
Analyzing WGBS with the bsseq package

Kasper Daniel Hansen
khansen@jhsph.edu

Modified: October 13, 2012. Compiled: April 10, 2013

Introduction

This document discusses the ins and outs of an analysis of a whole-genome shotgun bisulfite
sequencing (WGBS) dataset, using the BSmooth algorithm, which was first used in [1] and
more formally presented and evaluated in [2]. The intention with the document is to focus
on analysis-related tasks and questions. Basic usage of the bsseq package is covered in “The
bsseq user’s guide”. It may be useful to consult the user’s guide while reading this analysis
guide.

In this vignette we analyze chromosome 21 and 22 from [1]. This is primary data from
3 patients with colon cancer. For each patient we have normal colon tissue as well as
cancer colon. The samples were run on ABI SOLiD and we generated 50bp single-end
reads. The reads were aligned using the Merman aligner in the BSmooth suite (http:
//www.rafalab.org/bsmooth). See the primary publication for more details [1].

This data is contained in the bsseqData

> library(bsseq)

> library(bsseqData)

The bsseqData contains a script, inst/script/create_BS.cancer.R, describing how this
data is created from the Merman alignment output (also contained in the package). Note
that the current version of the BSmooth pipeline uses a slightly different alignment output
format.

The following object contains the unsmoothed “raw” summarized alignment data.

> BS.cancer.ex

An object of type 'BSseq' with

958541 methylation loci

1

http://www.rafalab.org/bsmooth
http://www.rafalab.org/bsmooth

6 samples

has not been smoothed

> pData(BS.cancer.ex)

Type Pair

C1 cancer pair1

C2 cancer pair2

C3 cancer pair3

N1 normal pair1

N2 normal pair2

N3 normal pair3

If you use this package, please cite our BSmooth paper Hansen KD, Langmead B and Irizarry
RA (2012). “BSmooth: from whole genome bisulfite sequencing reads to differentially methy-
lated regions.” Genome Biology, 13, pp. R83.

Smoothing

The first step of the analysis is to smooth the data

> BS.cancer.ex.fit <- BSmooth(BS.cancer.ex, mc.cores = 1, verbose = TRUE)

This particular piece of code is not being run when the vignette is being created. It takes
roughly 2 minutes per sample. If you have 6 cores available, use mc.cores = 6 and the total
run time will be roughly 2 minutes. Note that setting mc.cores to a value greater than 1 is
not support on MS Windows due to a limitation of the operating system.

For ease of use, the bsseqData includes the result of this command:

> data(BS.cancer.ex.fit)

> BS.cancer.ex.fit

An object of type 'BSseq' with

958541 methylation loci

6 samples

has been smoothed with

BSmooth (ns = 70, h = 1000, maxGap = 100000000)

This step uses parallelization where each sample is run on a separate core using mclapply

from the parallel package. This form of parallelization is built into bsseq, and (as written)
requires access to a machine with 6 cores and enough RAM. The smoothing step is being
done completely independently on each sample, so if you have a lot of samples (or other
circumstances), an alternative is to split the computations manually. A later subsection
shows some example code for doing that.

2

Let us discuss coverage and representation. The BS.cancer.ex object contains all annotated
CpGs on human chromosome 21 and 22, whether or not there is actual data. Since we have
multiple samples, we can roughly divide the genome into 3 categories: CpGs where all
samples have data, CpGs where none of the samples have data and CpGs where some, but
not all, of the samples have data. Examining the object at hand, we get

> ## The average coverage of CpGs on the two chromosomes

> round(colMeans(getCoverage(BS.cancer.ex)), 1)

C1 C2 C3 N1 N2 N3

3.5 4.2 3.7 4.0 4.3 3.9

> ## Number of CpGs in two chromosomes

> length(BS.cancer.ex)

[1] 958541

> ## Number of CpGs which are covered by at least 1 read in all 6 samples

> sum(rowSums(getCoverage(BS.cancer.ex) >= 1) == 6)

[1] 572628

> ## Number of CpGs with 0 coverage in all samples

> sum(rowSums(getCoverage(BS.cancer.ex)) == 0)

[1] 136019

The CpG coverage is roughly 4x, so we would expect many zero coverage CpGs by chance.
although that should not necessarily occur in all 6 samples at the same CpG. If we assume
that coverage genome-wide is Poisson distributed with a parameter (lambda) of 4, we would
expect

> logp <- ppois(0, lambda = 4, lower.tail = FALSE, log.p = TRUE)

> round(1 - exp(6 * logp), 3)

[1] 0.105

of the CpGs to have at least one sample with zero coverage.

