
Differential analysis of count data – the
DESeq2 package

Michael Love1∗, Simon Anders2, Wolfgang Huber2

1 Max Planck Institute for Molecular Genetics, Berlin, Germany;

2 European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

∗michaelisaiahlove (at) gmail.com

August 15, 2013

Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of
differentially expressed genes. The count data are presented as a table which
reports, for each sample, the number of sequence fragments that have been as-
signed to each gene. Analogous data also arise for other assay types, including
comparative ChIP-Seq, HiC, shRNA screening, mass spectrometry. An impor-
tant analysis question is the quantification and statistical inference of systematic
changes between conditions, as compared to within-condition variability. The
package DESeq2 provides methods to test for differential expression by use of
negative binomial generalized linear models; the estimates of dispersion and log-
arithmic fold changes incorporate data-driven prior distributions 1. This vignette
explains the use of the package and demonstrates typical work flows.

1Other Bioconductor packages with similar aims are edgeR, baySeq and DSS.

1

Contents

1 Quick start 3

2 Input data 3
2.1 Why raw counts? . 3
2.2 SummarizedExperiment input . 3
2.3 Count matrix input . 4
2.4 HTSeq input . 5
2.5 Note on factor levels . 5
2.6 About the pasilla dataset . 6

3 Differential expression analysis 6

4 Exploring results 6
4.1 MA-plot . 6
4.2 More information on results columns 7
4.3 Exporting results . 8

5 Multi-factor designs 8

6 Independent filtering and multiple testing 10
6.1 Filtering by overall count . 10
6.2 Why does it work? . 11
6.3 Diagnostic plots for multiple testing . 12

7 Count data transformations 14
7.1 Regularized log transformation . 14
7.2 Variance stabilizing transformation . 15
7.3 Effects of transformations on the variance 15

8 Data quality assessment by sample clustering and visualization 16
8.1 Heatmap of the count table . 16
8.2 Heatmap of the sample-to-sample distances 17
8.3 Principal component plot of the samples 18

Appendix A Changes compared to the DESeq package 19

Appendix B Generalized linear model 20

Appendix C Wald test individual steps 20

Appendix D Likelihood ratio test 20

Appendix E Dispersion plot and fitting alternatives 21
E.1 Local dispersion fit . 21
E.2 Mean dispersion . 22
E.3 Supply a custom dispersion fit . 22

Appendix F Count outlier detection 23

2

Appendix G Access to all calculated values 24

Appendix H Multi-level conditions 25

Appendix I Sample-/gene-dependent normalization factors 25

Appendix J Session Info 26

1 Quick start

Here we show the most basic steps for a differential expression analysis. These steps
imply you have a SummarizedExperiment object se with a column condition.

dds <- DESeqDataSet(se = se, design = ~ condition)

dds <- DESeq(dds)

res <- results(dds)

2 Input data

2.1 Why raw counts?

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq
or another high-throughput sequencing experiment, in the form of a matrix of integer
values. The value in the i-th row and the j-th column of the matrix tells how many reads
have been mapped to gene i in sample j. Analogously, for other types of assays, the
rows of the matrix might correspond e. g. to binding regions (with ChIP-Seq) or peptide
sequences (with quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DE-
Seq2 ’s statistical model to hold, as only the actual counts allow assessing the measure-
ment precision correctly. Hence, please do not supply other quantities, such as (rounded)
normalized counts, or counts of covered base pairs – this will only lead to nonsensical
results.

2.2 SummarizedExperiment input

In the DESeq2 package, in order to simplify the preparation of a count matrix, we attempt
a closer integration with the core Bioconductor package GenomicRanges. This should
facilitate preparation steps and also downstream exploration of results. For counting
aligned reads in genes, the summarizeOverlaps function of GenomicRanges/Rsamtools
with mode="Union" is encouraged, resulting in a SummarizedExperiment object (easyR-
NASeq is another Bioconductor package which can prepare SummarizedExperiment ob-
jects as input for DESeq2). An example of the steps to produce a SummarizedExperiment
can be found in the data package parathyroidSE, which summarizes RNA-Seq data from
experiments on 4 human cell cultures [1].

library("parathyroidSE")

data("parathyroidGenesSE")

se <- parathyroidGenesSE

colnames(se) <- colData(se)$run

The class used by DESeq2 is DESeqDataSet, which differs from SummarizedExperiment
in having an associated design formula. The design formula expresses the variables
which will be used in modeling. The formula should be a tilde (∼) followed by the
variables with plus signs between them (it will be coerced into an formula if it is not
already). An intercept is automatically included, representing the base mean of counts.
In order to benefit from the default settings of the package, you should put the variable
of interest at the end of the formula. The constructor function below shows generation
of a DESeqDataSet from a SummarizedExperiment se.

