
Package ‘GenomicRanges’
March 26, 2013

Title Representation and manipulation of genomic intervals

Description The ability to efficiently store genomic annotations and
alignments is playing a central role when it comes to analyze
high-throughput sequencing data (a.k.a. NGS data). The package
defines general purpose containers for storing genomic intervals
as well as more specialized containers for storing alignments against a reference genome.

Version 1.10.7

Author P. Aboyoun, H. Pages and M. Lawrence

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

biocViews Genetics, Sequencing, HighThroughputSequencing, Annotation

Depends R (>= 2.10), methods, BiocGenerics (>= 0.1.12), IRanges (>= 1.15.42)

Imports methods, utils, BiocGenerics, IRanges

LinkingTo IRanges

Suggests Biostrings (>= 2.25.3), Rsamtools (>= 1.9.21), BSgenome,rtracklayer, GenomicFea-
tures, VariantAnnotation, edgeR, DESeq,DEXSeq, EatonEtAlChIPseq (>= 0.0.3), lee-
BamViews, pasilla,pasillaBamSubset, org.Sc.sgd.db,TxDb.Dmelanogaster.UCSC.dm3.ensGene,BSgenome.Scerevisiae.UCSC.sacCer2,BSgenome.Dmelanogaster.UCSC.dm3, RUnit, di-
gest

License Artistic-2.0

Collate utils.R phicoef.R cigar-utils.R transcript-utils.R
constraint.R makeSeqnameIds.R seqinfo.R strand-utils.R
Seqinfo-class.R GenomicRanges-class.R GRanges-class.R
GenomicRanges-comparison.R GenomicRangesList-class.R
GRangesList-class.R GappedAlignments-class.R
GappedAlignmentPairs-class.R SummarizedExperiment-class.R
SummarizedExperiment-rowData-methods.R countGenomicOverlaps.R
seqlevels-utils.R resolveHits-methods.R summarizeOverlaps.R
RangesMapping-methods.R RangedData-methods.R
intra-range-methods.R inter-range-methods.R setops-methods.R
findOverlaps-methods.R nearest-methods.R encodeOverlaps-methods.R coverage-methods.R
findSpliceOverlaps-methods.R findSpliceOverlaps-utils.R
test_GenomicRanges_package.R zzz.R

1

2 cigar-utils

R topics documented:
cigar-utils . 2
Constraints . 7
countGenomicOverlaps . 12
coverage-methods . 15
encodeOverlaps-methods . 17
findOverlaps-methods . 20
findSpliceOverlaps . 23
GappedAlignmentPairs-class . 25
GappedAlignments-class . 29
GenomicRanges-comparison . 35
GenomicRangesList-class . 36
GRanges-class . 36
GRangesList-class . 41
inter-range-methods . 46
intra-range-methods . 48
map-methods . 49
nearest-methods . 51
phicoef . 53
seqinfo . 54
Seqinfo-class . 56
setops-methods . 59
strand-utils . 62
SummarizedExperiment-class . 63
summarizeOverlaps . 68
utils . 72

Index 75

cigar-utils CIGAR utility functions

Description

Utility functions for low-level CIGAR manipulation.

Usage

cigarOpTable(cigar)

cigarToQWidth(cigar, before.hard.clipping=FALSE)
cigarToWidth(cigar)

cigarQNarrow(cigar, start=NA, end=NA, width=NA)
cigarNarrow(cigar, start=NA, end=NA, width=NA)

cigarToIRanges(cigar,
drop.D.ranges=FALSE, drop.empty.ranges=FALSE,
reduce.ranges=TRUE)

cigarToIRangesListByAlignment(cigar, pos, flag=NULL,

cigar-utils 3

drop.D.ranges=FALSE, drop.empty.ranges=FALSE,
reduce.ranges=TRUE)

cigarToIRangesListByRName(cigar, rname, pos, flag=NULL,
drop.D.ranges=FALSE, drop.empty.ranges=FALSE,
reduce.ranges=TRUE)

queryLoc2refLoc(qloc, cigar, pos=1)
queryLocs2refLocs(qlocs, cigar, pos, flag=NULL)

splitCigar(cigar)
cigarToRleList(cigar)
cigarToCigarTable(cigar)
summarizeCigarTable(x)

Arguments

cigar A character vector/factor containing the extended CIGAR string for each read.
For cigarToIRanges and queryLoc2refLoc, this must be a single string (i.e. a
character vector/factor of length 1).

before.hard.clipping
Should the returned widths be the lengths of the reads before or after "hard clip-
ping"? Hard clipping of a read is encoded with an H in the CIGAR. If NO
(before.hard.clipping=FALSE, the default), then the returned widths are the
lengths of the query sequences stored in the SAM/BAM file. If YES (before.hard.clipping=TRUE),
then the returned widths are the lengths of the original reads.

start,end,width Vectors of integers. NAs and negative values are accepted and "solved" accord-
ing to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details).

drop.D.ranges Should the ranges corresponding to a deletion from the reference (encoded with
a D in the CIGAR) be dropped? By default we keep them to be consistent with
the pileup tool from SAMtools. Note that, when drop.D.ranges is TRUE, then
Ds and Ns in the CIGAR are equivalent.

drop.empty.ranges
Should empty ranges be dropped?

reduce.ranges Should adjacent ranges coming from the same cigar be merged or not? Using
TRUE (the default) can significantly reduce the size of the returned object.

pos An integer vector containing the 1-based leftmost position/coordinate for each
(eventually clipped) read sequence.

flag NULL or an integer vector containing the SAM flag for each read. According
to the SAM specs, flag bit 0x004 has the following meaning: when bit 0x004
is ON then "the query sequence itself is unmapped". When flag is provided,
cigarToIRangesListByAlignment and cigarToIRangesListByRName ignore
these reads.

rname A character vector/factor containing the name of the reference sequence asso-
ciated with each read (i.e. the name of the sequence the read has been aligned
to).

qloc An integer vector containing "query-based locations" i.e. 1-based locations rel-
ative to the query sequence stored in the SAM/BAM file.

4 cigar-utils

qlocs A list of the same length as cigar where each element is an integer vector con-
taining "query-based locations" i.e. 1-based locations relative to the correspond-
ing query sequence stored in the SAM/BAM file.

x A DataFrame produced by cigarToCigarTable.

Value

For cigarOpTable: An integer matrix with number of rows equal to the length of cigar and seven
columns, one for each extended CIGAR operation.

For cigarToQWidth: An integer vector of the same length as cigar where each element is the width
of the query (i.e. the length of the query sequence) as inferred from the corresponding element in
cigar (NAs in cigar will produce NAs in the returned vector).

For cigarQNarrow and cigarNarrow: A character vector of the same length as cigar containing
the narrowed cigars. In addition the vector has an "rshift" attribute which is an integer vector of
the same length as cigar. It contains the values that would need to be added to the POS field of a
SAM/BAM file as a consequence of this cigar narrowing.

For cigarToWidth: An integer vector of the same length as cigar where each element is the width
of the alignment (i.e. its total length on the reference, gaps included) as inferred from the corre-
sponding element in cigar (NAs in cigar will produce NAs in the returned vector).

For cigarToIRanges: An IRanges object describing where the bases in the read align with respect
to an imaginary reference sequence assuming that the leftmost aligned base is at position 1 in the
reference (i.e. at the first position).

For cigarToIRangesListByAlignment: A CompressedIRangesList object of the same length as
cigar.

For cigarToIRangesListByRName: A named IRangesList object with one element (IRanges) per
unique reference sequence.

For queryLoc2refLoc: An integer vector of the same length as qloc containing the "reference-
based locations" (i.e. the 1-based locations relative to the reference sequence) corresponding to the
"query-based locations" passed in qloc.

For queryLocs2refLocs: A list of the same length as qlocs where each element is an integer vector
containing the "reference-based locations" corresponding to the "query-based locations" passed in
the corresponding element in qlocs.

For splitCigar: A list of the same length as cigar where each element is itself a list with 2 elements
of the same lengths, the 1st one being a raw vector containing the CIGAR operations and the 2nd
one being an integer vector containing the lengths of the CIGAR operations.

For cigarToRleList: A CompressedRleList object.

For cigarToCigarTable: A frequency table of the CIGARs in the form of a DataFrame with two
columns: cigar (a CompressedRleList) and count (an integer).

