
Detection of de novo copy number alterations in case-parent trios

using the R package MinimumDistance

Moiz Bootwalla and Rob Scharpf

April 10, 2013

Abstract

For the analysis of case-parent trio genotyping arrays, copy number variants (CNV) appearing in the
offspring that differ from the parental copy numbers are often of interest (de novo CNV). This package
defines a statistic, referred to as the minimum distance, that can be useful for identifying de novo
copy number alterations in the offspring. We smooth the minimum distance using the circular binary
segmentation algorithm implemented in the Bioconductor package DNAcopy. Trio copy number states
are inferred from the maximum a posteriori probability of the segmented data, incorporating information
from the log R ratios and B allele frequencies. As both log R ratios and B allele frequencies can be
estimated from Illumina and Affymetrix arrays, this package supports de novo copy number inference in
both platforms.

1 Introduction

There are numerous R packages available from Bioconductor for smoothing copy number alterations. For
example, the biocview CopyNumberVariants in the 2.9 release of Bioconductor lists 27 packages. For the
analysis of germline diseases, hidden Markov models have emerged as a popular tool as inference regarding
the latent copy number state incorporates information from both the estimates of copy number (or relative
copy number) and the allelic frequencies, such as the B allele frequency [4] or genotype calls [1, 7, 5]. For the
analysis of somatic cell diseases such as cancer, algorithms that segment the genome into regions of constant
copy number (referred to here as segmentation algorithms) may be more preferable for the detection of copy
number aberrations (CNA) as a mixture of cells with different copy numbers give rise to mosaic (non-integer)
copy numbers. Examples include circular binary segmentation implemented in the R package DNAcopy and
the GLAD, both of which were orginally developed for array CGH platforms [3, 2, 6]. One disadvantage of
segmentation algorithms is that inference regarding duplication and deletions is not directly available.

More recently, HMMs and segmentation algorithms have been developed for inferring common regions of
copy number alterations in multiple samples. However, relatively few algorithms are available for inferring
copy number alterations, especially de novo copy number alterations, in family-based study designs involving
case-parent trios. Instead, a common strategy has been a two-step approach of identifying copy number
alterations in the individual samples and then comparing the results across samples to infer whether an
alteration observed in the offspring is de novo. A disadvantage of the two-step approach is that unadjusted
sources of technical variation, such as waves, can contribute to false positives. To our knowledge, the joint
HMM implemented in the PennCNV software is the only software to date that provides direct inference
regarding de novo alterations in case parent study designs.

This package develops an alternative framework for inferring regions of de novo copy number alterations
in case-parent trios. Like PennCNV, inference regarding de novo alterations integrates information from
both the log R ratios and B allele frequencies. Differences in the two approaches are most apparent in non-
HapMap experimental datasets in which technical and experimental sources of variation appear to contribute
to a large number of false positives.

This vignette describes the analysis pipeline from preprocessed and normalized estimates of copy number
and allele frequencies to inference regarding de novo copy number alterations. The workflow is illustrated
using publicly available HapMap trios assayed on the Illumina 610quad array. Section 3 outlines two ap-
proaches for processing the data: Section 3.1 describes a pipeline in which a list of files are provided as input

1

and the output is a RangedDataCBS object of genomic intervals and the inference for the trio copy number
state; Section 3 provides a more detailed workflow in which intermediate data structures are created to facil-
itate visualization of the low-level copy number summaries along with inference from the MinimumDistance
algorithm. Details regarding the intermediate data structures and visualization are described in Sections
3 and 3.2, respectively. Where possible, we have adopted standard data structures for encapsulating the
low-level data (eSet extensions) and the segmented data (RangedData extensions).

2 Large data applications and parallel processing

A separate vignette for using MinimumDistance with large datasets is forthcoming. For now, we remark
that the discussion regarding the infrastructure for large data support and parallelization in the R package
oligoClasses is similar. In particular, to use a cluster we check for three requirements: 1) ’ff’ is loaded; 2)
’snow’ is loaded; and 3) the ’cluster’ option is set. For example, in the following unevaluated code chunk
would enable large data support and parallelization with 22 worker nodes. Finally, a check that the three
requirements are satisfied is obtained with the function parStatus in the oligoClasses package.