library("DESeq2")

ddsGR <- DESeqDataSet(se = se, design = ~ patient + treatment)

colData(ddsGR)$treatment <- factor(colData(ddsGR)$treatment,

levels=c("Control","DPN","OHT"))

ddsGR

class: DESeqDataSet

dim: 63193 27

exptData(1): MIAME

assays(1): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData metadata column names(0):

colnames(27): SRR479052 SRR479053 ... SRR479077 SRR479078

colData names(8): run experiment ... study sample

2.3 Count matrix input

Alternatively, if you already have prepared a matrix of read counts, you can use the
function DESeqDataSetFromMatrix. For this function you should provide the counts
matrix, the column information as a DataFrame or data.frame and the design formula.

library("pasilla")

data("pasillaGenes")

countData <- counts(pasillaGenes)

colData <- pData(pasillaGenes)[,c("condition","type")]

dds <- DESeqDataSetFromMatrix(countData = countData,

colData = colData,

design = ~ condition)

colData(dds)$condition <- factor(colData(dds)$condition,

levels=c("untreated","treated"))

dds

class: DESeqDataSet

dim: 14470 7

exptData(0):

assays(1): counts

rownames(14470): FBgn0000003 FBgn0000008 ... FBgn0261574 FBgn0261575

rowData metadata column names(0):

colnames(7): treated1fb treated2fb ... untreated3fb untreated4fb

colData names(2): condition type

detach(package:pasilla)

detach(package:DESeq)

2.4 HTSeq input

If you have used the HTSeq python scripts, you can use the function DESeqDataSet-

FromHTSeqCount. For an example of using the python scripts, see the pasilla or parathy-
roid data package.

library("pasilla")

directory <- system.file("extdata", package="pasilla", mustWork=TRUE)

sampleFiles <- grep("treated",list.files(directory),value=TRUE)

sampleCondition <- sub("(.*treated).*","\\1",sampleFiles)

sampleTable <- data.frame(sampleName = sampleFiles,

fileName = sampleFiles,

condition = sampleCondition)

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = directory,

design= ~ condition)

colData(ddsHTSeq)$condition <- factor(colData(ddsHTSeq)$condition,

levels=c("untreated","treated"))

ddsHTSeq

class: DESeqDataSet

dim: 70467 7

exptData(0):

assays(1): counts

rownames(70467): FBgn0000003:001 FBgn0000008:001 ... _lowaqual

_notaligned

rowData metadata column names(0):

colnames(7): treated1fb.txt treated2fb.txt ... untreated3fb.txt

untreated4fb.txt

colData names(1): condition

detach(package:pasilla)

detach(package:DESeq)

2.5 Note on factor levels

In the three examples above, we applied the function factor to the column of interest
in colData, supplying a character vector of levels. It is important to supply levels (oth-
erwise the levels are chosen in alphabetical order) and to put the“control”or“untreated”

level as the first element, so that the log2 fold changes and results will be most easily
interpretable. A helpful R function for changing the base level is relevel. The function
model.matrix is used by the DESeq2 package to build model matrices, and this function
uses the first level as the base level.

2.6 About the pasilla dataset

We continue with the pasilla data constructed from the count matrix method above. This
data set is from an experiment on Drosophila melanogaster cell cultures and investigated
the effect of RNAi knock-down of the splicing factor pasilla [2]. The detailed transcript
of the production of the pasilla data is provided in the vignette of the data package
pasilla.

3 Differential expression analysis

The standard differential expression analysis steps are wrapped into a single function,
DESeq. The individual functions are still available, described in Section C. The results are
accessed using the function results, which extracts a results table for a single variable
(by default the last variable in the design formula, and if this is a factor, the last level
of this variable).

dds <- DESeq(dds)

res <- results(dds)

res <- res[order(res$padj),]

head(res)

DataFrame with 6 rows and 5 columns

baseMean log2FoldChange lfcSE pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric>

FBgn0039155 453 -4.08 0.1745 5.22e-121 5.96e-117

FBgn0029167 2165 -2.16 0.0965 9.51e-111 5.43e-107

FBgn0035085 367 -2.38 0.1354 4.16e-69 1.58e-65

FBgn0034736 118 -2.97 0.2047 1.48e-47 4.24e-44

FBgn0029896 258 -2.41 0.1679 1.21e-46 2.77e-43

FBgn0040091 611 -1.50 0.1156 1.85e-38 3.53e-35

Extracting results of other variables is discussed in section 5. All the values calculated
by the DESeq2 package are stored in the DESeqDataSet object, and access to these
values is discussed in Section G.

4 Exploring results

4.1 MA-plot

For DESeq2, the function plotMA shows the log2 fold changes attributable to a variable
over the mean of normalized counts. By default, the last variable in the design formula

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

log2FoldChange log2 fold change (MAP): condition treated vs untreated

lfcSE standard error: condition treated vs untreated

pvalue Wald test: condition treated vs untreated

padj Wald test, BH adj.: condition treated vs untreated

The variable condition and the factor level treated have been combined into con-

dition_treated_vs_untreated. For a particular gene, a log2 fold change of −1 for
condition_treated_vs_untreated here means that the treatment induces a change of
2−1 = 0.5 times the counts. If the variable of interest is not a factor, the log2 fold
change can be interpreted as the amount of doubling observed on average for every unit
of change.