For summarizeCigarTable: A list with two elements: AlignedCharacters (integer) and Indels
(matrix)

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

http://samtools.sourceforge.net/

cigar-utils 5

See Also

IRanges-class, IRangesList-class, coverage, RleList-class

Examples

A. SIMPLE EXAMPLES

With a cigar vector of length 1:
cigar1 <- "3H15M55N4M2I6M2D5M6S"

cigarToQWidth()/cigarToWidth():
cigarToQWidth(cigar1)
cigarToQWidth(cigar1, before.hard.clipping=TRUE)
cigarToWidth(cigar1)

cigarQNarrow():
cigarQNarrow(cigar1, start=4, end=-3)
cigarQNarrow(cigar1, start=10)
cigarQNarrow(cigar1, start=19)
cigarQNarrow(cigar1, start=24)

cigarNarrow():
cigarNarrow(cigar1) # only drops the soft/hard clipping
cigarNarrow(cigar1, start=10)
cigarNarrow(cigar1, start=15)
cigarNarrow(cigar1, start=15, width=57)
cigarNarrow(cigar1, start=16)
#cigarNarrow(cigar1, start=16, width=55) # ERROR! (empty cigar)
cigarNarrow(cigar1, start=71)
cigarNarrow(cigar1, start=72)
cigarNarrow(cigar1, start=75)

cigarToIRanges():
cigarToIRanges(cigar1)
cigarToIRanges(cigar1, reduce.ranges=FALSE)
cigarToIRanges(cigar1, drop.D.ranges=TRUE)

With a cigar vector of length 4:
cigar2 <- c("40M", cigar1, "2S10M2000N15M", "3H25M5H")
pos <- c(1, 1001, 1, 351)
cigarToIRangesListByAlignment(cigar2, pos)
rname <- c("chr6", "chr6", "chr2", "chr6")
cigarToIRangesListByRName(cigar2, rname, pos)

cigarOpTable(cigar2)

splitCigar(cigar2)
cigarToRleList(cigar2)

cigarToCigarTable(cigar2)
cigarToCigarTable(cigar2)[,"cigar"]
cigarToCigarTable(cigar2)[,"count"]

summarizeCigarTable(cigarToCigarTable(cigar2))

6 cigar-utils

B. PERFORMANCE

if (interactive()) {
We simulate 20 millions aligned reads, all 40-mers. 95% of them
align with no indels. 5% align with a big deletion in the
reference. In the context of an RNAseq experiment, those 5% would
be suspected to be "junction reads".
set.seed(123)
nreads <- 20000000L
njunctionreads <- nreads * 5L / 100L
cigar3 <- character(nreads)
cigar3[] <- "40M"
junctioncigars <- paste(

paste(10:30, "M", sep=""),
paste(sample(80:8000, njunctionreads, replace=TRUE), "N", sep=""),
paste(30:10, "M", sep=""), sep="")

cigar3[sample(nreads, njunctionreads)] <- junctioncigars
some_fake_rnames <- paste("chr", c(1:6, "X"), sep="")
rname <- sample(some_fake_rnames, nreads, replace=TRUE)
pos <- sample(80000000L, nreads, replace=TRUE)

The following takes < 5 sec. to complete:
system.time(rglist <- cigarToIRangesListByAlignment(cigar3, pos))

The following takes < 10 sec. to complete:
system.time(irl <- cigarToIRangesListByRName(cigar3, rname, pos))

Internally, cigarToIRangesListByRName() turns ’rname’ into a factor
before starting the calculation. Hence it will run sligthly
faster if ’rname’ is already a factor.
rname2 <- as.factor(rname)
system.time(irl2 <- cigarToIRangesListByRName(cigar3, rname2, pos))

The sizes of the resulting objects are about 240M and 160M,
respectively:
object.size(rglist)
object.size(irl)

}

C. COMPUTE THE COVERAGE OF THE READS STORED IN A BAM FILE

The information stored in a BAM file can be used to compute the
"coverage" of the mapped reads i.e. the number of reads that hit any
given position in the reference genome.
The following function takes the path to a BAM file and returns an
object representing the coverage of the mapped reads that are stored
in the file. The returned object is an RleList object named with the
names of the reference sequences that actually receive some coverage.

extractCoverageFromBAM <- function(file)
{
This ScanBamParam object allows us to load only the necessary
information from the file.

Constraints 7

param <- ScanBamParam(flag=scanBamFlag(isUnmappedQuery=FALSE,
isDuplicate=FALSE),

what=c("rname", "pos", "cigar"))
bam <- scanBam(file, param=param)[[1]]
Note that unmapped reads and reads that are PCR/optical duplicates
have already been filtered out by using the ScanBamParam object above.
irl <- cigarToIRangesListByRName(bam$cigar, bam$rname, bam$pos)
irl <- irl[elementLengths(irl) != 0] # drop empty elements
coverage(irl)

}

library(Rsamtools)
f1 <- system.file("extdata", "ex1.bam", package="Rsamtools")
extractCoverageFromBAM(f1)

Constraints Enforcing constraints thru Constraint objects

Description

Attaching a Constraint object to an object of class A (the "constrained" object) is meant to be a
convenient/reusable/extensible way to enforce a particular set of constraints on particular instances
of A.

THIS IS AN EXPERIMENTAL FEATURE AND STILL VERY MUCH A WORK-IN-PROGRESS!

Details

For the developper, using constraints is an alternative to the more traditional approach that consists
in creating subclasses of A and implementing specific validity methods for each of them. However,
using constraints offers the following advantages over the traditional approach:

• The traditional approach often tends to lead to a proliferation of subclasses of A.

• Constraints can easily be re-used across different classes without the need to create any new
class.

• Constraints can easily be combined.

All constraints are implemented as concrete subclasses of the Constraint class, which is a virtual
class with no slots. Like the Constraint virtual class itself, concrete Constraint subclasses cannot
have slots.

Here are the 7 steps typically involved in the process of putting constraints on objects of class A:

1. Add a slot named constraint to the definition of class A. The type of this slot must be Con-
straintORNULL. Note that any subclass of A will inherit this slot.

2. Implements the constraint() accessors (getter and setter) for objects of class A. This is done
by implementing the "constraint" method (getter) and replacement method (setter) for ob-
jects of class A (see the examples below). As a convenience to the user, the setter should also
accept the name of a constraint (i.e. the name of its class) in addition to an instance of that
class. Note that those accessors will work on instances of any subclass of A.

3. Modify the validity method for class A so it also returns the result of checkConstraint(x, constraint(x))
(append this result to the result returned by the validity method).

8 Constraints

4. Testing: Create x, an instance of class A (or subclass of A). By default there is no constraint
on it (constraint(x) is NULL). validObject(x) should return TRUE.

5. Create a new constraint (MyConstraint) by extending the Constraint class, typically with
setClass("MyConstraint", contains="Constraint"). This constraint is not enforcing any-
thing yet so you could put it on x (with constraint(x) <- "MyConstraint"), but not much
would happen. In order to actually enforce something, a "checkConstraint" method for sig-
nature c(x="A", constraint="MyConstraint") needs to be implemented.

6. Implement a "checkConstraint" method for signature c(x="A", constraint="MyConstraint").
Like validity methods, "checkConstraint" methods must return NULL or a character vector
describing the problems found. Like validity methods, they should never fail (i.e. they should
never raise an error). Note that, alternatively, an existing constraint (e.g. SomeConstraint) can
be adapted to work on objects of class A by just defining a new "checkConstraint" method
for signature c(x="A", constraint="SomeConstraint"). Also, stricter constraints can be
built on top of existing constraints by extending one or more existing constraints (see the
examples below).

7. Testing: Try constraint(x) <- "MyConstraint". It will or will not work depending on
whether x satisfies the constraint or not. In the former case, trying to modify x in a way that
breaks the constraint on it will also raise an error.

Note

WARNING: This note is not true anymore as the constraint slot has been temporarily removed
from GenomicRanges objects (starting with package GenomicRanges >= 1.7.9).

Currently, only GenomicRanges objects can be constrained, that is:

• they have a constraint slot;

• they have constraint() accessors (getter and setter) for this slot;

• their validity method has been modified so it also returns the result of checkConstraint(x, constraint(x)).

More classes in the GenomicRanges and IRanges packages will support constraints in the near
future.