R> library(snow)

R> library(doSNOW)

R> library(oligoClasses)

R> cl <- makeCluster(22, type="SOCK")

R> registerDoSNOW(cl)

R> parStatus()

Had we executed the preceding code chunk, the output from this vignette would be more or less the same.
However, the containers for storing the low level copy number summaries and allele frequencies would contain
ff-objects and many of the chromosome-specific tasks that can easily be parallelized such as segmentation
and the posterior calling steps would be split to multiple workers.

When parallelization is not enabled, one may want to ’register’ the backend so that annoying warning
messages do not appear during processing. This is accomplished using the function registerDoSEQ in the
foreach package.

R> library(SNPchip)

R> library(GenomicRanges)

R> library(oligoClasses)

R> library(MinimumDistance)

R> foreach::registerDoSEQ()

3 Detection of de novo copy number

There are two options for processing. Section provides a simple pipeline for reading a list of files containing
log R ratios and B allele frequencies and returning the segmented data with the trio copy number calls.
The second option in Section provides a more detailed workflow of de novo copy number analysis with
intermediate data structures useful for storing the log R ratios and B allele frequencies in a manner than
can be easily accessed for subsequent plotting. The latter can be particularly useful for visual inspection of
the trio copy number calls.

3.1 Simple Usage: generating ranged data with posterior calls

Here, we illustrate a simple pipeline for reading in BeadStudio files and returning a list of genomic ranges.
There are 3 BeadStudio files provided with the MinimumDistance package – one for the father (“F.txt”),
mother (“M.txt”), and offspring (“O.txt”). In order to keep the size of the MinimumDistance package small,
these files contain data for only 1000 markers.

2

R> path <- system.file("extdata", package="MinimumDistance")

R> fnames <- list.files(path, pattern=".txt")

R> fnames

[1] "F.txt" "M.txt" "O.txt" "O1.txt"

Before reading the data, we create a data.frame indicating the filenames for the father, mother, and
offspring. In the following codechunk, we have a single file for the father, mother, and offspring (one trio).
For processing multiple trios, the arguments to data.frame can be vectors where the ith element in each
vector are the files for one trio.

R> pedigreeInfo <- data.frame(F="F.txt", M="M.txt", O="O.txt")

Note that the sample identifiers for father and mother can be duplicated, but the offspring sample identifiers
must be unique. We encapsulate this information more formally in an S4 class called Pedigree and use the
Pedigree constructor to generate an instance of the class:

R> ped <- Pedigree(pedigreeInfo)

R> ped

F M O

1 F.txt M.txt O.txt

Slot "pedigreeIndex":

individualId memberId index.in.pedigree

1 F.txt F 1

2 M.txt M 1

Instantiating a TrioSetList object .
A key design consideration for data structures that capture information on the low-level copy number

and allele frequencies is that the ‘unit’ of our analysis is a trio. A common query is to access the low level
statistical summaries for a set of markers for all members in a trio. By organizing statistical summaries
in arrays with dimension feature x trios x family member such queries are straightforward. As the
number of trios in a typical genome-wide association study may exceed 1000, it may be impractical to
store the low-level summaries in a single array. To make the size of the arrays more manageable and to
facilitate parallelization, we organize the low-level summaries by chromosome using the TrioSetList class.
The TrioSetList class has a slot for storing an object of class Pedigree (discussed previously), as well as
slots for storing sample-level covariates on the offspring (phenoData), mother (motherPhenoData), and the
father (fatherPhenoData). Often technical, experimental, and phenotypic covariates for the samples in an
experiment are stored in a single tab-delimited file in which columns are covariates and rows are samples.
Such a spreadsheed can be read into R as a data.frame. Supplying such a data.frame to the argument
sample.sheet in the TrioSetList constructor function will build AnnotatedDataFrame objects for father,
mother, and offspring, extracting the appropriate rows (samples) from the data.frame. For example, in the
following codechunk we load a data.frame called ‘sample.sheet’ and pass the sample.sheet object to the
TrioSetList constructor. In addition, we load a matrix of log R ratios and a matrix of B allele frequencies.
The matrices for the log R ratios and B allele frequences contain only 25 markers for each chromosome as the
intent is to illustrate the steps required for initializing a data structure of the TrioSetList class. Using the
information stored in the Pedigree class, the matrices are transformed to 3-dimensional arrays and stored
in the assayDataList slot of the TrioSetList class. It is important that the column identifiers for the log
R ratio and B allele frequency matrices correspond to sample identifiers in the Pedigree object. Accessors
lrr and baf are available for extracting the list of arrays for the log R ratios and B allele frequencies.