4.3 Exporting results

The results can be exported using the base R functions write.csv or write.delim, and
a descriptive file name indicating the variable which was tested.

write.csv(as.data.frame(res),

file="condition_treated_results.csv")

5 Multi-factor designs

Experiments with more than one factor influencing the counts can be analyzed using
model formulae with additional variables. The data in the pasilla package have a con-
dition of interest (the column condition), as well as the type of sequencing which was
performed (the column type).

colData(dds)

DataFrame with 7 rows and 3 columns

condition type sizeFactor

<factor> <factor> <numeric>

treated1fb treated single-read 1.512

treated2fb treated paired-end 0.784

treated3fb treated paired-end 0.896

untreated1fb untreated single-read 1.050

untreated2fb untreated single-read 1.659

untreated3fb untreated paired-end 0.712

untreated4fb untreated paired-end 0.784

We can account for the different types of sequencing, and get a clearer picture of the
differences attributable to the treatment. As condition is the variable of interest, we
put it at the end of the formula. Here we

design(dds) <- formula(~ type + condition)

dds <- DESeq(dds)

Again, we access the results using the results function.

res <- results(dds)

head(res)

DataFrame with 6 rows and 5 columns

baseMean log2FoldChange lfcSE pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric>

FBgn0000003 0.159 0.0891 0.117 0.4451 0.840

FBgn0000008 52.226 0.0130 0.252 0.9588 0.988

FBgn0000014 0.390 0.0241 0.145 0.8677 0.973

FBgn0000015 0.905 -0.1229 0.273 0.6523 0.892

FBgn0000017 2358.243 -0.2667 0.122 0.0293 0.204

FBgn0000018 221.242 -0.0663 0.124 0.5921 0.885

It is also possible to retrieve the log2 fold changes, p-values and adjusted p-values of the
type variable. The function results takes an argument name, which is a combination of
the variable, the level (numeratoFr of the fold change) and the base level (denominator
of the fold change). In addition, there might be minor changes made by the DataFrame

function on column names, e.g. changing - to .. The function resultsNames will tell
you the names of all available results.

resultsNames(dds)

[1] "Intercept" "type_single.read_vs_paired.end"

[3] "condition_treated_vs_untreated"

resType <- results(dds, "type_single.read_vs_paired.end")

head(resType)

DataFrame with 6 rows and 5 columns

baseMean log2FoldChange lfcSE pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric>

FBgn0000003 0.159 -0.0686 0.106 0.5188 0.831

FBgn0000008 52.226 -0.0808 0.247 0.7439 0.918

FBgn0000014 0.390 0.0147 0.132 0.9113 0.972

FBgn0000015 0.905 -0.2222 0.252 0.3785 0.778

FBgn0000017 2358.243 0.0081 0.122 0.9470 0.984

FBgn0000018 221.242 0.2954 0.122 0.0155 0.117

mcols(resType)

DataFrame with 5 rows and 2 columns

type description

<character> <character>

1 intermediate the base mean over all rows

2 results log2 fold change (MAP): type single-read vs paired-end

3 results standard error: type single-read vs paired-end

4 results Wald test: type single-read vs paired-end

5 results Wald test, BH adj.: type single-read vs paired-end

6 Independent filtering and multiple testing

6.1 Filtering by overall count

The analyses of the previous sections involve the application of statistical tests, one by
one, to each row of the data set, in order to identify those genes that have evidence for
differential expression. The idea of independent filtering is to filter out those tests from
the procedure that have no, or little chance of showing significant evidence, without even
looking at their test statistic. Typically, this results in increased detection power at the
same experiment-wide type I error. Here, we measure experiment-wide type I error in
terms of the false discovery rate.

A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,

2. is correlated with the test statistic under the alternative, and

3. does not notably change the dependence structure –if there is any– between the
tests that pass the filter, compared to the dependence structure between the tests
before filtering.

The benefit from filtering relies on property 2, and we will explore it further in Section
6.2. Its statistical validity relies on property 1 – which is simple to formally prove for
many combinations of filter criteria with test statistics– and 3, which is less easy to
theoretically imply from first principles, but rarely a problem in practice. We refer to [3]
for further discussion of this topic.

A simple filtering criterion readily available in the results object is the normalized mean
count (irrespective of biological condition). Genes with very low counts are not likely to
see significant differences typically due to high dispersion. For example, we can plot the
− log10 p-values from all genes over the normalized mean counts, with a red line at the
value 10.

plot(res$baseMean, pmin(-log10(res$pvalue),50),

log="x", xlab="mean of normalized counts",

ylab=expression(-log[10](pvalue)))

abline(v=10,col="red",lwd=1)

use <- res$baseMean >= 10 & !is.na(res$pvalue)

table(use)

use

FALSE TRUE

7178 7292

We set aside those genes with normalized mean less than 10. Applying Benjamini-
Hochberg adjustment on p-values results in a gain of genes with adjusted p-value below
0.1.

