
An Introduction to IRanges

Patrick Aboyoun, Michael Lawrence, Hervé Pagès

September 23, 2013

1 Introduction

The IRanges package is designed to represent sequences, ranges representing indices along those sequences,
and data related to those ranges. In this vignette, we will rely on simple, illustrative example datasets,
rather than large, real-world data, so that each data structure and algorithm can be explained in an intuitive,
graphical manner. We expect that packages that apply IRanges to a particular problem domain will provide
vignettes with relevant, realistic examples.

The IRanges package is available at bioconductor.org and can be downloaded via biocLite:

> source("http://bioconductor.org/biocLite.R")

> biocLite("IRanges")

> library(IRanges)

2 Vector objects

In the context of the IRanges package, a sequence is an ordered finite collection of elements. The IRanges
packages represents two types of objects as sequences: (1) atomic sequences and (2) lists (or non-atomic
sequences). The following subsections describe each in turn. All IRanges-derived sequences inherit from the
Vector virtual class.

2.1 Atomic Vectors

In R, atomic sequences are typically stored in atomic vectors. The IRanges package includes two additional
atomic sequence object types: Rle, which compresses an atomic sequence through run-length encoding, and
XVector , which refers to its data through an external pointer. XVector and its derivatives are considered
low-level infrastructure and, as such, will not be covered by this vignette.

We begin our discussion of atomic sequences using two R integer vectors.

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),

+ seq(10, 0.001, length = 500))

> xVector <- rpois(1e7, lambda)

> yVector <- rpois(1e7, lambda[c(251:length(lambda), 1:250)])

All atomic sequences in R have three main properties: (1) a notion of length or number of elements, (2)
the ability to extract elements to create new atomic sequences, and (3) the ability to be combined with one
or more atomic sequences to form larger atomic sequences. The main functions for these three operations
are length, [, and c.

> length(xVector)

1

[1] 10000000

> xVector[1]

[1] 0

> zVector <- c(xVector, yVector)

While these three methods may seem trivial, they provide a great deal of power and many atomic sequence
manipulations can be constructed using them.

2.1.1 Vector Subsetting

As with ordinary R atomic vectors, it is often necessary to subset one sequence from another. When this
subsetting does not duplicate or reorder the elements being extracted, the result is called a subsequence. In
general, the [function can be used to construct a new sequence or extract a subsequence, but its interface is
often inconvenient and not amenable to optimization. To compensate for this, the IRanges package supports
seven additional functions for sequence extraction:

1. window - Produces a subsequence over a specified region with or without regular interval subsampling.

2. seqselect - Concatenates multiple consecutive subsequences into a new sequence. The result may or
may not be a subsequence.

3. subset - Extracts the subsequence specified by a logical vector.

4. head - Extracts a consecutive subsequence containing the first n elements.

5. tail - Extracts a consecutive subsequence containing the last n elements.

6. rev - Creates a new sequence with the elements in the reverse order.

7. rep - Creates a new sequence by repeating sequence elements.

The following code illustrates how these functions are used on an ordinary R integer vector:

> xSnippet <- window(xVector, start = 4751, end = 4760)

> xSnippet

[1] 4 6 5 4 6 2 6 7 5 5

> head(xSnippet)

[1] 4 6 5 4 6 2

> tail(xSnippet)

[1] 6 2 6 7 5 5

> rev(xSnippet)

[1] 5 5 7 6 2 6 4 5 6 4

> rep(xSnippet, 2)

[1] 4 6 5 4 6 2 6 7 5 5 4 6 5 4 6 2 6 7 5 5

2

> window(xSnippet, delta = 2)

[1] 4 5 6 6 5

> seqselect(xSnippet, start = c(6,1), end = c(10, 5))

[1] 2 6 7 5 5 4 6 5 4 6

> subset(xSnippet, xSnippet >= 5L)

[1] 6 5 6 6 7 5 5

2.1.2 Combining Vectors

The IRanges package uses two generic functions, c and append, for combining two Vector objects. The
methods for Vector objects follow the definition that these two functions are given the the base package.

> c(xSnippet, rev(xSnippet))

[1] 4 6 5 4 6 2 6 7 5 5 5 5 7 6 2 6 4 5 6 4

> append(xSnippet, xSnippet, after = 3)

[1] 4 6 5 4 6 5 4 6 2 6 7 5 5 4 6 2 6 7 5 5

2.1.3 Looping over Vectors and Vector subsets

In R, for looping can be an expensive operation. To compensate for this, IRanges uses three generics,
endoapply, lapply, and sapply, for looping over sequences and two generics, aggregate and shiftApply,
to perform calculations over subsequences. The lapply and sapply functions are familiar to many R users
since they are the standard functions for looping over the elements of an R list object. The endoapply

function performs an endomorphism equivalent to lapply, i.e. returns a Vector object of the same class as
the input rather than a list object. More will be given on these three functions in the Lists subsection.