There are roughly 130k CpGs with no data at all in any of the 6 samples. This can happen
either because of chance (although that is unlikely) or because the CpG is unmappable.
Since we are dealing with bisulfite converted reads, the unmappable portion of the genome
is greater than with normal DNA-sequencing. For this experiment we only used 50bp single-
end reads (in our experience using 100bp paired-end reads greatly increases the mappable
percentage of the genome). These CpGs (with zero coverage in all samples) are in some sense
easy to deal with: one should of course be careful drawing conclusions about CpGs with no
data.

3

We have roughly 959 − 573 − 136 = 250k CpGs where some (but not all) of the samples
have zero coverage, and these are in some sense harder to deal with. Since we have very
low coverage to begin with, it may happen just by chance that a single sample have zero
coverage, and it may be too restrictive to just exclude these CpGs from an analysis.

Smoothing is done separately for each sample, only using the data where the coverage (for
that sample) is non-zero. This estimates a genome-wide methylation profile, which is then
evaluated in all CpGs in the "BSseq" object. As a result, after smoothing, every CpG in
the object has an estimated methylation value. This is very nice for the situation where you
want to compare a single CpG across multiple samples, but one or two of the samples have
zero coverage by chance. But note that these smoothed methylation profiles makes less sense
in the parts of the genome where there are no covered CpGs nearby. We fix this by removing
these CpGs after smoothing, see below.

Other arguments to the BSmooth function are mc.cores, mc.preschedule, parallelBy

which controls the parallelization built into the function as well as ns, h, maxGap which
controls the smoothing. ns is the minimum number of CpGs contained in each window,
h is half the minimum window with (the actual window width is either 2 times h or wide
enough to contain ns covered CpGs, whichever is greater). Note that the window width is
different at each position in the genome and may also be different for different samples at
the same position, since it depends on how many nearby CpGs with non-zero coverage. Per
default, a smoothing cluster is a whole chromosome. By “cluster” we mean a set of CpGs
which are processed together. This means that even if there is a large distance between two
CpGs, we borrow strength between them. By setting maxGap this can be prevented since
the argument describes the longest distance between two CpGs before a cluster is broken up
into two clusters.

Manually splitting the smoothing computation

An example, only showing sample 1 and 2 for brevity, is (this example is not being run when
the vignette is being created):

> ## Split datag

> BS1 <- BS.cancer.ex[, 1]

> save(BS1, file = "BS1.rda")

> BS2 <- BS.cancer.ex[, 2]

> save(BS1, file = "BS1.rda")

> ## done splitting

>

> ## Do the following on each node

>

> ## node 1

> load("BS1.rda")

4

> BS1.fit <- BSmooth(BS1)

> save(BS1.fit)

> save(BS1.fit, file = "BS1.fit.rda")

> ## done node 1

>

> ## node 2

> load("BS2.rda")

> BS2.fit <- BSmooth(BS2)

> save(BS2.fit, file = "BS2.fit.rda")

> ## done node 2

>

> ## join; in a new R session

> load("BS1.fit.rda")

> load("BS2.fit.rda")

> BS.fit <- combine(BS1.fit, BS2.fit)

This still requires that you have one node with enough RAM to hold all samples in memory.

Computing t-statistics

Before computing t-statistics, we will remove CpGs with little or no coverage. If this is not
done, you may find many DMRs in areas of the genome with very little coverage, which are
most likely false positives. It is open to personal preferences exactly which CpGs to remove,
but for this analysis we will only keep CpGs where at least 2 cancer samples and at least
2 normal samples have at least 2x in coverage. For readability, we store the coverage in a
separate matrix (this is just due to line breaks in Sweave)

> BS.cov <- getCoverage(BS.cancer.ex.fit)

> keepLoci.ex <- which(rowSums(BS.cov[, c("C1", "C2", "C3")] >= 2) >= 2 &

+ rowSums(BS.cov[, c("N1", "N2", "N3")] >= 2) >= 2)

> length(keepLoci.ex)

[1] 597371

> BS.cancer.ex.fit <- BS.cancer.ex.fit[keepLoci.ex,]

(the keepLoci.ex is also available for direct inspection in the bsseqData package.)