Figure 2: The mean of normalized counts provides an independent statistic for filtering
the tests. It is independent because the information about the variables in the design
formula is not used. By filtering out genes which fall to the left of the red line, the
majority of the low p-values are kept.

resFilt <- res[use,]

resFilt$padj <- p.adjust(resFilt$pvalue, method="BH")

sum(res$padj < .1, na.rm=TRUE)

[1] 1241

sum(resFilt$padj < .1, na.rm=TRUE)

[1] 1422

6.2 Why does it work?

Consider the p value histogram in Figure 3. It shows how the filtering ameliorates the
multiple testing problem – and thus the severity of a multiple testing adjustment – by
removing a background set of hypotheses whose p values are distributed more or less
uniformly in [0, 1].

h1 <- hist(res$pvalue[!use], breaks=50, plot=FALSE)

h2 <- hist(res$pvalue[use], breaks=50, plot=FALSE)

colori <- c(`do not pass`="khaki", `pass`="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))

Figure 3: Histogram of p values for all tests (res$pvalue). The area shaded in blue
indicates the subset of those that pass the filtering, the area in khaki those that do not
pass.

6.3 Diagnostic plots for multiple testing

The Benjamini-Hochberg multiple testing adjustment procedure [4] has a simple graphi-
cal illustration, which we produce in the following code chunk. Its result is shown in the
left panel of Figure 4.

orderInPlot <- order(resFilt$pvalue)

showInPlot <- (resFilt$pvalue[orderInPlot] <= 0.08)

alpha <- 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot],

pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)

Schweder and Spjøtvoll [5] suggested a diagnostic plot of the observed p-values which
permits estimation of the fraction of true null hypotheses. For a series of hypothesis
tests H1, . . . , Hm with p-values pi, they suggested plotting

(1− pi, N(pi)) for i ∈ 1, . . . ,m, (1)

where N(p) is the number of p-values greater than p. An application of this diagnostic
plot to resFilt$pvalue is shown in the right panel of Figure 4. When all null hypotheses
are true, the p-values are each uniformly distributed in [0, 1], Consequently, the cumula-
tive distribution function of (p1, . . . , pm) is expected to be close to the line F (t) = t. By
symmetry, the same applies to (1− p1, . . . , 1− pm). When (without loss of generality)
the first m0 null hypotheses are true and the other m − m0 are false, the cumulative

distribution function of (1 − p1, . . . , 1 − pm0) is again expected to be close to the line
F0(t) = t. The cumulative distribution function of (1 − pm0+1, . . . , 1 − pm), on the
other hand, is expected to be close to a function F1(t) which stays below F0 but shows
a steep increase towards 1 as t approaches 1. In practice, we do not know which of the
null hypotheses are true, so we can only observe a mixture whose cumulative distribution
function is expected to be close to

F (t) =
m0

m
F0(t) +

m−m0

m
F1(t). (2)

Such a situation is shown in the right panel of Figure 4. If F1(t)/F0(t) is small for small
t, then the mixture fraction m0

m
can be estimated by fitting a line to the left-hand portion

of the plot, and then noting its height on the right. Such a fit is shown by the red line
in the right panel of Figure 4.

plot(1-resFilt$pvalue[orderInPlot],

(length(resFilt$pvalue)-1):0, pch=".",

xlab=expression(1-p[i]), ylab=expression(N(p[i])))

abline(a=0, slope, col="red3", lwd=2)

Figure 4: Left: illustration of the Benjamini-Hochberg multiple testing adjustment pro-
cedure [4]. The black line shows the p-values (y-axis) versus their rank (x-axis), starting
with the smallest p-value from the left, then the second smallest, and so on. Only the
first 2174 p-values are shown. The red line is a straight line with slope α/n, where
n = 7292 is the number of tests, and α = 0.1 is a target false discovery rate (FDR).
FDR is controlled at the value α if the genes are selected that lie to the left of the
rightmost intersection between the red and black lines: here, this results in 1422 genes.
Right: Schweder and Spjøtvoll plot, as described in the text. For both of these plots, the
p-values resFilt$pvalues from Section 6.1 were used as a starting point. Analogously,
one can produce these types of plots for any set of p-values, for instance those from the
previous sections.

7 Count data transformations

For some applications, it is useful to work with transformed versions of the count data.
Maybe the most obvious choice is the logarithmic transformation. Since count values
for a gene can be zero in some conditions (and non-zero in others), some advocate the
use of pseudocounts, i. e. transformations of the form

y = log2(n+ 1) or more generally, y = log2(n+ n0), (3)

where n represents the count values and n0 is a positive constant.

In this section, we discuss two alternative approaches that offer more theoretical jus-
tification and a rational way of choosing the parameter equivalent to n0 above. One
method incorporates priors on the sample differences, and the other uses the concept of
variance stabilizing transformations [6–8].