The aggregate function combines sequence extraction functionality of the window function with looping
capabilities of the sapply function. For example, here is some code to compute medians across a moving
window of width 3 using the function aggregate:

> xSnippet

[1] 4 6 5 4 6 2 6 7 5 5

> aggregate(xSnippet, start = 1:8, width = 3, FUN = median)

[1] 5 5 5 4 6 6 6 5

The shiftApply function is a looping operation involving two sequences whose elements are lined up
via a positional shift operation. For example, the elements of xVector and yVector were simulated from
Poisson distributions with the mean of element i from yVector being equivalent to the mean of element i +
250 from xVector. If we did not know the size of the shift, we could estimate it by finding the shift that
maximizes the correlation between xVector and yVector.

> cor(xVector, yVector)

[1] 0.5739224

> shifts <- seq(235, 265, by=3)

> corrs <- shiftApply(shifts, yVector, xVector, FUN = cor)

> plot(shifts, corrs)

The result is shown in Fig. 1.

3

●

●

●

●

●

●

●

●

●

●

●

235 240 245 250 255 260 265

0.
85

06
0.

85
10

0.
85

14
0.

85
18

shifts

co
rr

s

Figure 1: Correlation between xVector and yVector for various shifts.

2.1.4 Run Length Encoding

Up until this point we have used R atomic vectors to represent atomic sequences, but there are times when
these object become too large to manage in memory. When there are lots of consecutive repeats in the
sequence, the data can be compressed and managed in memory through a run-length encoding where a data
value is paired with a run length. For example, the sequence {1, 1, 1, 2, 3, 3} can be represented as values
= {1, 2, 3}, run lengths = {3, 1, 2}.

The Rle class in IRanges is used to represent a run-length encoded (compressed) sequence of logical ,
integer , numeric, complex , character , or raw values. One way to construct an Rle object is through the Rle
constructor function:

> xRle <- Rle(xVector)

> yRle <- Rle(yVector)

> xRle

integer-Rle of length 10000000 with 1510219 runs

Lengths: 780 1 208 1 1599 1 ... 5 1 91 1 927

Values : 0 1 0 1 0 1 ... 0 1 0 1 0

> yRle

integer-Rle of length 10000000 with 1511351 runs

Lengths: 1003 1 413 1 896 1 ... 3 1 845 1 419

Values : 0 1 0 1 0 1 ... 0 1 0 1 0

When there are lots of consecutive repeats, the memory savings through an RLE can be quite dramatic.
For example, the xRle object occupies less than one quarter of the space of the original xVector object,
while storing the same information:

4

> as.vector(object.size(xRle) / object.size(xVector))

[1] 0.3020586

> identical(as.vector(xRle), xVector)

[1] TRUE

The functions runValue and runLength extract the run values and run lengths from an Rle object
respectively:

> head(runValue(xRle))

[1] 0 1 0 1 0 1

> head(runLength(xRle))

[1] 780 1 208 1 1599 1

The Rle class supports many of the basic methods associated with R atomic vectors including the Ops,
Math, Math2, Summary, and Complex group generics. Here is a example of manipulating Rle objects using
methods from the Ops group:

> xRle > 0

logical-Rle of length 10000000 with 197127 runs

Lengths: 780 1 208 1 1599 ... 1 91 1 927

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> xRle + yRle

integer-Rle of length 10000000 with 1957707 runs

Lengths: 780 1 208 1 13 1 413 ... 5 1 91 1 507 1 419

Values : 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0

> xRle > 0 | yRle > 0

logical-Rle of length 10000000 with 210711 runs

Lengths: 780 1 208 1 13 ... 1 507 1 419

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

Here are some from the Summary group:

> range(xRle)

[1] 0 26

> sum(xRle > 0 | yRle > 0)

[1] 2105185

And here is one from the Math group:

> log1p(xRle)

5

numeric-Rle of length 10000000 with 1510219 runs

Lengths: 780 1 ... 927

Values : 0 0.693147180559945 ... 0

As with the atomic vectors, the cor and shiftApply functions operate on Rle objects:

> cor(xRle, yRle)

[1] 0.5739224

> shiftApply(249:251, yRle, xRle, FUN = function(x, y) var(x, y) / (sd(x) * sd(y)))

[1] 0.8519138 0.8517324 0.8517725

For more information on the methods supported by the Rle class, consult the Rle man page.

2.2 Lists

In many data analysis situation there is a desire to organize and manipulate multiple objects simultaneously.
Typically this is done in R through the usage of a list. While a list serves as a generic container, it does
not confer any information about the specific class of its elements, provides no infrastructure to ensure
type safety, and the S3 and S4 method dispatch mechanisms do not support method selection for lists with
homogeneous object types. The List virtual class defined in the IRanges package addresses these issues. List
is a direct extension of Vector .