Author(s)

H. Pages

See Also

setClass, is, setMethod, showMethods, validObject, GenomicRanges-class

Examples

The examples below show how to define and set constraints on
GenomicRanges objects. Note that this is how the constraint()
setter is defined for GenomicRanges objects:
#setReplaceMethod("constraint", "GenomicRanges",
function(x, value)
{
if (isSingleString(value))
value <- new(value)
if (!is(value, "ConstraintORNULL"))
stop("the supplied ’constraint’ must be a ",
"Constraint object, a single string, or NULL")

Constraints 9

x@constraint <- value
validObject(x)
x
}
#)

#selectMethod("constraint", "GenomicRanges") # the getter
#selectMethod("constraint<-", "GenomicRanges") # the setter

We’ll use the GRanges instance ’gr’ created in the GRanges examples
to test our constraints:
example(GRanges, echo=FALSE)
gr
#constraint(gr)

EXAMPLE 1: The HasRangeTypeCol constraint.

The HasRangeTypeCol constraint checks that the constrained object
has a unique "rangeType" metadata column and that this column
is a ’factor’ Rle with no NAs and with the following levels
(in this order): gene, transcript, exon, cds, 5utr, 3utr.

setClass("HasRangeTypeCol", contains="Constraint")

Like validity methods, "checkConstraint" methods must return NULL or
a character vector describing the problems found. They should never
fail i.e. they should never raise an error.
setMethod("checkConstraint", c("GenomicRanges", "HasRangeTypeCol"),

function(x, constraint, verbose=FALSE)
{

x_mcols <- mcols(x)
idx <- match("rangeType", colnames(x_mcols))
if (length(idx) != 1L || is.na(idx)) {

msg <- c("’mcols(x)’ must have exactly 1 column ",
"named \"rangeType\"")

return(paste(msg, collapse=""))
}
rangeType <- x_mcols[[idx]]
.LEVELS <- c("gene", "transcript", "exon", "cds", "5utr", "3utr")
if (!is(rangeType, "Rle") ||

IRanges:::anyMissing(runValue(rangeType)) ||
!identical(levels(rangeType), .LEVELS))

{
msg <- c("’mcols(x)$rangeType’ must be a ",

"’factor’ Rle with no NAs and with levels: ",
paste(.LEVELS, collapse=", "))

return(paste(msg, collapse=""))
}
NULL

}
)

#\dontrun{
#constraint(gr) <- "HasRangeTypeCol" # will fail
#}
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

10 Constraints

levels <- c("gene", "transcript", "exon", "cds", "5utr", "3utr")
rangeType <- Rle(factor(c("cds", "gene"), levels=levels), c(8, 2))
mcols(gr)$rangeType <- rangeType
#constraint(gr) <- "HasRangeTypeCol" # OK
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

Use is() to check whether the object has a given constraint or not:
#is(constraint(gr), "HasRangeTypeCol") # TRUE
#\dontrun{
#mcols(gr)$rangeType[3] <- NA # will fail
#}
mcols(gr)$rangeType[3] <- NA
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

EXAMPLE 2: The GeneRanges constraint.

The GeneRanges constraint is defined on top of the HasRangeTypeCol
constraint. It checks that all the ranges in the object are of type
"gene".

setClass("GeneRanges", contains="HasRangeTypeCol")

The checkConstraint() generic will check the HasRangeTypeCol constraint
first, and, only if it’s statisfied, it will then check the GeneRanges
constraint.
setMethod("checkConstraint", c("GenomicRanges", "GeneRanges"),

function(x, constraint, verbose=FALSE)
{

rangeType <- mcols(x)$rangeType
if (!all(rangeType == "gene")) {

msg <- c("all elements in ’mcols(x)$rangeType’ ",
"must be equal to \"gene\"")

return(paste(msg, collapse=""))
}
NULL

}
)

#\dontrun{
#constraint(gr) <- "GeneRanges" # will fail
#}
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

mcols(gr)$rangeType[] <- "gene"
This replace the previous constraint (HasRangeTypeCol):
#constraint(gr) <- "GeneRanges" # OK
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "GeneRanges") # TRUE
However, ’gr’ still indirectly has the HasRangeTypeCol constraint
(because the GeneRanges constraint extends the HasRangeTypeCol
constraint):
#is(constraint(gr), "HasRangeTypeCol") # TRUE
#\dontrun{
#mcols(gr)$rangeType[] <- "exon" # will fail

Constraints 11

#}
mcols(gr)$rangeType[] <- "exon"
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

EXAMPLE 3: The HasGCCol constraint.

The HasGCCol constraint checks that the constrained object has a
unique "GC" metadata column, that this column is of type numeric,
with no NAs, and that all the values in that column are >= 0 and <= 1.

setClass("HasGCCol", contains="Constraint")

setMethod("checkConstraint", c("GenomicRanges", "HasGCCol"),
function(x, constraint, verbose=FALSE)
{

x_mcols <- mcols(x)
idx <- match("GC", colnames(x_mcols))
if (length(idx) != 1L || is.na(idx)) {

msg <- c("’mcols(x)’ must have exactly ",
"one column named \"GC\"")

return(paste(msg, collapse=""))
}
GC <- x_mcols[[idx]]
if (!is.numeric(GC) ||

IRanges:::anyMissing(GC) ||
any(GC < 0) || any(GC > 1))

{
msg <- c("’mcols(x)$GC’ must be a numeric vector ",

"with no NAs and with values between 0 and 1")
return(paste(msg, collapse=""))

}
NULL

}
)

This replace the previous constraint (GeneRanges):
#constraint(gr) <- "HasGCCol" # OK
checkConstraint(gr, new("HasGCCol")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HasGCCol") # TRUE
#is(constraint(gr), "GeneRanges") # FALSE
#is(constraint(gr), "HasRangeTypeCol") # FALSE

EXAMPLE 4: The HighGCRanges constraint.

The HighGCRanges constraint is defined on top of the HasGCCol
constraint. It checks that all the ranges in the object have a GC
content >= 0.5.

setClass("HighGCRanges", contains="HasGCCol")

The checkConstraint() generic will check the HasGCCol constraint
first, and, if it’s statisfied, it will then check the HighGCRanges
constraint.
setMethod("checkConstraint", c("GenomicRanges", "HighGCRanges"),

12 countGenomicOverlaps

function(x, constraint, verbose=FALSE)
{

GC <- mcols(x)$GC
if (!all(GC >= 0.5)) {

msg <- c("all elements in ’mcols(x)$GC’ ",
"must be >= 0.5")

return(paste(msg, collapse=""))
}
NULL

}
)

#\dontrun{
#constraint(gr) <- "HighGCRanges" # will fail
#}
checkConstraint(gr, new("HighGCRanges")) # with GenomicRanges >= 1.7.9
mcols(gr)$GC[6:10] <- 0.5
#constraint(gr) <- "HighGCRanges" # OK
checkConstraint(gr, new("HighGCRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HighGCRanges") # TRUE
#is(constraint(gr), "HasGCCol") # TRUE

EXAMPLE 5: The HighGCGeneRanges constraint.

The HighGCGeneRanges constraint is the combination (AND) of the
GeneRanges and HighGCRanges constraints.

setClass("HighGCGeneRanges", contains=c("GeneRanges", "HighGCRanges"))

No need to define a method for this constraint: the checkConstraint()
generic will automatically check the GeneRanges and HighGCRanges
constraints.

#constraint(gr) <- "HighGCGeneRanges" # OK
checkConstraint(gr, new("HighGCGeneRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HighGCGeneRanges") # TRUE
#is(constraint(gr), "HighGCRanges") # TRUE
#is(constraint(gr), "HasGCCol") # TRUE
#is(constraint(gr), "GeneRanges") # TRUE
#is(constraint(gr), "HasRangeTypeCol") # TRUE

See how all the individual constraints are checked (from less
specific to more specific constraints):
#checkConstraint(gr, constraint(gr), verbose=TRUE)
checkConstraint(gr, new("HighGCGeneRanges"), verbose=TRUE) # with

GenomicRanges
>= 1.7.9

See all the "checkConstraint" methods:
showMethods("checkConstraint")

countGenomicOverlaps Count Read Hits in Genomic Features

countGenomicOverlaps 13

Description

Count read hits per exon or transcript and resolve multi-hit reads.