The two functions, rlogTransformation and varianceStabilizingTransformation,
have an argument blind, for whether the transformation should be blind to the sample
information specified by the design formula. By setting the argument blind to TRUE,
the functions will re-estimate the dispersions using only an intercept (design formula
~1. This setting should be used in order to compare samples in a manner unbiased by
the information about experimental groups, for example to perform sample QA (quality
assurance) as demonstrated below. By setting blind to FALSE, the dispersions already
estimated will be used to perform transformations, or if not present, they will be esti-
mated using the current design formula. This setting should be used for transforming
data for downstream analysis.

rld <- rlogTransformation(dds, blind=TRUE)

vsd <- varianceStabilizingTransformation(dds, blind=TRUE)

7.1 Regularized log transformation

The function rlogTransformation, stands for regularized log, transforming the original
count data to the log2 scale by fitting a model with a term for each sample and a prior
distribution on the coefficients which is estimated from the data. This is very similar
to the regularization used by the DESeq and nbinomWaldTest, as seen in Figure 1. The
resulting data contains elements defined as:

log2(qij) = xj.βi

where qij is a parameter proportional to the expected true concentration of fragments
for gene i and sample j (see Section B), xj. is the j-th row of the design matrix X,
which has a 1 for the intercept and a 1 for the sample-specific beta, and βi is the vector
of coefficients for gene i. Without priors, this design matrix would lead to a non-unique
solution, however the addition of a prior on non-intercept betas allows for a unique
solution to be found. The regularized log transformation is preferable to the variance
stabilizing transformation if the size factors vary widely.

7.2 Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form expression
for the variance stabilizing transformation is used by varianceStabilizingTransforma-

tion, which is derived in the file vst.pdf, that is distributed in the package alongside
this vignette. If a local fit is used (option fitType="locfit" to estimateDispersions)
a numerical integration is used instead.

The resulting variance stabilizing transformation is shown in Figure 5. The code that
produces the figure is hidden from this vignette for the sake of brevity, but can be seen
in the .Rnw or .R source file.

Figure 5: Graphs of the variance stabilizing transformation for sample 1, in blue, and
of the transformation f(n) = log2(n/s1), in black. n are the counts and s1 is the size
factor for the first sample.

7.3 Effects of transformations on the variance

Figure 6 plots the standard deviation of the transformed data, across samples, against the
mean, using the shifted logarithm transformation (3), the regularized log transformation
and the variance stabilizing transformation. The shifted logarithm has elevated standard
deviation in the lower count range, and the regularized log to a lesser extent, while for
the variance stabilized data the standard deviation is roughly constant along the whole
dynamic range.

library("vsn")

par(mfrow=c(1,3))

notAllZero <- (rowSums(counts(dds))>0)

meanSdPlot(log2(counts(dds,normalized=TRUE)[notAllZero,] + 1),

ylim = c(0,2.5))

meanSdPlot(assay(rld[notAllZero,]), ylim = c(0,2.5))

meanSdPlot(assay(vsd[notAllZero,]), ylim = c(0,2.5))

Figure 6: Per-gene standard deviation (taken across samples), against the rank of the
mean, for the shifted logarithm log2(n + 1) (left), the regularized log transformation
(center) and the variance stabilizing transformation (right).

8 Data quality assessment by sample clustering and
visualization

Data quality assessment and quality control (i. e. the removal of insufficiently good data)
are essential steps of any data analysis. Even though we present these steps towards the
end of this vignette, they should typically be performed very early in the analysis of a
new data set, preceding or in parallel to the differential expression testing.

We define the term quality as fitness for purpose2. Our purpose is the detection of
differentially expressed genes, and we are looking in particular for samples whose ex-
perimental treatment suffered from an anormality that renders the data points obtained
from these particular samples detrimental to our purpose.

8.1 Heatmap of the count table

To explore a count table, it is often instructive to look at it as a heatmap. Below we
show how to produce such a heatmap from the raw and transformed data.

library("RColorBrewer")

library("gplots")

select <- order(rowMeans(counts(dds,normalized=TRUE)),decreasing=TRUE)[1:30]

hmcol <- colorRampPalette(brewer.pal(9, "GnBu"))(100)

heatmap.2(counts(dds,normalized=TRUE)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10,6))

2http://en.wikipedia.org/wiki/Quality_%28business%29

http://en.wikipedia.org/wiki/Quality_%28business%29

Figure 7: Heatmaps showing the expression data of the 30 most highly expressed genes.
The data is of raw counts (left), from regularized log transformation (center) and from
variance stabilizing transformation (right).

heatmap.2(assay(rld)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10, 6))

heatmap.2(assay(vsd)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10, 6))

8.2 Heatmap of the sample-to-sample distances

Another use of the transformed data is sample clustering. Here, we apply the dist

function to the transpose of the transformed count matrix to get sample-to-sample
distances. We could alternatively use the variance stabilized transformation here.

distsRL <- dist(t(assay(rld)))

A heatmap of this distance matrix gives us an overview over similarities and dissimilarities
between samples (Figure 8):

mat <- as.matrix(distsRL)

rownames(mat) <- colnames(mat) <- with(colData(dds),

paste(condition, type, sep=" : "))

heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13))

Figure 8: Heatmap showing the Euclidean distances between the samples as calculated
from the regularized log transformation.

8.3 Principal component plot of the samples

Related to the distance matrix of Section 8.2 is the PCA plot of the samples, which we
obtain as follows (Figure 9).

print(plotPCA(rld, intgroup=c("condition", "type")))

Figure 9: PCA plot. The 7 samples shown in the 2D plane spanned by their first two
principal components. This type of plot is useful for visualizing the overall effect of
experimental covariates and batch effects.