2.2.1 Lists of Atomic Vectors

The first type of lists we consider are those containing atomic sequences such as integer vectors or Rle
objects. We may wish to define a method that retrieves the length of each atomic sequence element, without
special type checking. To enable this, we define collection classes such as IntegerList and RleList , which
inherit from the List virtual class, for representing lists of integer vectors and Rle objects respectively.

> getClassDef("RleList")

Virtual Class "RleList" [package "IRanges"]

Slots:

Name: elementType elementMetadata metadata

Class: character DataTableORNULL list

Extends:

Class "AtomicList", directly

Class "List", by class "AtomicList", distance 2

Class "Vector", by class "AtomicList", distance 3

Class "Annotated", by class "AtomicList", distance 4

Known Subclasses: "RleViews", "CompressedRleList", "SimpleRleList"

As the class definition above shows, the RleList class is virtual with subclasses SimpleRleList and Com-
pressedRleList . A SimpleRleList class uses a regular R list to store the underlying elements and the Com-
pressedRleList class stores the elements in an unlisted form and keeps track of where the element breaks are.
The former “simple list” class is useful when the Rle elements are long and the latter “compressed list” class
is useful when the list is long and/or sparse (i.e. a number of the list elements have length 0).

6

In fact, all of the atomic vector types (raw, logical, integer, numeric, complex, and character) have similar
list classes that derive from the List virtual class. For example, there is an IntegerList virtual class with
subclasses SimpleIntegerList and CompressedIntegerList .

Each of the list classes for atomic sequences, be they stored as vectors or Rle objects, have a constructor
function with a name of the appropriate list virtual class, such as IntegerList , and an optional argument
compress that takes an argument to specify whether or not to create the simple list object type or the
compressed list object type. The default is to create the compressed list object type.

> args(IntegerList)

function (..., compress = TRUE)

NULL

> cIntList1 <- IntegerList(x = xVector, y = yVector)

> cIntList1

IntegerList of length 2

[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> sIntList2 <- IntegerList(x = xVector, y = yVector, compress = FALSE)

> sIntList2

IntegerList of length 2

[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> ## sparse integer list

> xExploded <- lapply(xVector[1:5000], function(x) seq_len(x))

> cIntList2 <- IntegerList(xExploded)

> sIntList2 <- IntegerList(xExploded, compress = FALSE)

> object.size(cIntList2)

31900 bytes

> object.size(sIntList2)

153432 bytes

The length function returns the number of elements in a Vector -derived object and, for a List-derived ob-
ject like “simple list” or “compressed list”, the elementLengths function returns an integer vector containing
the lengths of each of the elements:

> length(cIntList2)

[1] 5000

> Rle(elementLengths(cIntList2))

integer-Rle of length 5000 with 427 runs

Lengths: 780 1 208 1 1599 1 ... 1 1 1 1 1

Values : 0 1 0 1 0 1 ... 10 9 6 9 12

7

Just as with ordinary R list objects, List-derived object support the [[for element extraction, c for
combining, and lapply/sapply for looping. When looping over sparse lists, the “compressed list” classes
can be much faster during computations since only the non-empty elements are looped over during the
lapply/sapply computation and all the empty elements are assigned the appropriate value based on their
status.

> system.time(sapply(xExploded, mean))

user system elapsed

0.33 0.00 0.33

> system.time(sapply(sIntList2, mean))

user system elapsed

0.32 0.00 0.33

> system.time(sapply(cIntList2, mean))

user system elapsed

0.25 0.00 0.25

> identical(sapply(xExploded, mean), sapply(sIntList2, mean))

[1] TRUE

> identical(sapply(xExploded, mean), sapply(cIntList2, mean))

[1] TRUE

Unlist ordinary R list objects, AtomicList objects support the Ops (e.g. +, ==, &), Math (e.g. log, sqrt),
Math2 (e.g. round, signif), Summary (e.g. min, max, sum), and Complex (e.g. Re, Im) group generics.

> xRleList <- RleList(xRle, 2L * rev(xRle))

> yRleList <- RleList(yRle, 2L * rev(yRle))

> xRleList > 0

RleList of length 2

[[1]]

logical-Rle of length 10000000 with 197127 runs

Lengths: 780 1 208 1 1599 ... 1 91 1 927

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

[[2]]

logical-Rle of length 10000000 with 197127 runs

Lengths: 927 1 91 1 5 ... 1 208 1 780

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> xRleList + yRleList

RleList of length 2

[[1]]

integer-Rle of length 10000000 with 1957707 runs

Lengths: 780 1 208 1 13 1 413 ... 5 1 91 1 507 1 419

Values : 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0

8

[[2]]

integer-Rle of length 10000000 with 1957707 runs

Lengths: 419 1 507 1 91 1 5 ... 413 1 13 1 208 1 780

Values : 0 2 0 2 0 2 0 ... 0 2 0 2 0 2 0

> sum(xRleList > 0 | yRleList > 0)

[1] 2105185 2105185

Since these atomic lists inherit from List , they can also use the looping function endoapply to perform
endomorphisms.