R> library(human610quadv1bCrlmm)

R> path <- system.file("extdata", package="MinimumDistance")

R> load(file.path(path, "pedigreeInfo.rda"))

3

R> load(file.path(path, "sample.sheet.rda"))

R> load(file.path(path, "logRratio.rda"))

R> load(file.path(path, "baf.rda"))

R> stopifnot(colnames(logRratio) %in% allNames(Pedigree(pedigreeInfo)))

R> nms <- paste("NA",substr(sample.sheet$Sample.Name, 6, 10),sep="")

R> trioSetList <- TrioSetList(lrr=logRratio, ## must provide row.names

baf=baf,

pedigree=Pedigree(pedigreeInfo),

sample.sheet=sample.sheet,

row.names=nms,

cdfname="human610quadv1bCrlmm",

genome="hg18")

R> show(trioSetList)

TrioSetList of length 22

genome: hg18

Segmentation and posterior calls. To keep the size of the MinimumDistance package small, the trioSetList
object created in the previous section contained only 25 markers for each of the 22 autosomes. While useful
for illustrating construction of the TrioSetList class, there are too few markers included in the example to
illustrate the smoothing and posterior calling algorithm for detecting de novo copy number events. To demon-
strate these steps, we load a TrioSetList object containing several thousand markers for chromosomes 7
and 22 for 2 HapMap trios:

R> data(trioSetListExample)

For a given trio, the signed minimum absolute difference of the offspring and parental log2 R ratios (r)
is defined as

d ≡ (rO − rM) × I[|rO−rF|>|rO−rM|] + (rO − rF) × I[|rO−rF|≤|rO−rM|] . (1)

Computation of d by the function calculateMindist is vectorized in R:

R> md <- calculateMindist(lrr(trioSetList))

The circular binary segmentation algorithm implemented in the R package DNAcopy can be used to
smooth the minimum distance estimates. The method segment2 is a wrapper to the CNA.smooth and segment

functions defined in DNAcopy. Additional arguments to the segment function can be passed through the
... argument in segment2, allowing users to modify the segmentation from the default values in DNAcopy.

R> md.segs <- segment2(object=trioSetList, md=md)

The object returned by the segment2 method is an object of class RangedDataCBS.

R> head(md.segs)

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | sample

<Rle> <IRanges> <Rle> | <character>

[1] chr7 [37124, 8197116] * | NA12878

[2] chr7 [8200167, 8200467] * | NA12878

[3] chr7 [8200896, 49923859] * | NA12878

[4] chr7 [37124, 49923859] * | NA12864

[5] chr7 [50003183, 57941963] * | NA12878

[6] chr7 [50003183, 57941963] * | NA12864

4

numberProbes seg.mean

<numeric> <numeric>

[1] 1936 0.0004

[2] 2 -0.6600

[3] 11315 -0.0030

[4] 13212 -0.0156

[5] 1636 -0.0099

[6] 1632 -0.0273

seqlengths:

chr7 chr22

159138663 51304566

If the offspring copy number changes within a minimum distance segment (as determined by the segmen-
tation of the offspring copy number), the start and stop position of the minimum distance segments may
be edited. The approach currently implemented is to define a new start and stop position if a breakpoint
for the offspring segmentation occurs in the minimum distance interval. To illustrate, the following diagram
uses vertical dashes (|) to denote breakpoints:

1 ...--|--------------|--... ## minimum distance segment (before editing)

2 ...----|--------|------... ## segmenation of log R ratios for offspring

->

3 ...--|-|--------|---|--... ## after editing

In the above illustration, posterior calls are provided for the 3 segments indicated in line 3 instead of the
single segment in line 1. Two additional steps are therefore required: (1) segmentation of the offspring log
R ratios and (2) editing of the minimum distance breakpoints when appropriate. The following codechunk,
segments the log R ratios for all chromosomes in the trioSetList object. For purposes of visualization, we
also segment the parental log R ratios:

R> lrr.segs <- segment2(trioSetList, segmentParents=TRUE)

Minimum distance segments with a mean absolute value greater than 1 median absolute deviation from
zero are edited using the narrowRanges:

R> mads.md <- mad2(md, byrow=FALSE)

R> md.segs2 <- narrowRanges(md.segs, lrr.segs, thr=0.75,

mad.minimumdistance=mads.md,

fD=featureData(trioSetList))

To each range (segment) the maximum posterior probability and the posterior probability of the normal
range are computed using the function MAP.