A Changes compared to the DESeq package

The main changes in the package DESeq2, compared to the (older) version DESeq, are
as follows:

� SummarizedExperiment is used as the superclass for storage of input data, inter-
mediate calculations and results.

� Maximum a posteriori estimation of GLM coefficients incorporating a zero-mean
normal prior with variance estimated from data (equivalent to Tikhonov/ridge
regularization). This adjustment has little effect on genes with high counts, yet it
helps to moderate the otherwise large spread in log2 fold changes for genes with
low counts (e. g. single digits per condition).

� Maximum a posteriori estimation of dispersion replaces the sharingMode options
fit-only or maximum of the previous version of the package. [9]

� All estimation and inference is based on the generalized linear model, which in-
cludes the two condition case (previously the exact test was used).

� The Wald test for significance of GLM coefficients is provided as the default infer-
ence method, with the likelihood ratio test of the previous version still available.

� It is possible to provide a matrix of sample-/gene-dependent normalization factors.

B Generalized linear model

The differential expression analysis in DESeq2 uses a generalized linear model of the
form:

Kij ∼ NB(µij, αi)

µij = sjqij

log2(qij) = xj.βi

where counts Kij for gene i, sample j are modeled using a negative binomial distribution
with fitted mean µij and a gene-specific dispersion parameter αi. The fitted mean is
composed of a sample-specific size factor sj

3 and a parameter qij proportional to the
expected true concentration of fragments for sample j. The coefficients βi give the
log2 fold changes for gene i for each column of the model matrix X. Dispersions are
estimated using a Cox-Reid adjusted profile likelihood, as first implemented for RNA-Seq
data in edgeR [10,11]. For further details on dispersion estimation and inference, please
see the manual pages for the functions DESeq and estimateDispersions. For access to
the calculated values see Section G

C Wald test individual steps

The function DESeq runs the following functions in order:

dds <- estimateSizeFactors(dds)

dds <- estimateDispersions(dds)

dds <- nbinomWaldTest(dds)

D Likelihood ratio test

The likelihood ratio test substitutes nbinomWaldTest with nbinomLRT in the last step
above. In this case, the user provides the full formula (the formula stored in de-

sign(dds)), and a reduced formula, e.g. one which does not contain the variable
of interest. The degrees of freedom for the test is obtained from the number of param-
eters in the two models. The Wald test and the likelihood ratio test share many of the
same genes with adjusted p-value < .1 for this experiment.

ddsLRT <- nbinomLRT(dds, reduced = ~ type)

resLRT <- results(ddsLRT)

tab <- table(Wald=res$padj < .1, LRT=resLRT$padj < .1)

addmargins(tab)

3The model can be generalised to use sample- and gene-dependent normalisation factors, see Ap-
pendix I.

LRT

Wald FALSE TRUE Sum

FALSE 10143 5 10148

TRUE 11 1230 1241

Sum 10154 1235 11389

E Dispersion plot and fitting alternatives

Plotting the dispersion estimates is a useful diagnostic. The dispersion plot in Figure 10
is typical, with the final estimates shrunk from the gene-wise estimates towards the fitted
estimates. Some gene-wise estimates are flagged as outliers and not shrunk towards the
fitted value, (this outlier detection is described in the man page for estimateDisper-

sionsMAP). The amount of shrinkage can be more or less than seen here, depending
on the sample size, the number of coefficients, the row mean and the variability of the
gene-wise estimates.

plotDispEsts(dds)

Figure 10: The dispersion estimate plot shows the gene-wise estimates (black), the fitted
values (red), and the final maximum a posteriori estimates used in testing (blue).

E.1 Local dispersion fit

The local dispersion fit is available in case the parametric fit fails to converge. A warning
will be printed that one should use plotDispEsts to check the quality of the fit, whether
the curve is pulled dramatically by a few outlier points. In this case the two fit types
appear to produce similar curves (Figure 11).

ddsLocal <- estimateDispersions(dds, fitType="local")

plotDispEsts(ddsLocal)

Figure 11: A dispersion estimate plot using a local regression fit is similar to that of
Figure 10.

E.2 Mean dispersion

While RNA-Seq data tend to demonstrate a dispersion-mean dependence, this assump-
tion is not appropriate for all assays. An alternative is to use the mean of all gene-wise
dispersion estimates to benefit from information sharing across genes (Figure 12).

ddsMean <- estimateDispersions(dds, fitType="mean")

plotDispEsts(ddsMean)

E.3 Supply a custom dispersion fit

Any fitted values can be provided during dispersion estimation, using the lower-level
functions described in the manual page for estimateDispersionsGeneEst. In the first
line of the code below, the function estimateDispersionsGeneEst stores the gene-wise
estimates in the metadata column dispGeneEst. In the last line, the function esti-

mateDispersionsMAP, uses this column and the column dispFit to generate maximum
a posteriori (MAP) estimates of dispersion. The modeling assumption is that the true
dispersions are distributed according to a log-normal prior around the fitted values in the
column fitDisp. The width of this prior is calculated from the data.