> safe.max <- function(x) { if(length(x)) max(x) else integer(0) }

> endoapply(sIntList2, safe.max)

IntegerList of length 5000

[[1]] integer(0)

[[2]] integer(0)

[[3]] integer(0)

[[4]] integer(0)

[[5]] integer(0)

[[6]] integer(0)

[[7]] integer(0)

[[8]] integer(0)

[[9]] integer(0)

[[10]] integer(0)

...

<4990 more elements>

> endoapply(cIntList2, safe.max)

IntegerList of length 5000

[[1]] integer(0)

[[2]] integer(0)

[[3]] integer(0)

[[4]] integer(0)

[[5]] integer(0)

[[6]] integer(0)

[[7]] integer(0)

[[8]] integer(0)

[[9]] integer(0)

[[10]] integer(0)

...

<4990 more elements>

> endoapply(sIntList2, safe.max)[[1]]

integer(0)

3 Data Tables

To Do: DataTable, DataFrame, DataFrameList , SplitDataFrameList

9

4 Vector Annotations

Often when one has a collection of objects, there is a need to attach metadata that describes the collection
in some way. Two kinds of metadata can be attached to a Vector object:

1. Metadata about the object as a whole: this metadata is accessed via the metadata accessor and is
represented as an ordinary list ;

2. Metadata about the individual elements of the object: this metadata is accessed via the mcols accessor
(mcols stands for metadata columns) and is represented as a DataTable object (i.e. as an instance of
a concrete subclass of DataTable, e.g. a DataFrame object). This DataTable object can be thought of
as the result of binding together one or several vector-like objects (the metadata columns) of the same
length as the Vector object. Each row of the DataTable object annotates the corresponding element
of the Vector object.

5 Vector Ranges

When analyzing sequences, we are often interested in particular consecutive subsequences. For example, the
a vector could be considered a sequence of lower-case letters, in alphabetical order. We would call the first
five letters (a to e) a consecutive subsequence, while the subsequence containing only the vowels would not
be consecutive. It is not uncommon for an analysis task to focus only on the geometry of the regions, while
ignoring the underlying sequence values. A list of indices would be a simple way to select a subsequence.
However, a sparser representation for consecutive subsequences would be a range, a pairing of a start position
and a width, as used when extracting sequences with window and seqselect, above.

When analyzing subsequences in IRanges, each range is treated as an observation. The virtual Ranges
class represents lists of ranges, or, equivalently and as a derivative IntegerList , sequences of consecutive
integers. The most commonly used implementation of Ranges is IRanges, which stores the starts and widths
as ordinary integer vectors. To construct an IRanges instance, we call the IRanges constructor. Ranges are
normally specified by passing two out of the three parameters: start, end and width (see help(IRanges) for
more information).

> ir1 <- IRanges(start = 1:10, width = 10:1)

> ir2 <- IRanges(start = 1:10, end = 11)

> ir3 <- IRanges(end = 11, width = 10:1)

> identical(ir1, ir2) & identical(ir2, ir3)

[1] FALSE

> ir <- IRanges(c(1, 8, 14, 15, 19, 34, 40),

+ width = c(12, 6, 6, 15, 6, 2, 7))

All of the above calls construct an IRanges instance with the same ranges, using different combinations of
the start, end and width parameters.

Accessing the starts, widths and ends is supported by every Ranges implementation.

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

10

[1] 12 6 6 15 6 2 7

For IRanges and some other Ranges derivatives, subsetting is also supported, by numeric and logical
indices.

> ir[1:4]

IRanges of length 4

start end width

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

> ir[start(ir) <= 15]

IRanges of length 4

start end width

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

One may think of each range as a sequence of integer ranges, and Ranges is, in fact, derived from
IntegerList .

> ir[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12

In order to illustrate range operations, we’ll create a function to plot ranges.

> plotRanges <- function(x, xlim = x, main = deparse(substitute(x)),

+ col = "black", sep = 0.5, ...)

+ {

+ height <- 1

+ if (is(xlim, "Ranges"))

+ xlim <- c(min(start(xlim)), max(end(xlim)))

+ bins <- disjointBins(IRanges(start(x), end(x) + 1))

+ plot.new()

+ plot.window(xlim, c(0, max(bins)*(height + sep)))

+ ybottom <- bins * (sep + height) - height

+ rect(start(x)-0.5, ybottom, end(x)+0.5, ybottom + height, col = col, ...)

