = λi2,
while under pattern 1 αi1 6= αi2 and λi2 6= λi2. We specify the patterns with
a matrix with as many rows as patterns and as many columns as groups. For
each row of the matrix (i.e. each hypothesis), we indicate that two groups
are equal by assigning the same number to their corresponding columns. The
column names of the matrix must match the group codes indicated in groups,
otherwise the routine returns an error. For example, in our two hypothesis
case we would specify:

> groups <- pData(xsim)$group[c(-6,-12)]

> groups

[1] group 1 group 1 group 1 group 1 group 1 group 2 group 2 group 2 group 2

[10] group 2

Levels: group 1 group 2

> patterns <- matrix(c(0,0,0,1),2,2)

> colnames(patterns) <- c('group 1','group 2')

> patterns

group 1 group 2

[1,] 0 0

[2,] 0 1

For illustration, suppose that instead we had 3 groups and 4 hypotheses,
as follows:

Pattern 0: CONTROL = CANCER A = CANCER B

Pattern 1: CONTROL 6= CANCER A = CANCER B



Pattern 2: CONTROL = CANCER A 6= CANCER B

Pattern 3: CONTROL 6= CANCER A 6= CANCER B

In this case we would specify

> patterns <- matrix(c(0,0,0,0,1,1,0,0,1,0,1,2),ncol=3,byrow=TRUE)

> colnames(patterns) <- c('CONTROL','CANCER A','CANCER B')

> patterns

CONTROL CANCER A CANCER B

[1,] 0 0 0

[2,] 0 1 1

[3,] 0 0 1

[4,] 0 1 2

That is, the second row indicates that under Pattern 1 cancers of type
A and B are present the same expression levels, since they both have a 1 in
their entries. The last row indicates that they are all different by specifying
a different number in each entry.

Now, to fit the GaGa model to our simulated data we use fitGG, with
nclust=1 (to fit the MiGaGa model we would set nclust to the number of
components that we want in the mixture). We remove columns 6 and 12
from the dataset, i.e. we do not use them for the fit so that we can evaluate
the out-of-sample behavior of the classifier built in Section 7. Here we use
the option trace=FALSE to prevent iteration information from being printed.
There are several available methods to fit the model. method==’EM’ imple-
ments an Expectation-Maximization algorithm which seeks to maximize the
expected likelihood. method==’quickEM’ (the default) is a quicker version
that uses only 1 maximization step. quickEM usually provides reasonably
good hyper-parameter estimates at a low computational cost. In practice
we have observed that the inference derived from the GaGa and MiGaGa
models (e.g. lists of differentially expressed genes) is robust to slight hyper-
parameter miss-specifications, so we believe quickEM to be a good default
option for large datasets. method==’SA’ implements a Simulated Anneal-
ing scheme which searches for a hyper-parameter value with high posterior
density.

The three above-mentioned methods (EM, quickEM, SA) only provide point
estimates. We can obtain credibility intervals with method==’Gibbs’ or
method==’MH’, which fit a fully Bayesian model via Gibbs or Metropolis-
Hastings MCMC posterior sampling, respectively. Of course, obtaining cred-
ibility intervals comes at a higher computational cost. In our experience the
five methods typically deliver similar results.



> patterns <- matrix(c(0,0,0,1),2,2)

> colnames(patterns) <- c('group 1','group 2')

> gg1 <- fitGG(x[,c(-6,-12)],groups,patterns=patterns,nclust=1,method='Gibbs',B=1000,trace=FALSE)

> gg2 <- fitGG(x[,c(-6,-12)],groups,patterns=patterns,method='EM',trace=FALSE)

> gg3 <- fitGG(x[,c(-6,-12)],groups,patterns=patterns,method='quickEM',trace=FALSE)

We can obtain iteration plots to visually assess the convergence of the
chain. The component mcmc of gg1 contains an object of type mcmc, as
defined in the library coda.

To obtain parameter estimates and the posterior probability that each
gene is differentially expressed we use the function parest. We discard
the first 100 MCMC iterations with burnin=100, and we ask for 95% pos-
terior credibility intervals with alpha=.05. The slot ci of the returned
object contains the credibility intervals (this option is only available for
method==’Gibbs’ and method==’MH’).