Figure 12: A dispersion estimate plot using the mean, though this would not be rec-
ommended for this dataset as the dispersion estimates exhibit a row-mean-dependent
trend.

ddsMed <- estimateDispersionsGeneEst(dds)

useForMedian <- mcols(ddsMed)$dispGeneEst > 1e-7

medianDisp <- median(mcols(ddsMed)$dispGeneEst[useForMedian],na.rm=TRUE)

mcols(ddsMed)$dispFit <- medianDisp

ddsMed <- estimateDispersionsMAP(ddsMed)

F Count outlier detection

DESeq2 relies on the negative binomial distribution to make estimates and perform
statistical inference on differences. While the negative binomial is versatile in having
a mean and dispersion parameter, extreme counts in individual samples might not fit
well to the negative binomial. For this reason, we perform automatic detection of count
outliers. We use Cook’s distance, which is a measure of how much the fitted coefficients
would change if an individual sample were removed. [12] The Cook’s distances are stored
as a matrix available in assays(dds)[["cooks"]]. These values are the same as those
produced by the cooks.distance function of the stats package, except using the fitted
dispersion and taking into account the size factors.

By default, if the Cook’s distance for a sample is larger than the .75 quantile of the
F (p,m− p) distribution (with p the number of parameters including the intercept and
m number of samples), then the gene is flagged in mcols(dds)$cooksOutlier, and
the p-value of the row is set to NA. The cutoff can be modified using the cooksCutoff

argument to nbinomWaldTest or nbinomLRT. The functionality can be disabled by setting
cooksCutoff to Inf or FALSE. If the removal of a sample would mean that a coefficient
cannot be fitted (e.g. if there is only one sample for a given group), then the Cook’s

distance for this sample is not counted towards the flagging.

W <- mcols(dds)$WaldStatistic_condition_treated_vs_untreated

maxCooks <- mcols(dds)$maxCooks

idx <- !is.na(W)

plot(rank(W[idx]), maxCooks[idx], xlab="rank of Wald statistic",

ylab="maximum Cook's distance per gene",

ylim=c(0,5), cex=.4, col=rgb(0,0,0,.3))

m <- ncol(dds)

p <- 3

abline(h=qf(.75, p, m - p))

Figure 13: Plot of the maximum Cook’s distance per gene over the rank of the Wald
statistics for the condition. The two regions with small Cook’s distances are genes with
a single count in one sample. The horizontal line is the default cutoff used for 7 samples
and 3 estimated parameters.

G Access to all calculated values

All row-wise calculated values (intermediate dispersion calculations, coefficients, stan-
dard errors, etc.) are stored in the DESeqDataSet object, e.g. dds in this vignette.
These values are accessible by calling mcols on dds. Descriptions of the columns are
accessible by two calls to mcols.

mcols(dds,use.names=TRUE)[1:4,1:4]

DataFrame with 4 rows and 4 columns

baseMean baseVar allZero dispGeneEst

<numeric> <numeric> <logical> <numeric>

FBgn0000003 0.159 0.178 FALSE 3.49e-01

FBgn0000008 52.226 154.611 FALSE 5.12e-02

FBgn0000014 0.390 0.444 FALSE 1.44e+01

FBgn0000015 0.905 0.799 FALSE 1.00e-08

mcols(mcols(dds), use.names=TRUE)[1:4,]

DataFrame with 4 rows and 2 columns

type description

<character> <character>

baseMean intermediate the base mean over all rows

baseVar intermediate the base variance over all rows

allZero intermediate all counts in a row are zero

dispGeneEst intermediate gene-wise estimates of dispersion

H Multi-level conditions

As mentioned in Section 2.5, it is important to refactor columns which will be used in
analysis, providing the levels in the order desired, as the first level will be used as a base
level. For a column with 3 levels “Control”, “A”, and “B”, the refactoring would be:

colData(x)$condition <- factor(colData(x)$condition,

levels=c("Control","A","B"))

In this case, there will be two coefficients in the analysis with available results: log2 fold
changes of“A”vs“Control”, and log2 fold changes of“B”vs“Control”. It is also possible
to set the base level using the R function relevel. We are working on an implementation
of contrasts, which would allow comparison of the coefficients of “A” against “B”.

I Sample-/gene-dependent normalization factors

In some experiments, there might be gene-dependent dependencies which vary across
samples. For instance, GC-content bias or length bias might vary across samples coming
from different labs or processed at different times. We use the terms “normalization
factors” for a gene × sample matrix, and “size factors” for a single number per sample.
Incorporating normalization factors, the mean parameter µij from Section B becomes:

µij = NFijqij

with normalization factor matrix NF having the same dimensions as the counts matrix
K. This matrix can be incorporated as shown below. We recommend providing a matrix
with a mean of 1, which can be accomplished by dividing out the mean of the matrix.

normFactors <- normFactors / mean(normFactors)

normalizationFactors(dds) <- normFactors

These steps then replace estimateSizeFactors in the steps described in Section C.
Normalization factors, if present, will always be used in the place of size factors.