+ title(main)

+ axis(1)

+ }

> plotRanges(ir)

11

ir

0 10 20 30 40

Figure 2: Plot of original ranges.

reduce(ir)

0 10 20 30 40

Figure 3: Plot of reduced ranges.

5.1 Normality

Sometimes, it is necessary to formally represent a subsequence, where no elements are repeated and order is
preserved. Also, it is occasionally useful to think of a Ranges object as a set, where no elements are repeated
and order does not matter. While every Ranges object, as a Vector derivative, has an implicit ordering,
one can enforce the same ordering for all such objects, so that ordering becomes inconsequential within that
context.

The NormalIRanges class formally represents either a subsequence encoding or a set of integers. By
definition a Ranges object is said to be normal when its ranges are: (a) not empty (i.e. they have a non-null
width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e. there must be a non
empty gap between 2 consecutive ranges).

There are three main advantages of using a normal Ranges object: (1) it guarantees a subsequence
encoding or set of integers, (2) it is compact in terms of the number of ranges, and (3) it uniquely identifies
its information, which simplifies comparisons.

The reduce function reduces any Ranges object to a NormalIRanges by merging redundant ranges.

> reduce(ir)

IRanges of length 3

start end width

[1] 1 29 29

[2] 34 35 2

[3] 40 46 7

> plotRanges(reduce(ir))

5.2 Lists of Ranges objects

It is common to manipulate collections of Ranges objects during an analysis. Thus, the IRanges package
defines some specific classes for working with multiple Ranges objects.

12

The RangesList class asserts that each element is a Ranges object and provides convenience methods,
such as start, end and width accessors that return IntegerList objects, aligning with the RangesList object.
To explicitly construct a RangesList , use the RangesList function.

> rl <- RangesList(ir, rev(ir))

> start(rl)

IntegerList of length 2

[[1]] 1 8 14 15 19 34 40

[[2]] 40 34 19 15 14 8 1

5.3 Vector Extraction

As the elements of Ranges objects encode consecutive subsequences, they may be used directly in sequence
extraction. Note that when a normal Ranges is given as the index, the result a subsequence, as no elements
are repeated or reordered.

> irextract <- IRanges(start = c(4501, 4901) , width = 100)

> seqselect(xRle, irextract)

integer-Rle of length 200 with 159 runs

Lengths: 12 1 1 1 2 1 1 1 1 2 ... 1 1 1 1 1 1 1 1 1

Values : 0 1 0 2 0 1 0 1 0 1 ... 9 12 6 5 10 9 6 9 12

If the sequence is a Vector subclass (i.e. not an ordinary vector), the canonical [function also accepts a
Ranges instance.

> xRle[irextract]

integer-Rle of length 200 with 159 runs

Lengths: 12 1 1 1 2 1 1 1 1 2 ... 1 1 1 1 1 1 1 1 1

Values : 0 1 0 2 0 1 0 1 0 1 ... 9 12 6 5 10 9 6 9 12

5.4 Finding Overlapping Ranges

The function findOverlaps detects overlaps between two Ranges objects.

> ol <- findOverlaps(ir, reduce(ir))

> as.matrix(ol)

queryHits subjectHits

[1,] 1 1

[2,] 2 1

[3,] 3 1

[4,] 4 1

[5,] 5 1

[6,] 6 2

[7,] 7 3

13

ir

0 10 20 30 40

0
3

Figure 4: Plot of ranges with accumulated coverage.

5.5 Counting Overlapping Ranges

The function coverage counts the number of ranges over each position.

> cov <- coverage(ir)

> plotRanges(ir)

> cov <- as.vector(cov)

> mat <- cbind(seq_along(cov)-0.5, cov)

> d <- diff(cov) != 0

> mat <- rbind(cbind(mat[d,1]+1, mat[d,2]), mat)

> mat <- mat[order(mat[,1]),]

> lines(mat, col="red", lwd=4)

> axis(2)

5.6 Finding Neighboring Ranges

The nearest function finds the nearest neighbor ranges (overlapping is zero distance). The precede and
follow functions find the non-overlapping nearest neighbors on a specific side.

5.7 Transforming Ranges

Utilities are available for transforming a Ranges object in a variety of ways. Some transformations, like
reduce introduced above, can be dramatic, while others are simple per-range adjustments of the starts, ends
or widths.

5.7.1 Adjusting starts, ends and widths

Perhaps the simplest transformation is to adjust the start values by a scalar offset, as performed by the
shift function. Below, we shift all ranges forward 10 positions.