WARNING: countGenomicOverlaps is now defunct. Please use summarizeOverlaps instead.

Usage

countGenomicOverlaps(query, subject,
type = c("any", "start", "end", "within", "equal"),
resolution = c("none", "divide", "uniqueDisjoint"),
ignore.strand = FALSE, splitreads = TRUE, ...)

Arguments

query A GRangesList, or a GRanges of genomic features. These are the annotations
that define the genomic regions and will often be the result of calling "exonsBy"
or "transcriptsBy" on a TranscriptDb object. If a GRangesList is provided, each
top level of the list represents a "super" such as a gene and each row is a "sub"
such as an exon or transcript. When query is a GRanges all rows are considered
to be of the same level (e.g., all genes, all exons or all transcripts).

subject A GRangesList, GRanges, or GappedAlignments representing the data (e.g.,
reads).
List structures as the subject are used to represent reads with multiple parts (i.e.,
gaps in the CIGAR). When a GappedAlignments is provided it is coerced to a
GRangesList object. If any of the reads in the GappedAlignments have gaps, the
corresponding GRangesList will have multiple elements for that top level list.
When subject is a GRanges, it is assumed that all reads are simple and do not
have multiple parts.

type See findOverlaps in the IRanges package for a description of this argument.

resolution A character(1) string of "none", "divide", or "uniqueDisjoint". These rule sets
are used to distribute read hits when multiple queries are hit by the same subject.

• "none" : No conflict resolution is performed. All subjects that hit more than
1 query are dropped.

• "divide" : The hit from a single subject is divided equally among all queries
that were hit. If a subject hit 4 queries each query is assigned 1/4 of a hit.

• "uniqueDisjoint" : Queries hit by a common subject are partitioned into
disjoint intervals. Any regions that are shared between the queries are
discarded. If the read overlaps one of these remaining unique disjoint re-
gions the hit is assigned to that feature. If the read overlaps both or none
of the regions, no hit is assigned. Therefore, unlike the divide option,
uniqueDisjoint does not resolve multi-hit conflict in all situations.

ignore.strand A logical value indicating if strand should be considered when matching.

splitreads A logical value indicating if split reads should be included.

... Additional arguments, perhaps used by methods defined on this generic.

Details

The countGenomicOverlaps methods use the findOverlaps function in conjunction with a resolu-
tion method to identify overlaps and resolve subjects (reads) that match multiple queries (annota-
tion regions). The usual type argument of findOverlaps is used to specify the type of overlap. The

14 countGenomicOverlaps

resolution argument is used to select a method to resolve the conflict when a subject hits more than
1 query. Here the term ‘hit’ means an overlap identified by findOverlaps.

The primary difference in the handling of split reads vs simple reads (i.e., no gap in the CIGAR) is
the portion of the read hit each split read fragment has to contribute. All reads, whether simple or
split, have an overall value of 1 to contribute to a query they hit. In the case of the split reads, this
value is further divided by the number of fragments in the read. For example, if a split read has 3
fragments (i.e., two gaps in the CIGAR) each fragment has a value of 1/3 to contribute to the query
they hit. As with the simple reads, depending upon the resolution chosen the value may be divided,
fully assigned or discarded.

More detailed examples can be found in the countGenomicOverlaps vignette.

Value

A vector of counts

Author(s)

Valerie Obenchain and Martin Morgan

See Also

summarizeOverlaps

Examples

Not run:
rng1 <- function(s, w)
GRanges(seq="chr1", IRanges(s, width=w), strand="+")

rng2 <- function(s, w)
GRanges(seq="chr2", IRanges(s, width=w), strand="+")

query <- GRangesList(A=rng1(1000, 500),
B=rng2(2000, 900),
C=rng1(c(3000, 3600), c(500, 300)),
D=rng2(c(7000, 7500), c(600, 300)),
E1=rng1(4000, 500), E2=rng1(c(4300, 4500), c(400, 400)),
F=rng2(3000, 500),
G=rng1(c(5000, 5600), c(500, 300)),
H1=rng1(6000, 500), H2=rng1(6600, 400))

subj <- GRangesList(a=rng1(1400, 500),
b=rng2(2700, 100),
c=rng1(3400, 300),
d=rng2(7100, 600),
e=rng1(4200, 500),
f=rng2(c(3100, 3300), 50),
g=rng1(c(5400, 5600), 50),
h=rng1(c(6400, 6600), 50))

Overlap type = "any"
none <- countGenomicOverlaps(query, subj,

type="any", resolution="none")
divide <- countGenomicOverlaps(query, subj,

type="any", resolution="divide")

coverage-methods 15

uniqueDisjoint <- countGenomicOverlaps(query, subj, type="any",
resolution="uniqueDisjoint")

data.frame(none = none,
divide = divide,
uniqDisj = uniqueDisjoint)

Split read with 4 fragments :
splitreads <- GRangesList(c(rng1(c(3000, 3200, 4000), 100), rng1(5400, 300)))
Unlist both the splitreads and the query to see
- read fragments 1 and 2 both hit query 3
- read fragment 3 hits query 7
- read fragment 4 hits query 11 and 12
findOverlaps(unlist(query), unlist(splitreads))

Use countGenomicOverlaps to avoid double counting.
Because this read has 4 parts each part contributes a count of 1/4.
When resolution="none" only reads that hit a single region are counted.
split_none <- countGenomicOverlaps(query, splitreads, type="any",

resolution="none")
When resolution="divide" all reads are counted by dividing their count
evenly between the regions they hit. Region 3 of the query was hit
by two reads each contributing a count of 1/4. Region 7 was hit
by one read contributing a count of 1/4. Regions 11 and 12 were both
hit by the same read resulting in having to share (i.e., "divide") the
single 1/4 hit read 4 had to contribute.
split_divide <- countGenomicOverlaps(query, splitreads,

type="any", resolution="divide")

data.frame(none = split_none,
divide = split_divide)

End(Not run)

coverage-methods Coverage of a GRanges, GRangesList, GappedAlignments, or
GappedAlignmentPairs object

Description

coverage methods for GRanges, GRangesList, GappedAlignments, and GappedAlignmentPairs ob-
jects.

Usage

S4 method for signature ’GenomicRanges’
coverage(x, shift=0L, width=NULL, weight=1L, ...)
S4 method for signature ’GappedAlignments’
coverage(x, shift=0L, width=NULL,

weight=1L, drop.D.ranges=FALSE, ...)
S4 method for signature ’GappedAlignmentPairs’
coverage(x, shift=0L, width=NULL,

weight=1L, drop.D.ranges=FALSE, ...)

16 coverage-methods

Arguments

x A GRanges, GRangesList, GappedAlignments, or GappedAlignmentPairs ob-
ject.

shift, width, weight, ...
See coverage in the IRanges package for a description of these optional argu-
ments.

drop.D.ranges Whether the coverage calculation should ignore ranges corresponding to D (dele-
tion) in the CIGAR string.

Details

Here is how optional arguments shift, width and weight are handled when x is a GRanges object:

• shift, weight: can be either a numeric vector (integers) or a list. If a list, then it should be
named by the sequence levels in x (i.e. by the names of the underlying sequences), and its el-
ements are passed into the coverage method for IRanges objects. If a numeric vector, then it is
first recycled to the length of x, then turned into a list with split(shift, as.factor(seqnames(x))),
and finally the elements of this list are passed into the coverage method for IRanges objects.
Finally, if x is a GRanges object, then weight can also be a single string naming a metadata
column to be used as the weights.

• width: can be either NULL or a numeric vector. If a numeric vector, then it should be named
by the sequence levels in x. If NULL (the default), then it is replaced with seqlengths(x). Like
for shift and weight, its elements are passed into the coverage method for IRanges objects (if
the element is NA then NULL is passed instead).

When x is a GRangesList object, coverage(x, ...) is equivalent to coverage(unlist(x), ...).

When x is a GappedAlignments or GappedAlignmentPairs object, coverage(x, ...) is equivalent to
coverage(as(x, "GRangesList"), ...).

Value

Returns a named RleList object with one element (’integer’ Rle) per underlying sequence in x
representing how many times each position in the sequence is covered by the intervals in x.

Author(s)

P. Aboyoun and H. Pages

See Also

• coverage.

• RleList-class.

• GRanges-class.