R> gr <- MAP(object=trioSetList, ranges=md.segs2, nupdates=5)

R> show(gr)

Note the MAP can be applied to a single interval. For example,

R> MAP(trioSetList, md.segs2[1,])

GRanges with 1 range and 9 metadata columns:

seqnames ranges strand | sample

<Rle> <IRanges> <Rle> | <character>

[1] chr22 [14456412, 17074487] * | NA12864

5

numberProbes seg.mean mindist.mad exceeds.md.thr

<integer> <numeric> <numeric> <logical>

[1] 515 -0.0193 0.118608 FALSE

state argmax lik.state lik.norm

<character> <integer> <numeric> <numeric>

[1] 222 61 -5283.989 -5283.989

seqlengths:

chr7 chr22

159138663 51304566

The ratio of posterior probabilities can be used to rank genomic ranges by the evidence for a de novo
copy number alteration. Note that physically adjacent genomic ranges in a sample that are assigned the
same copy number state will be collapsed into a single range by the computeBayesFactor function.

3.2 Visualizations

To plot the log R ratios and B allele frequencies for one of the de novo deletions, we extract these low-level
summaries from the TrioSetList object into a data.frame that can be used by the xyplot function in the
lattice package.

R> denovo.range <- GRanges("chr22", IRanges(20.8e6, 21.4e6))

R> i <- subjectHits(findOverlaps(denovo.range, gr))

R> gr.denovo <- gr[i,]

R> gr.denovo <- gr.denovo[state(gr.denovo)=="221",]

R> library(lattice)

R> library(foreach)

R> trioSet <- trioSetList[[2]][, match(sampleNames(gr.denovo), sampleNames(trioSetList))]

R> mindist(trioSet) <- md[[2]][, match(sampleNames(gr.denovo), sampleNames(trioSetList)), drop=FALSE]

R> fig <- xyplotTrio(gr.denovo, trioSet, frame=500e3,

ylab="log R ratio and BAFs",

xlab="physical position (Mb)",

panel=xypanelTrio,

scales=list(x="same",

y=list(alternating=1,

at=c(-1, 0, log2(3/2), log2(4/2)),

labels=expression(-1, 0, log[2](3/2), log[2](4/2)))),

lrr.segments=lrr.segs,

md.segments=md.segs,

layout=c(1, 4),

col.hom="grey50",

col.het="grey50",

col.np="grey20",

state.cex=0.8,

cex=0.3,

ylim=c(-3, 1.5),

par.strip.text=list(lines=0.8, cex=0.6),

key=list(text=list(c(expression(log[2]("R ratios")), expression("B allele freqencies")),

col=c("black", "blue")), columns=2))

The final graphic is displayed in Figure 1.

4 Session information

R> toLatex(sessionInfo())

6

physical position (Mb)

lo
g

R
 r

at
io

 a
nd

 B
A

F
s

− 1

0
log2(3 2)log2(4 2)

20.5 21.0 21.5 22.0

● ●
●

● ●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

● ●
●
●

●●
● ●

●
●

●

●

●
●
●
● ●

●

●●

●

●
●●

●

● ●●
●●

●

●

●●● ●

●

●
●
●●

●

●

●

●
●

●

●●
●
●
●●●●●

●
●

●

● ●●●

●
●
● ●

●
●
●

●

●
●

●

●

●

●

●●
●

●
●
●

●
●
●

●

●

●
●●

●

●●

●

●●

●

●●

●●
●
●●●
●●●

●

●
●
●
●
●●●
●
●●●●

●
●
●
●●
●
●
●●●

●

●
●●

●●
●●
●●

●●
●●●●

●

●
●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●●●

●
●
●●
●

●

●

●
●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●

● ●

●●
●
●●
●

●

●

●

●
●●

●
●

●
●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

● ●
●

●

●

●

●
●●

●●

●●●
●
●
●

●

●

●
●●●
●
●

●●

● ●
●

●
●

●
●●

●
●
● ●

●
●●●

●
● ●

●

●●●●

●

●
●

●
●
●

●
●
●●●●

●
●

●
●

● ●●
●
●
●

●●

●
●●

●

● ●●●●●

state 221
chr22: md

− 1

0
log2(3 2)log2(4 2)