> shift(ir, 10)

IRanges of length 7

start end width

[1] 11 22 12

[2] 18 23 6

[3] 24 29 6

[4] 25 39 15

[5] 29 34 6

[6] 44 45 2

[7] 50 56 7

14

The arithmetic functions +, - and * change both the start and the end/width by symmetrically expanding
or contracting each range. Adding or subtracting a numeric (integer) vector to a Ranges causes each range
to be expanded or contracted on each side by the corresponding value in the numeric vector.

> ir + seq_len(length(ir))

IRanges of length 7

start end width

[1] 0 13 14

[2] 6 15 10

[3] 11 22 12

[4] 11 33 23

[5] 14 29 16

[6] 28 41 14

[7] 33 53 21

The * operator symmetrically magnifies a Ranges object by a factor, where positive contracts (zooms in)
and negative expands (zooms out).

> ir * -2 # half the width

IRanges of length 7

start end width

[1] -5 18 24

[2] 5 16 12

[3] 11 22 12

[4] 7 36 30

[5] 16 27 12

[6] 33 36 4

[7] 36 49 14

There are several other ways to form subranges, besides symmetric contraction. These include narrow,
threebands and restrict. narrow supports the adjustment of start, end and width values, which should be
relative to each range. Unlike shift, these adjustments are vectorized over the ranges. As its name suggests,
the ranges can only be narrowed.

> narrow(ir, start=1:5, width=2)

IRanges of length 7

start end width

[1] 1 2 2

[2] 9 10 2

[3] 16 17 2

[4] 18 19 2

[5] 23 24 2

[6] 34 35 2

[7] 41 42 2

The threebands function extends narrow so that the remaining left and right regions adjacent to the
narrowed region are also returned in separate Ranges objects.

> threebands(ir, start=1:5, width=2)

15

$left

IRanges of length 7

start end width

[1] 1 0 0

[2] 8 8 1

[3] 14 15 2

[4] 15 17 3

[5] 19 22 4

[6] 34 33 0

[7] 40 40 1

$middle

IRanges of length 7

start end width

[1] 1 2 2

[2] 9 10 2

[3] 16 17 2

[4] 18 19 2

[5] 23 24 2

[6] 34 35 2

[7] 41 42 2

$right

IRanges of length 7

start end width

[1] 3 12 10

[2] 11 13 3

[3] 18 19 2

[4] 20 29 10

[5] 25 24 0

[6] 36 35 0

[7] 43 46 4

The restrict function ensures every range falls within a set of bounds. Ranges are contracted as
necessary, and the ranges that fall completely outside of but not adjacent to the bounds are dropped, by
default.

> restrict(ir, start=2, end=3)

IRanges of length 1

start end width

[1] 2 3 2

5.7.2 Making ranges disjoint

A more complex type of operation is making a set of ranges disjoint, i.e. non-overlapping. For example,
threebands returns a disjoint set of three ranges for each input range.

The disjoin function makes a Ranges object disjoint by fragmenting it into the widest ranges where the
set of overlapping ranges is the same.

> disjoin(ir)

16

disjoin(ir)

0 10 20 30 40

Figure 5: Plot of disjoined ranges.

IRanges of length 10

start end width

[1] 1 7 7

[2] 8 12 5

[3] 13 13 1

[4] 14 14 1

[5] 15 18 4

[6] 19 19 1

[7] 20 24 5

[8] 25 29 5

[9] 34 35 2

[10] 40 46 7

> plotRanges(disjoin(ir))

A variant of disjoin is disjointBins, which divides the ranges into bins, such that the ranges in each
bin are disjoint. The return value is an integer vector of the bins.

> disjointBins(ir)

[1] 1 2 1 2 3 1 1

5.7.3 Other transformations

Other transformations include reflect and flank. The former “flips” each range within a set of common
reference bounds.

> reflect(ir, IRanges(start(ir), width=width(ir)*2))

IRanges of length 7

start end width

[1] 13 24 12

[2] 14 19 6

[3] 20 25 6

[4] 30 44 15

[5] 25 30 6

[6] 36 37 2

[7] 47 53 7

The flank returns ranges of a specified width that flank, to the left (default) or right, each input range. One
use case of this is forming promoter regions for a set of genes.

17

gaps(ir, start = 1, end = 50)

0 10 20 30 40 50

Figure 6: Plot of gaps from ranges.

> flank(ir, width = seq_len(length(ir)))

IRanges of length 7

start end width

[1] 0 0 1

[2] 6 7 2

[3] 11 13 3

[4] 11 14 4

[5] 14 18 5

[6] 28 33 6

[7] 33 39 7

5.8 Set Operations

Sometimes, it is useful to consider a Ranges object as a set of integers, although there is always an implicit
ordering. This is formalized by NormalIRanges, above, and we now present versions of the traditional
mathematical set operations complement, union, intersect, and difference for Ranges objects. There are
two variants for each operation. The first treats each Ranges object as a set and returns a normal value,
while the other has a “parallel” semantic like pmin/pmax and performs the operation for each range pairing
separately.