• GRangesList-class.

• GappedAlignments-class.

• GappedAlignmentPairs-class.

encodeOverlaps-methods 17

Examples

Coverage of a GRanges object:
gr <- GRanges(

seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

cvg <- coverage(gr)
pcvg <- coverage(gr[strand(gr) == "+"])
mcvg <- coverage(gr[strand(gr) == "-"])
scvg <- coverage(gr[strand(gr) == "*"])
stopifnot(identical(pcvg + mcvg + scvg, cvg))

Coverage of a GRangesList object:
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6),
strand = "+")

gr2 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(7,13), width=3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
stopifnot(identical(coverage(grl), coverage(unlist(grl))))

Coverage of a GappedAlignments or GappedAlignmentPairs object:
library(Rsamtools) # because file ex1.bam is in this package
ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(ex1_file)
stopifnot(identical(coverage(galn), coverage(as(galn, "GRangesList"))))
galp <- readGappedAlignmentPairs(ex1_file)
stopifnot(identical(coverage(galp), coverage(as(galp, "GRangesList"))))

encodeOverlaps-methods
encodeOverlaps method for GRangesList objects, and related utilities

Description

encodeOverlaps method for GRangesList, and related utilities.

Usage

S4 method for signature ’GRangesList,GRangesList’
encodeOverlaps(query, subject, hits=NULL,

flip.query.if.wrong.strand=FALSE)

Low-level utils:

flipQuery(x, i)

selectEncodingWithCompatibleStrand(ovencA, ovencB,

18 encodeOverlaps-methods

query.strand, subject.strand, hits=NULL)

isCompatibleWithSplicing(x)
isCompatibleWithSkippedExons(x, max.skipped.exons=NA)

extractSteppedExonRanks(x, for.query.right.end=FALSE)
extractSpannedExonRanks(x, for.query.right.end=FALSE)
extractSkippedExonRanks(x, for.query.right.end=FALSE)

extractQueryStartInTranscript(query, subject, hits=NULL, ovenc=NULL,
flip.query.if.wrong.strand=FALSE,
for.query.right.end=FALSE)

High-level convenience wrappers:

findCompatibleOverlaps(query, subject)
countCompatibleOverlaps(query, subject)

Arguments

x For flipQuery: a GRangesList object.
For isCompatibleWithSplicing, isCompatibleWithSkippedExons, extractSteppedExonRanks,
extractSpannedExonRanks, and extractSkippedExonRanks: an OverlapEn-
codings object, a factor or a character vector.

i Subscript specifying the elements in x to flip. If missing, all the elements are
flipped.

ovencA, ovencB, ovenc
OverlapEncodings objects.

query, subject GRangesList objects except for findCompatibleOverlaps and countCompatibleOverlaps
where query must be a GappedAlignments or GappedAlignmentPairs object.

hits A Hits object. See ?‘encodeOverlaps‘ for a description of how a supplied Hits
object is handled.

flip.query.if.wrong.strand
See the "Overlap encodings" vignette in the GenomicRanges package.

query.strand, subject.strand
Vector-like objects containing the strand of the query and subject, respectively.

max.skipped.exons
Not supported yet. If NA (the default), the number of skipped exons must be 1
or more (there is no max).

for.query.right.end
If TRUE, then the information reported in the output is for the right ends of the
paired-end reads. Using for.query.right.end=TRUE with single-end reads is
an error.

Details

In the context of an RNA-seq experiment, encoding the overlaps between 2 GRangesList objects,
one containing the reads (the query), and one containing the transcripts (the subject), can be used for
detecting hits between reads and transcripts that are compatible with the splicing of the transcript.

The topic of working with overlap encodings is covered in details in the "Overlap encodings" vi-
gnette in the GenomicRanges package.

encodeOverlaps-methods 19

Author(s)

H. Pages

See Also

• The "Overlap encodings" vignette in the GenomicRanges package.

• The findOverlaps generic function defined in the IRanges package.

• The OverlapEncodings class defined in the IRanges package.

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes.

Examples

Here we only show a simple example illustrating the use of
countCompatibleOverlaps() on a very small data set. Please
refer to the "Overlap encodings" vignette in the GenomicRanges
package for a more comprehensive presentation of "overlap
encodings" and related tools/concepts (e.g. "compatible"
overlaps, "almost compatible" overlaps etc...), and for more
examples.

sm_treated1.bam contains a small subset of treated1.bam, a BAM
file containing single-end reads from the "Pasilla" experiment
(RNA-seq, Fly, see the pasilla data package for the details)
and aligned to reference genome BDGP Release 5 (aka dm3 genome on
the UCSC Genome Browser):
sm_treated1 <- system.file("extdata", "sm_treated1.bam",

package="GenomicRanges", mustWork=TRUE)

Load the alignments:
library(Rsamtools)
flag0 <- scanBamFlag(isDuplicate=FALSE, isNotPassingQualityControls=FALSE)
param0 <- ScanBamParam(flag=flag0)
gal <- readGappedAlignments(sm_treated1, use.names=TRUE, param=param0)

Load the transcripts (IMPORTANT: Like always, the reference genome
of the transcripts must be *exactly* the same as the reference
genome used to align the reads):
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
exbytx <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, by="tx", use.names=TRUE)

Number of "compatible" transcripts per alignment in ’gal’:
gal_ncomptx <- countCompatibleOverlaps(gal, exbytx)
mcols(gal)$ncomptx <- gal_ncomptx
table(gal_ncomptx)
mean(gal_ncomptx >= 1)
--> 33% of the alignments in ’gal’ are "compatible" with at least
1 transcript in ’exbytx’.

Keep only alignments compatible with at least 1 transcript in
’exbytx’:
compgal <- gal[gal_ncomptx >= 1]
head(compgal)

20 findOverlaps-methods

findOverlaps-methods GRanges, GRangesList, GappedAlignments and GappedAlignment-
Pairs Interval Overlaps

Description

Finds interval overlaps between a GRanges, GRangesList, GappedAlignments or GappedAlign-
mentPairs object and another object containing ranges.

Usage

S4 method for signature ’GenomicRanges,GenomicRanges’
findOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
select = c("all", "first", "last", "arbitrary"),
ignore.strand = FALSE)

S4 method for signature ’GenomicRanges,GenomicRanges’
countOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
ignore.strand = FALSE)

S4 method for signature ’GenomicRanges,GenomicRanges’
subsetByOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
ignore.strand = FALSE)

S4 method for signature ’GenomicRanges,GenomicRanges’
match(x, table,

nomatch = NA_integer_, incomparables = NULL)
Also: x %in% table

Arguments

query, subject, x, table
A GRanges, GRangesList, GappedAlignments or GappedAlignmentPairs ob-
ject. RangesList and RangedData are also accepted for one of query or subject
(x or table for match).

maxgap, minoverlap, type, select
See findOverlaps in the IRanges package for a description of these arguments.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

nomatch The integer value to be returned in the case when no match is found.

incomparables This value is ignored.

Details

When the query and the subject are GRanges or GRangesList objects, findOverlaps uses the triplet
(sequence name, range, strand) to determine which features (see paragraph below for the definition
of feature) from the query overlap which features in the subject, where a strand value of "*" is
treated as occurring on both the "+" and "-" strand. An overlap is recorded when a feature in the

findOverlaps-methods 21

query and a feature in the subject have the same sequence name, have a compatible pairing of
strands (e.g. "+"/"+", "-"/"-", "*"/"+", "*"/"-", etc.), and satisfy the interval overlap require-
ments. Strand is taken as "*" for RangedData and RangesList.

In the context of findOverlaps, a feature is a collection of ranges that are treated as a single entity.
For GRanges objects, a feature is a single range; while for GRangesList objects, a feature is a list
element containing a set of ranges. In the results, the features are referred to by number, which run
from 1 to length(query)/length(subject).

When the query or the subject (or both) is a GappedAlignments object, it is first turned into a
GRangesList object (with as(, "GRangesList")) and then the rules described previously apply.

When the query is a GappedAlignmentPairs object, it is first turned into a GRangesList object (with
as(, "GRangesList")) and then the rules described previously apply.

Value

For findOverlaps either a Hits object when select = "all" or an integer vector otherwise.

For countOverlaps an integer vector containing the tabulated query overlap hits.

For subsetByOverlaps an object of the same class as query containing the subset that overlapped
at least one entity in subject.