● ●

● ● ●

●

●

● ●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●
● ●●

●
●

●

●●
●●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●
● ● ●

●●●

●

●

●
●

●●

●

●●
●●
●●

●●

●
●●

●

● ●●
●

●●● ●●
●
●

●

●
●●●

●
●●

●

●

●

●●
●

●●
●●

●

●●

●

●

●

●●●●
●

●

● ●●
●●●●

●
●
●

●

●

●

●

●

●●
●

●

●
●●

●

●
●
●

●

●
●

●
●●●●

●

●

●●●
●●●●

●●
●●●●

●
●
●●●

●●●

●
●

●
●●

●●

●
●

●●

●●

●
●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●
●
●●
●●

●

●

●●

● ●

●

●

●

●

●
●●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●●

●●

●●●

●●

●
●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●
●

●
●●

●
●●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●
●

● ●●
●●

● ● ●● ●

●

●
●●●

●●
● ● ●

●
●

●●
●
●●

●

●

●●

●●●

●

●●

●
●●●

●

●
●●
●

●

●●●
●●

●

●
●●
●

●●

● ●●●

●

●

●

●

●

●●● ●●●● ●

●●

●●

●

●●●●

●

●

●

●

●

●

●
●
● ●

●

●

●●

●●● ●●

●

●

●

●

●●

●

●

●●●●

● ●

●

●

●●●●●

●

●

●
●

●

●

●●

●●●●●

●

●●

●

●

●

●●

●

●●

●●●●

●

●

●●●

●●

●

●●●

●●●

●●●●●●

●

●

●●●

●●

●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●●●●●

●

●●

●●

●

●

●

●●●

●

●●●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●●

●
●
●●●●

●

●●●

●

●
●

●

●●●

●●●

●●●●●

●●●

●●●●

●

●

●●●●

●

●

●●●

●●

●

●●

●●●

●

●●●

●●●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●

●

●●

●●

●

●

●●●

●●

●●

●
●

●

●●● ●

● ●

●●●●

●

●●●●

●

●
●

●

●

●●

●

●●

●●●●

●

●● ●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●●
●

●●●●●●●

●●

●●●●●●●●

●●●●

●

●

●

●●

●
●

●

●●●●● ●●●●

●●

●●●

●●

●

●● ●

●

●● ●

●●●

●

●

●

●●●

●

● ● ● ● ● ●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●●● ●● ●●

●

● ●● ●

●

● ●●

●

●●

● ●

●

●●

●●

●

●●

●

●

●● ●●●●●●

●●

●

●

● ●●

●

●●●●● ●

●

●● ●●●●

●

0

0.5

1

chr22: NA12864 (offspring)

− 1

0
log2(3 2)log2(4 2)