> gg1 <- parest(gg1,x=x[,c(-6,-12)],groups,burnin=100,alpha=.05)

> gg2 <- parest(gg2,x=x[,c(-6,-12)],groups,alpha=.05)

> gg3 <- parest(gg3,x=x[,c(-6,-12)],groups,alpha=.05)

> gg1

GaGa hierarchical model. Fit via Gibbs sampling (900 iterations kept)

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (93.6% genes): group 1 = group 2

Pattern 1 (6.4% genes): group 1 !=group 2

Hyper-parameter estimates

a0 nu balpha nualpha

21.698 0.113 1.325 1399.406

probclus

1

> gg1$ci

$a0

2.5% 97.5%

16.40744 28.17880



$nu

2.5% 97.5%

0.1086822 0.1174830

$balpha

2.5% 97.5%

0.9729197 1.7644740

$nualpha

2.5% 97.5%

1128.553 1711.667

$probclus

[1] 1 1

$probpat

probpat.1 probpat.2

2.5% 0.8689520 0.01912461

97.5% 0.9808754 0.13104796

> gg2

GaGa hierarchical model. Fit via Expectation-Maximization

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (93.8% genes): group 1 = group 2

Pattern 1 (6.2% genes): group 1 !=group 2

Hyper-parameter estimates

alpha0 nu balpha nualpha

21.712 0.113 1.331 1395.15

probclus

1

> gg3



GaGa hierarchical model.Fit via quick Expectation-Maximization

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (93.8% genes): group 1 = group 2

Pattern 1 (6.2% genes): group 1 !=group 2

Hyper-parameter estimates

alpha0 nu balpha nualpha

21.703 0.113 1.271 1395.15

probclus

1

Although the parameter estimates obtained from the four methods are
similar to each other, some differences remain. This is due to some extent to
our having a small dataset with only 100 genes. For the larger datasets en-
countered in practice the four methods typically deliver very similar results.
In Section 5 we assess whether the lists of differentially expressed genes ob-
tained with each method are actually the same. The slot pp in gg1 and gg2

contains a matrix with the posterior probability of each expression pattern for
each gene. For example, to find probability that the first gene follows pattern
0 (i.e. is equally expressed) and pattern 1 (i.e. is differentially expressed)
we do as follows.

> dim(gg1$pp)

[1] 100 2

> gg1$pp[1,]

[1] 0.994766339 0.005233661

> gg2$pp[1,]

[1] 0.994887791 0.005112209



4 Checking the goodness of fit

To graphically assess the goodness of fit of the model, one can used prior-
predictive or posterior-predictive checks. The latter, implemented in the
function checkfit, are based on drawing parameter values from the posterior
distribution for each gene, and possibly using then to generate data values,
and then compare the simulated values to the observed data. The data
generated from the posterior predictive is compared to the observed data in
Figure 2(a). Figure 2(b)-(d) compares draws from the posterior of α and
λ with their method of moments estimate, which is model-free. All plots
indicate that the model has a reasonably good fit. The figures were generated
with the following code:

> checkfit(gg1,x=x[,c(-6,-12)],groups,type='data',main='')

> checkfit(gg1,x=x[,c(-6,-12)],groups,type='shape',main='')

> checkfit(gg1,x=x[,c(-6,-12)],groups,type='mean',main='')

> checkfit(gg1,x=x[,c(-6,-12)],groups,type='shapemean',main='',xlab='Mean',ylab='1/sqrt(CV)')

It should be noted, however, that posterior-predictive plots can fail to
detect departures from the model, since there is a double use of the data.
Prior-predictive checks can be easily implemented using the function simGG

and setting the hyper-parameters to their posterior mean.

5 Finding differentially expressed genes

The function findgenes finds differentially expressed genes, i.e. assigns each
gene to an expression pattern. The problem is formalized as minizing the false
negative rate, subject to an upper bound on the false discovery rate, say fdr-

max=0.05. In a Bayesian sense, this is achieved by assigning to pattern 0 (null
hypothesis) all genes for which the posterior probability of following pattern 0
is above a certain threshold (Mueller, 2004). The problem is then to find the
optimal threshold, which can be done parametrically or non-parametrically
through the use of permutations (for details see Rossell, 2009).Here we ex-
plore both options, specifying B=1000 permutations for the non-parametric
option.

> d1 <- findgenes(gg1,x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)

> d1.nonpar <- findgenes(gg1,x[,c(-6,-12)],groups,fdrmax=.05,parametric=FALSE,B=1000)
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Figure 2: Assessing the goodness of fit. (a): compares samples from the
posterior predictive to the observed data; (b): compares samples from the
posterior of α to the method of moments estimate; (c): compares samples
from the posterior of λ to the method of moments estimate; (d): as (b) and
(c) but plots the pairs (α, λ) instead of the kernel density estimates



Finding clusters of z-scores for bootstrap... Done

Starting 1000 bootstrap iterations...