For match same as findOverlaps when select = "first".

For %in% the logical vector produced by !is.na(match(x, table)).

For RangedData and RangesList, with the exception of subsetByOverlaps, the results align to
the unlisted form of the object. This turns out to be fairly convenient for RangedData (not so much
for RangesList, but something has to give).

Author(s)

P. Aboyoun, S. Falcon, M. Lawrence, N. Gopalakrishnan and H. Pages

See Also

• findOverlaps.

• Hits-class.

• GRanges-class.

• GRangesList-class.

• GappedAlignments-class.

• GappedAlignmentPairs-class.

Examples

WITH GRanges AND/OR GRangesList OBJECTS

GRanges object:
gr <-
GRanges(seqnames =

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =

22 findOverlaps-methods

Rle(strand(c("-", "+", "*", "+", "-")),
c(1, 2, 2, 3, 2)),

score = 1:10,
GC = seq(1, 0, length=10))

gr

GRangesList object:
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(4:3, 6),

strand = "+", score = 5:4, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grl <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)

Overlapping two GRanges objects:
table(gr %in% gr1)
countOverlaps(gr, gr1)
findOverlaps(gr, gr1)
subsetByOverlaps(gr, gr1)

countOverlaps(gr, gr1, type = "start")
findOverlaps(gr, gr1, type = "start")
subsetByOverlaps(gr, gr1, type = "start")

findOverlaps(gr, gr1, select = "first")
findOverlaps(gr, gr1, select = "last")

findOverlaps(gr1, gr)
findOverlaps(gr1, gr, type = "start")
findOverlaps(gr1, gr, type = "within")
findOverlaps(gr1, gr, type = "equal")

Overlapping a GRanges and a GRangesList object:
table(grl %in% gr)
countOverlaps(grl, gr)
findOverlaps(grl, gr)
subsetByOverlaps(grl, gr)
countOverlaps(grl, gr, type = "start")
findOverlaps(grl, gr, type = "start")
subsetByOverlaps(grl, gr, type = "start")
findOverlaps(grl, gr, select = "first")

Overlapping two GRangesList objects:
countOverlaps(grl, rev(grl))
findOverlaps(grl, rev(grl))
subsetByOverlaps(grl, rev(grl))

WITH A GappedAlignments OBJECT

library(Rsamtools) # because file ex1.bam is in this package

findSpliceOverlaps 23

ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(ex1_file)

subject <- granges(galn)[1]

Note the absence of query no. 9 (i.e. ’galn[9]’) in this result:
as.matrix(findOverlaps(galn, subject))

This is because, by default, findOverlaps()/countOverlaps() are
strand specific:
galn[8:10]
countOverlaps(galn[8:10], subject)
countOverlaps(galn[8:10], subject, ignore.strand=TRUE)

Advanced examples:
subsetByOverlaps(galn, subject)
table(match(galn, subject), useNA = "ifany")
table(galn %in% subject)

findSpliceOverlaps Classify ranges (reads) as compatible with existing genomic annota-
tions or as having novel splice events

Description

The findSpliceOverlaps function identifies ranges (reads) that are compatible with a specific tran-
script isoform. The non-compatible ranges are analyzed for the presence of novel splice events.

Usage

findSpliceOverlaps(query, subject, ignore.strand=FALSE, ...)

S4 method for signature ’GappedAlignments,GRangesList’
findSpliceOverlaps(query, subject, ignore.strand=FALSE, ..., cds=NULL)
S4 method for signature ’GappedAlignmentPairs,GRangesList’
findSpliceOverlaps(query, subject, ignore.strand=FALSE, ..., cds=NULL)
S4 method for signature ’GRangesList,GRangesList’
findSpliceOverlaps(query, subject, ignore.strand=FALSE, ..., cds=NULL)

Low-level utils:

High-level convenience wrappers (coming soon):
#summarizeSpliceOverlaps(query, subject, ignore.strand=FALSE, ...)

Arguments

query character name of a Bam file, a BamFile, GappedAlignments, GappedAlign-
mentPairs or a GRangesList object containing the reads.
Single or paired-end reads are specified with the singleEnd argument (default
FALSE). Paired-end reads can be supplied in a Bam file or GappedAlignment-
Pairs object. Single-end are expected to be in a Bam file, GappedAlignments or
GRanges object.

24 findSpliceOverlaps

subject A GRangesList containing the annotations. This list is expected to be exons by
transcripts.

ignore.strand When set to TRUE, strand information is ignored in the overlap calculations.

cds Optional GRangesList of coding regions for each transcript in the subject. If
provided, the "coding" output column will be a logical vector indicating if the
read falls in a coding region. When not provided, the "coding" output is NA.

...

Details

When a read maps compatibly and uniquely to a transcript isoform we can quantify the expression
and look for shifts in the balance of isoform expression. If a read does not map in compatible
way, novel splice events such as splice junctions, novel exons or retentions can be quantified and
compared across samples.

findSpliceOverlaps detects which reads (query) match to transcripts (subject) in a compatible fash-
ion. Compatibility is based on both the transcript bounds and splicing pattern. Assessing the splic-
ing pattern involves comparision of the read splices (i.e., the "N" gaps in the cigar) with the tran-
script introns. For paired-end reads, the inter-read gap is not considered a splice. The analysis of
non-compatible reads for novel splice events is under construction.

The output is a Hits object with the metadata columns defined below. Each column is a logical
indicating if the read (query) met the criteria.

• compatible Every splice (N) in a read alignment matches an intron in an annotated transcript.
The read does not extend into an intron or outside the transcript bounds.

• unique The read is compatible with only one annotated transcript.

• strandSpecificThe query (read) was stranded.

Additional methods

Methods in Rsamtools :

findSpliceOverlaps,character,ANY(query, subject, ignore.strand=FALSE, ..., param=ScanBamParam(),
singleEnd=TRUE, cds=NULL)

findSpliceOverlaps,BamFile,ANY(query, subject, ignore.strand=FALSE, ..., param=ScanBamParam(),
singleEnd=TRUE, cds=NULL)

Author(s)

Michael Lawrence and Valerie Obenchain <vobencha@fhcrc.org>

See Also

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes.

Examples

Isoform expression :

findSpliceOverlaps() can assist in quantifying isoform expression
by identifying reads that map compatibly and uniquely to a
transcript isoform.

GappedAlignmentPairs-class 25

library(Rsamtools)
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
library(pasillaBamSubset)
untreated1_chr4() contains single-end reads
se <- untreated1_chr4()
exbytx <- exonsBy(txdb, "tx")
cdsbytx <- cdsBy(txdb, "tx")
param <- ScanBamParam(which=GRanges("chr4", IRanges(1e5,3e5)))
sehits <- findSpliceOverlaps(se, exbytx, cds=cdsbytx, param=param)

Tally the reads by category to get an idea of read distribution.
lst <- lapply(mcols(sehits), table)
nms <- names(lst)
tbl <- do.call(rbind, lst[nms])
tbl

Reads compatible with one or more transcript isoforms.
rnms <- rownames(tbl)
tbl[rnms == "compatible","TRUE"]/sum(tbl[rnms == "compatible",])

Reads compatible with a single isoform.
tbl[rnms == "unique","TRUE"]/sum(tbl[rnms == "unique",])

All reads fall in a coding region as defined by
the txdb annotation.
lst[["coding"]]

Check : Total number of reads should be the same across categories.
lapply(lst, sum)

Paired-end reads :

The ’singleEnd’ argument is set to FALSE for a Bam file with
paired-end reads.
pe <- untreated3_chr4()
hits2 <- findSpliceOverlaps(pe, exbytx, singleEnd=FALSE, param=param)

In addition to Bam files, paired-end reads can be supplied in a
GappedAlignmentPairs object.
genes <- GRangesList(

GRanges("chr1", IRanges(c(5, 20), c(10, 25)), "+"),
GRanges("chr1", IRanges(c(5, 22), c(15, 25)), "+"))

galp <- GappedAlignmentPairs(
GappedAlignments("chr1", 5L, "11M4N6M", strand("+")),
GappedAlignments("chr1", 50L, "6M", strand("-")),
isProperPair=TRUE)

findSpliceOverlaps(galp, genes)

GappedAlignmentPairs-class
GappedAlignmentPairs objects

26 GappedAlignmentPairs-class

Description

The GappedAlignmentPairs class is a container for "alignment pairs".