● ● ● ● ●

●
●

●

●

●

● ●
●

●
●

● ● ●

●

●

●

●

●

●

●●
●

●

●
●●●

●● ●
●●

●

●

●●●●

●

●

●●

● ●

●●

●

●● ●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●
●

●

● ●
●

●

●●
●●

●

●

●
●●

●
● ●

●

●●

●
●

●●
●

●
●
●
●

●

●
●

●

●

●

●●

●

●

●●

●

●●
●●

●●●

●

●
●

●

●

●

●
●
●
●
●●
●

●
●

●

●●

●
●●

●●
●

●

●
●●
●

●●

●

●
●

●

●
●

●●

●●
●

●

●
●

●●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●●

●
●
●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●●

●●

●

●

●

●

●●

●

●

●

●●
●

●
●
●

●

●

●

●
●●

●
●

●

●

●●

●
●

●

●
●

●

●●
●
●●

●

●
●●●

●

●●

●

●

●●

●

●
●●●●

●●

●

●

●

●
●

●

●● ●

●

●●

●

●

●●
●

●

●
●

●●●●
●
●●

●●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

● ●
●

●
●
●
●●

●

●●

●

●

●

●

●

●
●●

●●

●
●●

●●
●
●

●
● ●●

●●●
●●

●

●

●

●

●
●●
● ●

●●●●●●●
●
●

●
●●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●●●●
●●●

●

●

●

●

●

●
●●●

●●●

●

●

●
●

●●
●
●

●●

●

●

●
●●●

●●

●

●

●

●

●

● ●
●

●
●

●

● ●● ● ●●

●●

●●

●●

●

●
●

●
●●

●

●

●●●
●
●
●

●
●

●

●

●
●

●●
●
●

●
●●

●
●
●

●

●

●
●●
●

●
●●

●●
●

●●
●

●

●●●●

●

●
●

●●

●
●
●●

●●●

●

●
●●

●

●

●

●

●

●

● ●●

●

●

● ●

●●●●

●

●

●

●

●
●

●

●●

●●
●

●●● ●●●●●

●

●●●

●

● ●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●

●●

●●●●

●

●

●●●

●●

●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●
●●

●

●

●●

●

●●

●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●●●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●●

●●●●●●

●

●●●

●

●●

●

●●●

●●●

●●●●●

●●●

●●●●

●

●

●●●●

●

●

●●●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

● ●

●

●

●

● ●

●

●
●
●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●
●

●

●●● ●●

●

●●

●●

●●●

●

●

●

●

●●●

●●

●

●●

●●●●

●

●● ●

●

●

●

●

●

●

●

●
●●●●●

● ●

●●

●●

●

●●●

●●

●●●

●

●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●● ●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

● ● ● ●

●

●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●

●

●● ●

●

●

●

●● ●
●
● ●●

●

●●● ● ●

●

●

●●●

●●

●●●

●

●●

●●

●● ●

●

●

●

● ●●

●

●

●

●

●●

●●

●● ●

●

●

●

●

0

0.5

1

chr22: NA12873 (mother)

− 1

0
log2(3 2)log2(4 2)