The complement operation is implemented by the gaps and pgap functions. By default, gaps will return
the ranges that fall between the ranges in the (normalized) input. It is possible to specify a set of bounds,
so that flanking ranges are included.

> gaps(ir, start=1, end=50)

IRanges of length 3

start end width

[1] 30 33 4

[2] 36 39 4

[3] 47 50 4

> plotRanges(gaps(ir, start=1, end=50), c(1,50))

pgap considers each parallel pairing between two Ranges objects and finds the range, if any, between
them. Note that the function name is singular, suggesting that only one range is returned per range in the
input.

The remaining operations, union, intersect and difference are implemented by the [p]union, [p]intersect
and [p]setdiff functions, respectively. These are relatively self-explanatory.

18

6 Vector Views

When we extract a sequence with seqselect, we can pass multiple ranges, each selecting a single consecutive
subsequence. Those subsequences are extracted and concatenated into a single sequence. There are many
cases where the user wishes to avoid the concatenation step and instead treat each consecutive subsequence
as a separate element in a list.

While one could simply store each extracted sequence as an element in a list object like a SimpleList ,
this is undesirable for a couple of reasons. First, the user often wants to preserve the original sequence and
declare a set of interesting regions as an overlay. This allows retrieving sequence values even after the ranges
have been adjusted. Another benefit of an overlay approach is performance: the sequence values need not
be copied.

For representing such an overlay, the IRanges package provides the virtual Views class, which derives
from IRanges but also stores a sequence. Each range is said to represent a view onto the sequence.

Here, we will demonstrate the RleViews class, where the sequence is of class Rle. Other Views imple-
mentations exist, such as XStringViews in the Biostrings package.

6.1 Creating Views

There are two basic constructors for creating views: the Views function based on indicators and the slice

based on numeric boundaries.

> xViews <- Views(xRle, xRle >= 1)

> xViews <- slice(xRle, 1)

> xViewsList <- slice(xRleList, 1)

6.2 Aggregating Views

While sapply can be used to loop over each window, the native functions viewMaxs, viewMins, viewSums,
and viewMeans provide fast looping to calculate their respective statistical summaries.

> head(viewSums(xViews))

[1] 1 1 1 1 1 2

> viewSums(xViewsList)

IntegerList of length 2

[[1]] 1 1 1 1 1 2 1 1 2 3 1 6 1 3 4 ... 12 6 37 10 8 11 6 4 5 1 1 5 1 1

[[2]] 2 2 10 2 2 10 8 12 22 16 20 74 12 ... 2 12 2 6 4 2 2 4 2 2 2 2 2

> head(viewMaxs(xViews))

[1] 1 1 1 1 1 2

> viewMaxs(xViewsList)

IntegerList of length 2

[[1]] 1 1 1 1 1 2 1 1 1 2 1 2 1 2 3 1 ... 3 5 2 5 6 2 8 3 2 2 1 1 2 1 1

[[2]] 2 2 4 2 2 4 4 6 16 4 12 10 4 10 6 ... 4 2 4 2 4 2 2 2 4 2 2 2 2 2

19

7 Data on Ranges

When analyzing ranges, there are often additional variables of interest, besides the geometry (starts, ends
and widths). To formally represent a dataset where the ranges are the observations, IRanges defines the
RangedData class.

To create a RangedData instance, one needs to provide a Ranges object and, optionally, any number of
variables on those ranges. The variable objects need not be vectors, but they must satisfy the contract of
DataFrame.

> values <- rnorm(length(ir))

> rd <- RangedData(ir, name = letters[seq_len(length(ir))], values)

> rd

RangedData with 7 rows and 2 value columns across 1 space

space ranges | name values

<factor> <IRanges> | <character> <numeric>

1 1 [1, 12] | a 0.4359675

2 1 [8, 13] | b 0.7279741

3 1 [14, 19] | c 0.2617505

4 1 [15, 29] | d 0.8157306

5 1 [19, 24] | e 1.2115267

6 1 [34, 35] | f 1.3045325

7 1 [40, 46] | g -1.2268231

One might notice the term “sequence” in the above output. This refers to an important feature of
RangedData: the ability to segregate ranges by their sequence (or space). For example, when analyzing
genomic data, one is often working with ranges on different chromosomes. In many cases, such as when
calculating overlap, one needs to separately treat ranges from different spaces, and RangedData aims to
facilitate this mode of operation. The segregation may be performed at construction time.