> dtrue <- (l[,1]!=l[,2])

> table(d1$d,dtrue)

dtrue

FALSE TRUE

0 95 1

1 0 4

> table(d1.nonpar$d,dtrue)

dtrue

FALSE TRUE

0 95 1

1 0 4

We set the variable dtrue to indicate which genes were actually differ-
entially expressed (easily achieved by comparing the columns of xsim$l).
Both the parametric and non-parametric versions declare 4 genes to be DE,
all of them true positives. They both fail to find one of the DE genes. To
obtain an estimated frequentist FDR for each Bayesian FDR one can plot
d1.nonpar$fdrest. The result, shown in Figure 2, reveals that setting the
Bayesian FDR at a 0.05 level results in an estimated frequentist FDR around
0.015. That is, calling findgenes with the option parametric=TRUE results
in a slightly conservative procedure from a frequentist point of view.

> plot(d1.nonpar$fdrest,type='l',xlab='Bayesian FDR',ylab='Estimated frequentist FDR')

Finally, we compare the list of differentially expressed genes with those
obtained when using the other fitting criteria explained in Section 3.

> d2 <- findgenes(gg2,x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)

> d3 <- findgenes(gg3,x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)

> table(d1$d,d2$d)

0 1

0 96 0

1 0 4

> table(d1$d,d3$d)
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Figure 3: Estimated frequenstist FDR vs. Bayesian FDR
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Despite the existence of small differences in the hyper-parameter esti-
mates between methods, the final list of differentially expressed genes is the
same for all of them. This suggests that the GaGa model is somewhat robust
to the hyper-parameter specification.

6 Obtaining fold change estimates

The GaGa and MiGaGa models can be used to obtain fold change estimates,
by computing the posterior expected expression values for each group. As
these posterior expectations are derived from a hierarchical model, they are
obtained by borrowing information across genes. Therefore, in small sample
situations they are preferrable to simply using the group sample means.

The function posmeansGG computes posterior expected values under any
expression pattern. The expression pattern is indicated with the argument
underpattern. In our example (as in most microarray experiments) pattern
0 corresponds to the null hypothesis that no genes are differentially expressed.
Therefore, specifying underpattern=0 would result in obtaining identical
expression estimates for both groups. Instead, one is commonly interested
in computing a different mean for each group, which in our case corresponds



to pattern 1. As the expression measurements were simulated to be in log2
scale, the log-fold change can be computed by taking the difference between
the two group means (if the data were in the original scale, we would divide
instead). The code below computed posterior means and log-fold changes,
and prints out the fold change for the first five genes.

> mpos <- posmeansGG(gg1,x=x[,c(-6,-12)],groups=groups,underpattern=1)

Computing posterior means under expression pattern 1 ...

> fc <- mpos[,1]-mpos[,2]

> fc[1:5]

[1] -0.11041019 -0.01292394 -0.83741277 0.08419899 -0.05508204

7 Class prediction

We now use the fitted model to predict the class of the arrays number 6 and
12, neither of which were used to fit the model. We assume that the prior
probability is 0.5 for each group, though in most settings this will not be
realistical. For example, if groups==2 indicates individuals with cancer, one
would expect the prior probability to be well below 0.5, say around 0.1. But
if the individual had a positive result in some test that was administered
previously, this probability would have increased, say to 0.4.

Class prediction is implemented in the function classpred. The argu-
ment xnew contains the gene expression measurements for the new individ-
uals, x is the data used to fit the model and ngene indicates the number of
genes that should be used to build the classifier. It turns out that array 6
is correctly assigned to group 1 and array 12 is correctly assigned to group
2. classpred also returns the posterior probability that the sample belongs
to each group. We see that for the dataset at hand the posterior probability
of belonging to the wrong group is essentially zero. Similarly good results
are obtained when using setting ngene to either 1 (the minimum value) or to
100 (the maximum value). The fact that adding more gene to the classifier
does not change its performance is not surprising, since the classifier assigns
little weight to genes with small probability of being DE. We have observed
a similar behavior in many datasets. The fact that the classifier works so
well with a single is typically not observed in real datasets, where it is rare
to have a gene with such a high discrimination power.

> pred1 <- classpred(gg1,xnew=x[,6],x=x[,c(-6,-12)],groups,ngene=50,prgroups=c(.5,.5))

> pred2 <- classpred(gg1,xnew=x[,12],x=x[,c(-6,-12)],groups,ngene=50,prgroups=c(.5,.5))

> pred1



$d

[1] 1

$posgroups

[1] 1.00000e+00 2.34201e-24

> pred2

$d

[1] 2

$posgroups

[1] 9.486657e-22 1.000000e+00

8 Designing high-throughput experiments

The gaga package incorporates routines which can be used for fixed and se-
quential sample size calculation in high-throughput experiments. For details
on the methodology see Rossell and Müller [2011]. We start by simulating
some data from a GaGa model. Since the computations can be intensive,
here we simulate data for 20 genes only. The question is, given the observed
data, how many more samples should we collect, if any?