● ●
●

●
● ●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●
●●●●● ● ●●

●●
●

●

●●●

●

●●

●
●●
●

●
●●

●●
●

●

●
● ●

●
●

●

●

●
●
●●●●

●

●●●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●
●

●
●
●

●
●●

● ●●

●

●
●●●
●
●●

●●

●
●

●

●●

●
●●●
●

●●

●

●

●
●

●
●
●●
●●●●

●

●●

●

●
●●●●
●●
●

●
●●

●

●
●●
●

●
●●
●

●●●●●
●●●
●●
●

●
●
●

●
●

●●●
●●●
●

●

●
●●

●●
●

●
●

●

●
●

●●

●
●
●

●

●

●
●

●●
●

●

●

●●●

●

●

●
●
●

●
●
●●●

●

●

●

●

●
●●
●

●
●
●

●

●

●●●

●●
●

●●

●

●

●●●●

●
●

●

●
●
●

●

●●●

●

●
●
●

●●
●●
●

●●●

●
●●

●
●

●●●

●

●●●●
●
●●

●

● ●●

●

●●

●

●

●●

●

●
●

●

●

●●

●
●

●

●
●
●
●●
●
●●●

●

●●
●

●

●
●
●
●

●

●

●

●●●
●●

●
●

●

●

● ●
●

●

●●
●●

●
●

●
●
●
●

●●

●

●

●
●●
●●
●
●

●

●●
●
●
●
● ●●●

●
●

●●
●

●
●●●

●

●●
●●●

●

●●
●●●

●

●
●

●
●

●
●

●●
●●

●●●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●●
●
●
●●

●

●

●●
●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●●

●

●

●
●
●●

●
●●

●
●●●●

●●
●
●

● ● ●
●

●

●●●
●

●
●
●●●

● ●

●

●●
●
●

●

●●●
●

●

●●●
●●● ●●

●
●

●
●
●
●

●
●●●●

●
●●

● ●●●●●

● ●●●

●

●

●

●

●

●●●

●

●

●● ●●

●

●●

●

●●●

● ●●●

●

●

●

●●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●●●●● ●

●

●

●

●

●

●●

●●●●●

●

●●

●

●

●

●●

●

●
●●●
●

●

●

●

●●●

●● ●

●

●

●

●●●

●

●●

●●

●●

●●●

●●

●

●

●

●

●●

●

●

●●●

●●●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●●

●

●●●

● ●

●

● ●●

●●●

●

●

●●●

●●●●●

●●●

●●●

●●●

●

●●●●●●

●

●

●●●●●●●

●

●

●

●●●
●
●

●

●●

●

●●●

●

●●
●
●●●●●

●●

●●

●

●●●

●

●

●

●●●●

●●●●

●●

●●

●

●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●
●

●

●●

● ●●

●

●●

●●

●●●●●

●

●●

●

●

●●

●

●●

●●●●

●

●● ●

●

●

●

●

●

●

●

●●
●
●

●

●

● ●●●

●●●
●

●●●●●●●

●●

●●●●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●● ●

●
●
●

●

●

●

●●●

●

●

●● ●

●

●

● ●

●

●●

●

●

●
●●

●

●

● ●

● ● ● ●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●

●

●●

●

●
●● ●● ●

●

●

●● ●●

●

●●

●

●

●

● ● ●

●

●●●

●

●●●●●

● ●

●

●●

●● ●

●

●

●

● ●●

●

●●●●●

●

●

●● ●

●

●

●

●

0

0.5

1

chr22: NA12872 (father)

log2(R ratios) B allele freqencies

Figure 1: The log R ratios (grey) and B allele frequencies (blue) for the parent-offspring trio, as well as the
minimum distance (bottom panel). The solid vertical lines in the bottom panel indicate the start and stop
positions of an inferred de novo hemizygous deletion in the offspring (state ’221’).

• R version 3.0.0 (2013-04-03), x86_64-apple-darwin10.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: Biobase 2.20.0, BiocGenerics 0.6.0, DNAcopy 1.34.0, GenomicRanges 1.12.1,
IRanges 1.18.0, MinimumDistance 1.4.0, SNPchip 2.6.0, VanillaICE 1.22.0, foreach 1.4.0,
human610quadv1bCrlmm 1.0.3, lattice 0.20-15, oligoClasses 1.22.0

• Loaded via a namespace (and not attached): BiocInstaller 1.10.0, Biostrings 2.28.0,
R.methodsS3 1.4.2, affyio 1.28.0, bit 1.1-10, codetools 0.2-8, compiler 3.0.0, ff 2.2-11, grid 3.0.0,
iterators 1.0.6, matrixStats 0.6.2, msm 1.1.4, mvtnorm 0.9-9994, splines 3.0.0, stats4 3.0.0,
survival 2.37-4, tools 3.0.0, zlibbioc 1.6.0

References

[1] Stefano Colella, Christopher Yau, Jennifer M Taylor, Ghazala Mirza, Helen Butler, Penny Clouston,
Anne S Bassett, Anneke Seller, Christopher C Holmes, and Jiannis Ragoussis. QuantiSNP: an Objective
Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping
data. Nucleic Acids Res, 35(6):2013–2025, 2007.

[2] Philippe Hupe, Nicolas Stransky, Jean-Paul Thiery, Francois Radvanyi, and Emmanuel Barillot. Analysis
of array cgh data: from signal ratio to gain and loss of dna regions. Bioinformatics, 20(18):3413–3422,
Dec 2004.

7

[3] Adam B Olshen, E. S. Venkatraman, Robert Lucito, and Michael Wigler. Circular binary segmentation
for the analysis of array-based DNA copy number data. Biostatistics, 5(4):557–72, Oct 2004.

[4] Daniel A Peiffer, Jennie M Le, Frank J Steemers, Weihua Chang, Tony Jenniges, Francisco Garcia, Kirt
Haden, Jiangzhen Li, Chad A Shaw, John Belmont, Sau Wai Cheung, Richard M Shen, David L Barker,
and Kevin L Gunderson. High-resolution genomic profiling of chromosomal aberrations using infinium
whole-genome genotyping. Genome Res, 16(9):1136–1148, Sep 2006.

[5] Robert B Scharpf, Giovanni Parmigiani, Jonathan Pevsner, and Ingo Ruczinski. Hidden Markov models
for the assessment of chromosomal alterations using high-throughput SNP arrays. Annals of Applied
Statistics, 2(2):687–713, 2008.

[6] E. S. Venkatraman and Adam B Olshen. A faster circular binary segmentation algorithm for the analysis
of array cgh data. Bioinformatics, 23(6):657–663, Mar 2007.

[7] Kai Wang, Zhen Chen, Mahlet G Tadesse, Joseph Glessner, Struan F A Grant, Hakon Hakonarson, Maja
Bucan, and Mingyao Li. Modeling genetic inheritance of copy number variations. Nucleic Acids Res,
36(21):e138, Dec 2008.

8