Details

A GappedAlignmentPairs object is a list-like object where each element describes an "alignment
pair".

An "alignment pair" is made of a "first" and a "last" alignment, and is formally represented by a
GappedAlignments object of length 2. It is typically representing a hit of a paired-end read to the
reference genome that was used by the aligner. More precisely, in a given pair, the "first" alignment
represents the hit of the first end of the read (aka "first segment in the template", using SAM Spec
terminology), and the "last" alignment represents the hit of the second end of the read (aka "last
segment in the template", using SAM Spec terminology).

In general, a GappedAlignmentPairs object will be created by loading records from a BAM (or
SAM) file containing aligned paired-end reads, using the readGappedAlignmentPairs function
(see below). Each element in the returned object will be obtained by pairing 2 records.

Constructors

readGappedAlignmentPairs(file, format="BAM", use.names=FALSE, ...): Read a file con-
taining paired-end reads as a GappedAlignmentPairs object. By default (i.e. use.names=FALSE),
the resulting object has no names. If use.names is TRUE, then the names are constructed
from the query template names (QNAME field in a SAM/BAM file). Note that the 2 records
in a pair of records have the same QNAME.
Note that this function is just a front-end that delegates to the format-specific back-end func-
tion specified via the format argument. The use.names argument and any extra argument
are passed to the back-end function. Only the BAM format is supported for now. Its back-
end is the readBamGappedAlignmentPairs function defined in the Rsamtools package. See
?readBamGappedAlignmentPairs for more information (you might need to install and load
the Rsamtools package first).

GappedAlignmentPairs(first, last, isProperPair, names=NULL): Low-level GappedAlign-
mentPairs constructor. Generally not used directly.

Accessors

In the code snippets below, x is a GappedAlignmentPairs object.

length(x): Return the number of alignment pairs in x.

names(x), names(x) <- value: Get or sets the names of x. See readGappedAlignmentPairs
above for how to automatically extract and set the names from the file to read.

first(x, invert.strand=FALSE), last(x, invert.strand=FALSE): Get the "first" or "last" align-
ment for each alignment pair in x. The result is a GappedAlignments object of the same length
as x. If invert.strand=TRUE, then the strand is inverted on-the-fly, i.e. "+" becomes "-", "-"
becomes "+", and "*" remains unchanged.

left(x): Get the "left" alignment for each alignment pair in x. By definition, the "left" alignment in
a pair is the alignment that is on the + strand. If this is the "first" alignment, then it’s returned
as-is by left(x), but if this is the "last" alignment, then it’s returned by left(x) with the strand
inverted.

right(x): Get the "right" alignment for each alignment pair in x. By definition, the "right" align-
ment in a pair is the alignment that is on the - strand. If this is the "first" alignment, then it’s

GappedAlignmentPairs-class 27

returned as-is by right(x), but if this is the "last" alignment, then it’s returned by right(x)
with the strand inverted.

seqnames(x): Get the name of the reference sequence for each alignment pair in x. This comes
from the RNAME field of the BAM file and has the same value for the 2 records in a pair
(makeGappedAlignmentPairs, the function used by readBamGappedAlignmentPairs for
doing the pairing, rejects pairs with incompatible RNAME values).

strand(x): Get the strand for each alignment pair in x. By definition the strand of an alignment pair
is the strand of the "first" alignment in the pair. In a GappedAlignmentPairs object, the strand
of the "last" alignment in a pair is always the opposite of the strand of the "first" alignment
(makeGappedAlignmentPairs, the function used by readBamGappedAlignmentPairs for
doing the pairing, rejects pairs where the "first" and "last" alignments are on the same strand).

ngap(x): Equivalent to ngap(first(x)) + ngap(last(x)).

isProperPair(x): Get the "isProperPair" flag bit (bit 0x2 in SAM Spec) set by the aligner for each
alignment pair in x.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences. value
must be a Seqinfo object.

seqlevels(x), seqlevels(x) <- value: Get or set the sequence levels. seqlevels(x) is equivalent
to seqlevels(seqinfo(x)) or to levels(seqnames(x)), those 2 expressions being guaranteed
to return identical character vectors on a GappedAlignmentPairs object. value must be a
character vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is equiv-
alent to seqlengths(seqinfo(x)). value can be a named non-negative integer or numeric vector
eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is equivalent
to isCircular(seqinfo(x)). value must be a named logical vector eventually with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each
sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by look-
ing up seqlevels(x) against a seqname style database stored in the seqnames.db metadata
package (required).

Vector methods

In the code snippets below, x is a GappedAlignmentPairs object.

x[i]: Return a new GappedAlignmentPairs object made of the selected alignment pairs.

List methods

In the code snippets below, x is a GappedAlignmentPairs object.

x[[i]]: Extract the i-th alignment pair as a GappedAlignments object of length 2. As expected
x[[i]][1] and x[[i]][2] are respectively the "first" and "last" alignments in the pair.

unlist(x, use.names=TRUE): Return the GappedAlignments object conceptually defined by
c(x[[1]], x[[2]], ..., x[[length(x)]]). use.names determines whether x names should be propa-
gated to the result or not.

28 GappedAlignmentPairs-class

Coercion

In the code snippets below, x is a GappedAlignmentPairs object.

grglist(x, order.as.in.query=FALSE, drop.D.ranges=FALSE):
Return a GRangesList object of length length(x) where the i-th element represents the ranges
(with respect to the reference) of the i-th alignment pair in x.
IMPORTANT: The strand of the ranges coming from the "last" alignment in the pair is always
inverted.
The order.as.in.query toggle affects the order of the ranges within each top-level element of
the returned object.
If FALSE (the default), then the "left" ranges are placed before the "right" ranges, and, within
each left or right group, are ordered from 5’ to 3’ in elements associated with the plus strand
and from 3’ to 5’ in elements associated with the minus strand. More formally, the i-th ele-
ment in the returned GRangesList object can be defined as c(grl1[[i]], grl2[[i]]), where grl1 is
grglist(left(x)) and grl2 is grglist(right(x)).
If TRUE, then the "first" ranges are placed before the "last" ranges, and, within each first or
last group, are always ordered from 5’ to 3’, whatever the strand is. More formally, the i-th
element in the returned GRangesList object can be defined as c(grl1[[i]], grl2[[i]]), where grl1
is grglist(first(x), order.as.in.query=TRUE) and grl2 is
grglist(last(x, invert.strand=TRUE), order.as.in.query=TRUE).
Note that the relationship between the 2 GRangesList objects obtained with order.as.in.query
being respectively FALSE or TRUE is simpler than it sounds: the only difference is that the
order of the ranges in elements associated with the minus strand is reversed.
Finally note that, in the latter, the ranges are always ordered consistently with the original
"query template", that is, in the order defined by walking the "query template" from the be-
ginning to the end.
If drop.D.ranges is TRUE, then deletions (Ds in the CIGAR) are treated like gaps (Ns in the
CIGAR), that is, the ranges corresponding to deletions are dropped.

introns(x): Extract the gaps (i.e. N operations in the CIGAR) of the "first" and "last" alignments
of each pair as a GRangesList object of the same length as x. Equivalent to (but faster than):

introns1 <- introns(first(x))
introns2 <- introns(last(x, invert.strand=TRUE))
mendoapply(c, introns1, introns2)

as(x, "GRangesList"): An alternate way of doing grglist(x).

Author(s)

H. Pages

See Also

• GappedAlignments-class.
• readBamGappedAlignmentPairs.
• makeGappedAlignmentPairs.
• GRangesList-class.
• GRanges-class.
• findOverlaps-methods.
• coverage-methods.
• seqinfo.

GappedAlignments-class 29

Examples

ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galp <- readGappedAlignmentPairs(ex1_file, use.names=TRUE)
galp

length(galp)
head(galp)
head(names(galp))
first(galp)
last(galp)
last(galp, invert.strand=TRUE)
left(galp)
right(galp)
seqnames(galp)
strand(galp)
head(ngap(galp))
table(isProperPair(galp))
seqlevels(galp)

Rename the reference sequences:
seqlevels(galp) <- sub("seq", "chr", seqlevels(galp))
seqlevels(galp)

galp[[1]]
unlist(galp)

grglist(galp) # a GRangesList object
grglist(galp, order.as.in.query=TRUE)
stopifnot(identical(unname(elementLengths(grglist(galp))), ngap(galp) + 2L))
introns(galp) # a GRangesList object
stopifnot(identical(unname(elementLengths(introns(galp))), ngap(galp)))

GappedAlignments-class GappedAlignments objects

Description

The GappedAlignments class is a simple container which purpose is to store a set of alignments
that will hold just enough information for supporting the operations described below.