We are now ready to compute t-statistics, by

> BS.cancer.ex.tstat <- BSmooth.tstat(BS.cancer.ex.fit,

+ group1 = c("C1", "C2", "C3"),

+ group2 = c("N1", "N2", "N3"),

+ estimate.var = "group2",

5

+ local.correct = TRUE,

+ verbose = TRUE)

preprocessing ... done in 2.2 sec

computing stats within groups ... done in 1.0 sec

computing stats across groups ... done in 4.6 sec

> BS.cancer.ex.tstat

An object of type 'BSseqTstat' with

597371 methylation loci

based on smoothed data:

BSmooth (ns = 70, h = 1000, maxGap = 100000000)

with parameters

BSmooth.tstat (local.correct = TRUE, maxGap = 100000000)

(the BS.cancer.ex.tstat is also available for direct inspection in the bsseqData package.)

The arguments to BSmooth.tstat are simple. group1 and group2 contain the sample names
of the two groups being compared (it is always group1 - group2), and indices may be used
instead of sample names. estimate.var describes which samples are being used to esti-
mate the variability. Because this is a cancer dataset, and cancer have higher variability
than normals, we only use the normal samples to estimate the variability. Other choices of
estimate.var are same (assume same variability in each group) and paired (do a paired
t-test). The argument local.correct describes whether we should use a large-scale (low-
frequency) mean correction. This is especially important in cancer where we have found
many large-scale methylation differences between cancer and normals.

We can look at the marginal distribution of the t-statistic by

> plot(BS.cancer.ex.tstat)

6

−10 −5 0 5 10

0.
00

0.
10

0.
20

0.
30

N = 597371 Bandwidth = 0.1609

D
en

si
ty

uncorrected
corrected

The “blocks” of hypomethylation are clearly visible in the marginal distribution of the un-
corrected t-statistics.

Even in comparisons where we do not observe these large-scale methylation differences, it
often improves the marginal distribution of the t-statistics to locally correct them (“improves”
in the sense of making them more symmetric).

Finding DMRs

Once t-statistics have been computed, we can compute differentially methylated regions
(DMRs) by thresholding the t-statistics. Here we use a cutoff of 4.6, which was chosen by
looking at the quantiles of the t-statistics (for the entire genome).

> dmrs0 <- dmrFinder(BS.cancer.ex.tstat, cutoff = c(-4.6, 4.6))

segmenting

splitting

creating dmr data.frame

> dmrs <- subset(dmrs0, n >= 3 & abs(meanDiff) >= 0.1)

> nrow(dmrs)

[1] 373

> head(dmrs, n = 3)

chr start end idxStart idxEnd cluster n meanDiff

14 chr21 28215373 28219673 57140 57375 15140 236 0.3423310

7

21 chr21 32929738 32932526 79950 80169 20172 220 0.3616328

26 chr21 34441912 34444680 92256 92480 21568 225 0.3093227

group1.mean group2.mean tstat.sd areaStat maxStat direction

14 0.3870996 0.04476853 0.04503204 2623.165 13.50173 hyper

21 0.4174597 0.05582693 0.04492697 2326.016 12.16182 hyper

26 0.3406376 0.03131488 0.04604162 2156.520 12.39799 hyper

width invdensity

14 4301 18.22458

21 2789 12.67727

26 2769 12.30667

Here, we filter out DMRs that do not have at least 3 CpGs in them and at least a mean
difference (across the DMR) in methylation between normal and cancers of at least 0.1.
While the exact values of these two filters can be debated, it is surely a good idea to use
something like this.

Other arguments to dmrFinder are qcutoff which chooses a quantile-based cutoff (for ex-
ample qcutoff = c(0.01, 0.99)) and maxGap which makes sure that a DMR is being split
if there are two CpGs with more than maxGap between them (default of 300bp).