> rd <- RangedData(ir, name = letters[seq_len(length(ir))], values,

+ space = rep(c("chr1", "chr2"), c(3, length(ir) - 3)))

> rd

RangedData with 7 rows and 2 value columns across 2 spaces

space ranges | name values

<factor> <IRanges> | <character> <numeric>

1 chr1 [1, 12] | a 0.4359675

2 chr1 [8, 13] | b 0.7279741

3 chr1 [14, 19] | c 0.2617505

4 chr2 [15, 29] | d 0.8157306

5 chr2 [19, 24] | e 1.2115267

6 chr2 [34, 35] | f 1.3045325

7 chr2 [40, 46] | g -1.2268231

With the knowledge that the data is split into spaces, it should not be surprising that the ranges accessor
returns a RangesList and values returns a SplitDataFrameList .

> ranges(rd)

IRangesList of length 2

$chr1

IRanges of length 3

20

start end width

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

$chr2

IRanges of length 4

start end width

[1] 15 29 15

[2] 19 24 6

[3] 34 35 2

[4] 40 46 7

> values(rd)

SplitDataFrameList of length 2

$chr1

DataFrame with 3 rows and 2 columns

name values

<character> <numeric>

1 a 0.4359675

2 b 0.7279741

3 c 0.2617505

$chr2

DataFrame with 4 rows and 2 columns

name values

<character> <numeric>

1 d 0.8157306

2 e 1.2115267

3 f 1.3045325

4 g -1.2268231

To obtain a RangedData for a specific set of spaces, one should use the [function, which accepts logical,
numeric and character indices.

> rd["chr1"]

RangedData with 3 rows and 2 value columns across 1 space

space ranges | name values

<factor> <IRanges> | <character> <numeric>

1 chr1 [1, 12] | a 0.4359675

2 chr1 [8, 13] | b 0.7279741

3 chr1 [14, 19] | c 0.2617505

> all(identical(rd["chr1"], rd[1]),

+ identical(rd[1], rd[c(TRUE, FALSE)]))

[1] TRUE

The names and length functions return the names and number of spaces, respectively.

> names(rd)

21

[1] "chr1" "chr2"

> length(rd)

[1] 2

The lapply function operates over the spaces. The object passed to the user function is a subset
RangedData.

> lapply(rd, names)

$chr1

[1] "chr1"

$chr2

[1] "chr2"

The above would suggest that RangedData is a sequence of spaces. However, RangedData also inherits
from DataTable, so it in some ways behaves like a sequence of columns. For example, one can extract a
column via $ or [[.

> rd[[2]]

[1] 0.4359675 0.7279741 0.2617505 0.8157306 1.2115267 1.3045325

[7] -1.2268231

> rd$values

[1] 0.4359675 0.7279741 0.2617505 0.8157306 1.2115267 1.3045325

[7] -1.2268231

Note that the extracted columns are “unlisted” over the spaces, which is usually much more convenient than
obtaining them as lists. It is important to note that the elements have been sorted by the space factor and
thus may not have the same order as the objects passed to the constructor.

The two dimensional matrix-style subsetting is also supported. The rows are indexed globally, indepen-
dent of space.

> rd[1:3, "name"]

RangedData with 3 rows and 1 value column across 2 spaces

space ranges | name

<factor> <IRanges> | <character>

1 chr1 [1, 12] | a

2 chr1 [8, 13] | b

3 chr1 [14, 19] | c

8 IRanges in Biological Sequence Analysis

The IRanges packages was primarily designed with biological sequence analysis in mind and Table 1 shows
how some biological sequence analysis concepts are represented in the IRanges class system.

22

Biological Entity Vector Subclass
Genome browser track(s) RangedData/RangedDataList
Coverage across chromosomes/contigs RleList
Mapped ranges to genome CompressedIRangesList
Data (sans ranges) across chroms/contigs SplitDataFrameList

Table 1: Vector subclasses for Biological Sequence Analysis

> toLatex(sessionInfo())

� R version 3.0.1 (2013-05-16), i386-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

� Other packages: BiocGenerics 0.6.0, IRanges 1.18.4

� Loaded via a namespace (and not attached): stats4 3.0.1, tools 3.0.1

Table 2: The output of sessionInfo on the build system after running this vignette.

9 Session Information

23

	Introduction
	Vector objects
	Atomic Vectors
	Vector Subsetting
	Combining Vectors
	Looping over Vectors and Vector subsets
	Run Length Encoding

	Lists
	Lists of Atomic Vectors

	Data Tables
	Vector Annotations
	Vector Ranges
	Normality
	Lists of Ranges objects
	Vector Extraction
	Finding Overlapping Ranges
	Counting Overlapping Ranges
	Finding Neighboring Ranges
	Transforming Ranges
	Adjusting starts, ends and widths
	Making ranges disjoint
	Other transformations

	Set Operations

	Vector Views
	Creating Views
	Aggregating Views

	Data on Ranges
	IRanges in Biological Sequence Analysis
	Session Information