The methods provided by the cqn or EDASeq packages can help correct for GC or length
biases. They both describe in their vignettes how to create matrices which can be used
by DESeq2. From the formula above, we see that normalization factors should be on the
scale of the counts, like size factors, and unlike offsets which are typically on the scale
of the predictors (i.e. the logarithmic scale for the negative binomial GLM). At the time
of writing, the transformation from the matrices provided by these packages should be:

cqnOffset <- cqnObject$glm.offset

cqnNormFactors <- exp(cqnOffset)

EDASeqNormFactors <- exp(-1 * EDASeqOffset)

J Session Info

� R version 3.0.1 (2013-05-16), i386-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats,
utils

� Other packages: Biobase 2.20.1, BiocGenerics 0.6.0, DESeq2 1.0.19,
DEXSeq 1.6.0, GenomicRanges 1.12.4, IRanges 1.18.3, KernSmooth 2.23-10,
MASS 7.3-28, RColorBrewer 1.0-5, Rcpp 0.10.4, RcppArmadillo 0.3.900.7,
caTools 1.14, gdata 2.13.2, gplots 2.11.3, gtools 3.0.0, lattice 0.20-15,
locfit 1.5-9.1, parathyroidSE 1.0.1, vsn 3.28.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.22.6,
BiocInstaller 1.10.3, Biostrings 2.28.0, DBI 0.2-7, DESeq 1.12.0, RCurl 1.95-4.1,
RSQLite 0.11.4, Rsamtools 1.12.3, XML 3.98-1.1, affy 1.38.1, affyio 1.28.0,
annotate 1.38.0, biomaRt 2.16.0, bitops 1.0-5, genefilter 1.42.0,
geneplotter 1.38.0, hwriter 1.3, limma 3.16.7, pasilla 0.2.16,
preprocessCore 1.22.0, splines 3.0.1, statmod 1.4.17, stats4 3.0.1, stringr 0.6.2,
survival 2.37-4, tools 3.0.1, xtable 1.7-1, zlibbioc 1.6.0

References

[1] Felix Haglund, Ran Ma, Mikael Huss, Luqman Sulaiman, Ming Lu, Inga-Lena Nils-
son, Anders Höög, Christofer C. Juhlin, Johan Hartman, and Catharina Larsson.
Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas. Journal of
Clinical Endocrinology & Metabolism, September 2012.

[2] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E.
Brenner, and B. R. Graveley. Conservation of an RNA regulatory map between
Drosophila and mammals. Genome Research, pages 193–202, 2011.

[3] Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering
increases detection power for high-throughput experiments. PNAS, 107(21):9546–
9551, 2010.

[4] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society B,
57:289–300, 1995.

[5] T. Schweder and E. Spjotvoll. Plots of P-values to evaluate many tests simultane-
ously. Biometrika, 69:493–502, 1982.

[6] Robert Tibshirani. Estimating transformations for regression via additivity and
variance stabilization. Journal of the American Statistical Association, 83:394–405,
1988.

[7] Wolfgang Huber, Anja von Heydebreck, Holger Sültmann, Annemarie Poustka, and
Martin Vingron. Parameter estimation for the calibration and variance stabilization
of microarray data. Statistical Applications in Genetics and Molecular Biology,
2(1):Article 3, 2003.

[8] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence
count data. Genome Biology, 11:R106, 2010.

[9] Hao Wu, Chi Wang, and Zhijin Wu. A new shrinkage estimator for dispersion
improves differential expression detection in RNA-seq data. Biostatistics, September
2012.

[10] D. R. Cox and N. Reid. Parameter orthogonality and approximate conditional
inference. Journal of the Royal Statistical Society, Series B, 49(1):1–39, 1987.

[11] Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Research, 40:4288–4297, January 2012.

[12] R. Dennis Cook. Detection of Influential Observation in Linear Regression. Tech-
nometrics, February 1977.

	Quick start
	Input data
	Why raw counts?
	SummarizedExperiment input
	Count matrix input
	HTSeq input
	Note on factor levels
	About the pasilla dataset

	Differential expression analysis
	Exploring results
	MA-plot
	More information on results columns
	Exporting results

	Multi-factor designs
	Independent filtering and multiple testing
	Filtering by overall count
	Why does it work?
	Diagnostic plots for multiple testing

	Count data transformations
	Regularized log transformation
	Variance stabilizing transformation
	Effects of transformations on the variance

	Data quality assessment by sample clustering and visualization
	Heatmap of the count table
	Heatmap of the sample-to-sample distances
	Principal component plot of the samples

	Appendix Changes compared to the DESeq package
	Appendix Generalized linear model
	Appendix Wald test individual steps
	Appendix Likelihood ratio test
	Appendix Dispersion plot and fitting alternatives
	Local dispersion fit
	Mean dispersion
	Supply a custom dispersion fit

	Appendix Count outlier detection
	Appendix Access to all calculated values
	Appendix Multi-level conditions
	Appendix Sample-/gene-dependent normalization factors
	Appendix Session Info