> set.seed(1)

> x <- simGG(n=20,m=2,p.de=.5,a0=3,nu=.5,balpha=.5,nualpha=25)

> gg1 <- fitGG(x,groups=1:2,method='EM')

Initializing parameters... Done.

Refining initial estimates...

Starting EM algorithm...

alpha0[1] nu[1] balpha nualpha probpat[1] probpat[2] logl

3.892212 0.433702 0.189467 105.964470 0.650039 0.349961 -21.289791

3.532750 0.456514 0.459891 21.641185 0.695806 0.304194 -17.570110

3.596507 0.451893 0.459891 21.462008 0.734122 0.265878 -17.393875

3.657439 0.447951 0.459891 21.260235 0.766362 0.233638 -17.260041

3.706742 0.444576 0.459891 21.072151 0.793631 0.206369 -17.156884

3.746888 0.441692 0.459891 20.902542 0.816838 0.183162 -17.076171

3.779824 0.439215 0.459891 20.751736 0.836716 0.163284 -17.012084

3.807127 0.437077 0.459891 20.618402 0.853855 0.146145 -16.960480

3.807127 0.437077 0.459891 20.618402 0.868318 0.131682 -16.919115

3.807127 0.437077 0.459891 20.618402 0.880643 0.119357 -16.886760



3.807127 0.437077 0.459891 20.618402 0.891240 0.108760 -16.861047

3.807127 0.437077 0.459891 20.618402 0.900427 0.099573 -16.840319

3.807127 0.437077 0.459891 20.618402 0.908451 0.091549 -16.823389

3.807127 0.437077 0.459891 20.618402 0.915508 0.084492 -16.809398

3.807127 0.437077 0.459891 20.618402 0.921754 0.078246 -16.797712

3.807127 0.437077 0.459891 20.618402 0.927312 0.072688 -16.787856

3.807127 0.437077 0.459891 20.618402 0.932286 0.067714 -16.779470

> gg1 <- parest(gg1,x=x,groups=1:2)

The function powfindgenes evaluates the (posterior) expected number
of new true gene discoveries if one were to obtain an additional batch of
data with batchSize new samples per group. For our simulated data, we
expect that obtaining 1 more sample per group would provide no new gene
discoveries. For 2 and 3 more samples per group we still expect to discover
less than one new gene (which seems reasonable for our simulated data with
only 20 genes).

> pow1 <- powfindgenes(gg1, x=x, groups=1:2, batchSize=1, fdrmax=0.05, B=1000)

> pow2 <- powfindgenes(gg1, x=x, groups=1:2, batchSize=2, fdrmax=0.05, B=1000)

> pow3 <- powfindgenes(gg1, x=x, groups=1:2, batchSize=3, fdrmax=0.05, B=1000)

> pow1$m

[1] 0

> pow2$m

[1] 0.02612138

> pow3$m

[1] 0.1148547

As illustrated, calling powfindgenes for different values of batchSize can
be used to determine the sample size. We refer to this approach as fixed sam-
ple size calculation, since the number of additional samples is fixed from now
on, regardless of the evidence provided by new data. Function forwsimDif-

fExpr provides a sequential sample size alternative. The idea is that, every
time that we observe new data, we can use powfindgenes to estimate the
expected number of new gene discoveries for an additional data batch. As
long as this quantity is large enough, we keep adding new samples. When
this quantity drops below some threshold we stop experimentation. for-

wsimDiffExpr uses forward simulation to determine reasonable values for



this threshold. Shortly, the function simulates batchSize new samples per
group from the GaGa posterior predictive distribution, and for each of them
evaluates the expected number of new discoveries via powfindgenes (esti-
mated via Bsummary Monte Carlo samples). Then batchSize more samples
are added, and powfindgenes is called again, up to a maximum number
of batches maxBatch. The whole process is repeated B times. Notice that,
although not illustrated here, parallel processing can be used to speed up
computations (e.g. see mcapply from package multicore).

> fs1 <- forwsimDiffExpr(gg1, x=x, groups=1:2,

+ maxBatch=3,batchSize=1,fdrmax=0.05, B=100, Bsummary=100, randomSeed=1)

Starting forward simulation...