We rank DMRs by the column areaStat which is the sum of the t-statistics in each CpG.
This is kind of the area of the DMR, except that it is weighted by the number of CpGs and
not by genomic length. This is currently the best statistic we know, although it is far from
perfect (we would like to do something better).

Plotting

It is always a good idea to look at the DMRs. One way of encoding standard plotting
parameters like col, lty, and lwd is to add columns to the pData, like

> pData <- pData(BS.cancer.ex.fit)

> pData$col <- rep(c("red", "blue"), each = 3)

> pData(BS.cancer.ex.fit) <- pData

Once this is setup, we can plot a single DMR like

> plotRegion(BS.cancer.ex.fit, dmrs[1,], extend = 5000, addRegions = dmrs)

8

M
et

hy
la

tio
n

0.
2

0.
5

0.
8

chr21: 28,215,373 − 28,219,673 (width = −5,699, extended = 5,000)

extend tells us how many bp to extend to either side of the plotting region. addRegions is
a "data.frame" or GRanges listing additional regions that should be highlighted.

Typically, we plot hundreds of DMRs in a single PDF file and use external tools to look at
them. For this purpose, plotManyRegions is very useful since it is much faster than plotting
individual DMRs with plotRegion. An example (not run) is

> pdf(file = "dmrs_top200.pdf", width = 10, height = 5)

> plotManyRegions(BS.cancer.ex.fit, dmrs[1:200,], extend = 5000,

+ addRegions = dmrs)

> dev.off()

which plots the top200.

Question and answers

1. The BSmooth algorithm is supposed to give smooth methylation estimates.
Yet, when I plot the smoothed values, I see jagged lines, which do not look
smooth to me.

We estimate a genome-wide methylation profile that is a smooth function of the genomic
position. However, this profile is not stored in the "BSseq" objects. Instead, we evaluate
this smooth profile in the methylation loci in the object. An example (made-up values) is

pos meth

1 0.1

3 0.1

5 0.1

200 0.6

203 0.6

205 0.6

9

For plotting we do linear interpolation between this points. The end result is that the
methylation profile may appear jagged especially if there is a “big” distance between two
CpGs (between pos 5 and 200 above). If we wanted to plot truly smooth profiles we would
have to store the methylation profile evaluated at a regular grid across the genome. This
takes up a lot of space and would add complications to the internal data structures.

References

[1] Kasper D Hansen, Winston Timp, Hector Corrada Bravo, Sarven Sabunciyan, Benjamin
Langmead, Oliver G. McDonald, Bo Wen, Hao Wu, Yun Liu, Dihn Diep, Eirikur Briem,
Kun Zhang, Rafael A Irizarry, and Andrew P Feinberg. Generalized Loss of Stability
of Epigenetic Domains Across Cancer Types. Nature Genetics, 43(8):768–775, 2011.
doi:10.1038/ng.865, PMID:21706001.

[2] Kasper D Hansen, Benjamin Langmead, and Rafael A Irizarry. BSmooth: from whole
genome bisulfite sequencing reads to differentially methylated regions. Genome Biology,
13(10):R83, 2012. doi:10.1186/gb-2012-13-10-r83, PMID:23034175.

SessionInfo

• R version 3.0.0 (2013-04-03), x86_64-apple-darwin10.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: BiocGenerics 0.6.0, GenomicRanges 1.12.1, IRanges 1.18.0,
bsseq 0.8.0, bsseqData 0.1.3, matrixStats 0.6.2

• Loaded via a namespace (and not attached): Biobase 2.20.0, R.methodsS3 1.4.2,
RColorBrewer 1.0-5, colorspace 1.2-1, dichromat 2.0-0, grid 3.0.0, labeling 0.1,
lattice 0.20-15, locfit 1.5-9, munsell 0.4, plyr 1.8, scales 0.2.3, stats4 3.0.0,
stringr 0.6.2, tools 3.0.0

10

http://dx.doi.org/10.1038/ng.865
http://www.ncbi.nlm.nih.gov/pubmed/21706001
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://www.ncbi.nlm.nih.gov/pubmed/23034175