0 iterations

10 iterations

20 iterations

30 iterations

40 iterations

50 iterations

60 iterations

70 iterations

80 iterations

90 iterations

> head(fs1)

simid time u fdr fnr power summary

1 0 0 0 0 0.06324234 0 0

101 0 1 0 0 0.05726000 0 0

102 0 2 0 0 0.05671000 0 0

103 0 3 0 0 0.05430000 0 NA

2 1 0 0 0 0.06324234 0 0

104 1 1 0 0 0.07213000 0 0

forwsimDiffExpr returns a data.frame indicating, for each simulation
and stopping time (number of batches), the posterior expectation of the num-
ber of true posities (u), false discovery and false negative rates (fdr, fnr),
and power (e.g. number of detected DE genes at a Bayesian FDR fdrmax

divided by overall number of DE genes). It also returns the (posterior predic-
tive) expected new DE discoveries for one more data batch in summary. Since
experimentation is always stopped at time==maxBatch, it is not necessary to
evaluate summary at this time point and NA is returned.



The output of forwsimDiffExpr can be used to estimate the expected
number of new true discoveries for each sample size, as well as to estimate
the expected utility by subtracting a sampling cost. As illustrated above
these results can also be obtained with powfindgenes, which is much faster
computationally.

> tp <- tapply(fs1$u,fs1$time,'mean')

> tp

0 1 2 3

0.0000000 0.0000000 0.0485364 0.1376917

> samplingCost <- 0.01

> util <- tp - samplingCost*(0:3)

> util

0 1 2 3

0.0000000 -0.0100000 0.0285364 0.1076917

Again, for our simulated data we expect to find very few DE genes with
1, 2 or 3 additional data batches. For a sampling cost of 0.01, the optimal
fixed sample design is to obtain 3 more data batches. Here we set a very
small sampling cost for illustration purposes, although in most applications
both the number of genes and the sampling cost will be much larger. For
instance, samplingCost=50 would indicate that the experimenter considers
it worthwhile to obtain one more batch of samples as long as that allows him
to find at least 50 new DE genes.

In order to find the optimal sequential design, we define a grid of intercept
and slope values for the linear stopping boundaries. The function seqBound-

ariesGrid returns the expected utility for each intercept and slope in the
grid in the element grid. The element opt contains the optimum and the
expected utility, FDR, FNR, power and stopping time (i.e. the expected
number of data batches).

> b0seq <- seq(0,20,length=200); b1seq <- seq(0,40,length=200)

> bopt <-seqBoundariesGrid(b0=b0seq,b1=b1seq,forwsim=fs1,samplingCost=samplingCost,powmin=0)

> names(bopt)

[1] "opt" "grid"

> bopt$opt



b0 b1 u fdr fnr power time

0.0000000 0.0000000 0.1154298 0.0023041 0.0568169 0.0608967 2.1800000

> head(bopt$grid)

b0 b1 u fdr fnr power time

1 0 0.0000000 0.1154298 0.0023041 0.0568169 0.0608967 2.18

2 0 0.2010050 0.0573792 0.0009914 0.0549463 0.0312966 1.14

3 0 0.4020101 -0.0100000 0.0000000 0.0577324 0.0000000 1.00

4 0 0.6030151 -0.0100000 0.0000000 0.0577324 0.0000000 1.00

5 0 0.8040201 -0.0100000 0.0000000 0.0577324 0.0000000 1.00

6 0 1.0050251 -0.0100000 0.0000000 0.0577324 0.0000000 1.00

The expected utility for the optimal boundary is slightly larger than for
a fixed sample size of 3 batches per group (see above), and perhaps more
importantly it is achieved with a smaller average sample size. The opti-
mal intercept and slope are equal to 0. Recall that experimentation at time
t = 1, . . . ,batchSize−2 continues as long as summary is greater or equal
than the stopping boundary. Therefore the optimal rule implies never stop-
ping at t = 1. At time batchSize−1 (t = 2 in our example) the optimal
decision is to continue whenever the one-step ahead expected new true dis-
coveries (summary) is greater than samplingCost, regardless of the stopping
boundary.

We produce a plot to visualize the results (Figure 4). The plot shows the
simulated trajectories for the summary statistic, and the optimal stopping
boundary.

> plot(fs1$time,fs1$summary,xlab='Additional batches',ylab='E(newly discovered DE genes)')

> abline(bopt$opt['b0'],bopt$opt['b1'])

> text(.2,bopt$opt['b0'],'Continue',pos=3)

> text(.2,bopt$opt['b0'],'Stop',pos=1)
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Figure 4: Forward simulations and optimal sequential rule
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