Details

A GappedAlignments object is a vector-like object where each element describes an alignment i.e.
how a given sequence (called "query" or "read", typically short) aligns to a reference sequence
(typically long).

Typically, a GappedAlignments object will be created by loading records from a BAM (or SAM) file
and each element in the resulting object will correspond to a record. BAM/SAM records generally
contain a lot of information but only part of that information is loaded in the GappedAlignments
object. In particular, we discard the query sequences (SEQ field), the query qualities (QUAL), the
mapping qualities (MAPQ) and any other information that is not needed in order to support the
operations or methods described below.

This means that multi-reads (i.e. reads with multiple hits in the reference) won’t receive any spe-
cial treatment i.e. the various SAM/BAM records corresponding to a multi-read will show up

30 GappedAlignments-class

in the GappedAlignments object as if they were coming from different/unrelated queries. Also
paired-end reads will be treated as single-end reads and the pairing information will be lost (see
?GappedAlignmentPairs for how to handle aligned paired-end reads).

Each element of a GappedAlignments object consists of:

• The name of the reference sequence. (This is the RNAME field in a SAM/BAM record.)

• The strand in the reference sequence to which the query is aligned. (This information is stored
in the FLAG field in a SAM/BAM record.)

• The CIGAR string in the "Extended CIGAR format" (see the SAM Format Specifications for
the details).

• The 1-based leftmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "start" of the query. (This is the POS field in a SAM/BAM
record.)

• The 1-based rightmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "end" of the query. (This is NOT explicitly stored in a
SAM/BAM record but can be inferred from the POS and CIGAR fields.) Note that all po-
sitions/coordinates are always relative to the first base at the 5’ end of the plus strand of the
reference sequence, even when the query is aligned to the minus strand.

• The genomic intervals between the "start" and "end" of the query that are "covered" by the
alignment. Saying that the full [start,end] interval is covered is the same as saying that the
alignment has no gap (no N in the CIGAR). It is then considered a simple alignment. Note
that a simple alignment can have mismatches or deletions (in the reference). In other words, a
deletion, encoded with a D, is NOT considered a gap.

Note that the last 2 items are not expicitly stored in the GappedAlignments object: they are inferred
on-the-fly from the CIGAR and the "start".

Optionally, a GappedAlignments object can have names (accessed thru the names generic function)
which will be coming from the QNAME field of the SAM/BAM records.

The rest of this man page will focus on describing how to:

• Access the information stored in a GappedAlignments object in a way that is independent
from how the data are actually stored internally.

• How to create and manipulate a GappedAlignments object.

Constructors

readGappedAlignments(file, format="BAM", use.names=FALSE, ...): Read a file contain-
ing aligned reads as a GappedAlignments object. By default (i.e. use.names=FALSE), the
resulting object has no names. If use.names is TRUE, then the names are constructed from
the query template names (QNAME field in a SAM/BAM file).
Note that this function is just a front-end that delegates to the format-specific back-end func-
tion specified via the format argument. The use.names argument and any extra argument
are passed to the back-end function. Only the BAM format is supported for now. Its back-
end is the readBamGappedAlignments function defined in the Rsamtools package. See
?readBamGappedAlignments for more information (you might need to install and load the
Rsamtools package first).

GappedAlignments(seqnames=Rle(factor()), pos=integer(0), cigar=character(0), strand=NULL, names=NULL, seqlengths=NULL, ...):
Low-level GappedAlignments constructor. Generally not used directly. Named arguments in
... are used as metadata columns.

GappedAlignments-class 31

Accessors

In the code snippets below, x is a GappedAlignments object.

length(x): Return the number of alignments in x.

names(x), names(x) <- value: Get or set the names of x. See readGappedAlignments above
for how to automatically extract and set the names from the file to read.

seqnames(x), seqnames(x) <- value: Get or set the name of the reference sequence for each
alignment in x (see Details section above for more information about the RNAME field of a
SAM/BAM file). value can be a factor, or a ’factor’ Rle, or a character vector.

rname(x), rname(x) <- value: Same as seqnames(x) and seqnames(x) <- value.

strand(x), strand(x) <- value: Get or set the strand for each alignment in x (see Details section
above for more information about the strand of an alignment). value can be a factor (with
levels +, - and *), or a ’factor’ Rle, or a character vector.

cigar(x): Returns a character vector of length length(x) containing the CIGAR string for each
alignment.

qwidth(x): Returns an integer vector of length length(x) containing the length of the query *af-
ter* hard clipping (i.e. the length of the query sequence that is stored in the corresponding
SAM/BAM record).

start(x), end(x): Returns an integer vector of length length(x) containing the "start" and "end"
(respectively) of the query for each alignment. See Details section above for the exact defi-
nitions of the "start" and "end" of a query. Note that start(x) and end(x) are equivalent to
start(granges(x)) and end(granges(x)), respectively (or, alternatively, to min(rglist(x)) and
max(rglist(x)), respectively).

width(x): Equivalent to width(granges(x)) (or, alternatively, to end(x) - start(x) + 1L). Note
that this is generally different from qwidth(x) except for alignments with a trivial CIGAR
string (i.e. a string of the form "<n>M" where <n> is a number).

ngap(x): Returns an integer vector of the same length as x containing the number of gaps (i.e. N
operations in the CIGAR) for each alignment. Equivalent to unname(elementLengths(rglist(x))) - 1L.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences. value
must be a Seqinfo object.

seqlevels(x), seqlevels(x) <- value: Get or set the sequence levels. seqlevels(x) is equivalent
to seqlevels(seqinfo(x)) or to levels(seqnames(x)), those 2 expressions being guaranteed to
return identical character vectors on a GappedAlignments object. value must be a character
vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is equiv-
alent to seqlengths(seqinfo(x)). value can be a named non-negative integer or numeric vector
eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is equivalent
to isCircular(seqinfo(x)). value must be a named logical vector eventually with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each
sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by look-
ing up seqlevels(x) against a seqname style database stored in the seqnames.db metadata
package (required).

32 GappedAlignments-class

Coercion

In the code snippets below, x is a GappedAlignments object.

grglist(x, order.as.in.query=FALSE, drop.D.ranges=FALSE),
rglist(x, order.as.in.query=FALSE, drop.D.ranges=FALSE):
Return either a GRangesList or a RangesList object of length length(x) where the i-th element
represents the ranges (with respect to the reference) of the i-th alignment in x.
More precisely, the RangesList object returned by rglist(x) is a CompressedIRangesList ob-
ject.
The order.as.in.query toggle affects the order of the ranges within each top-level element of
the returned object.
If FALSE (the default), then the ranges are ordered from 5’ to 3’ in elements associated with
the plus strand (i.e. corresponding to alignments located on the plus strand), and from 3’ to
5’ in elements associated with the minus strand. So, whatever the strand is, the ranges are in
ascending order (i.e. left-to-right).
If TRUE, then the order of the ranges in elements associated with the minus strand is reversed.
So they end up being ordered from 5’ to 3’ too, which means that they are now in decending
order (i.e. right-to-left). It also means that, when order.as.in.query=TRUE is used, the
ranges are always ordered consistently with the original "query template", that is, in the order
defined by walking the "query template" from the beginning to the end.
If drop.D.ranges is TRUE, then deletions (D operations in the CIGAR) are treated like gaps
(N operations in the CIGAR), that is, the ranges corresponding to deletions are dropped.
See Details section above for more information.

granges(x), ranges(x): Return either a GRanges or a Ranges object of length length(x) where
each element represents the regions in the reference to which a query is aligned.
More precisely, the Ranges object returned by ranges(x) is an IRanges object.

introns(x): Extract the gaps (i.e. N operations in the CIGAR) as a GRangesList object of the
same length as x. Equivalent to:

psetdiff(granges(x), grglist(x, order.as.in.query=TRUE))

as(x, "GRangesList"), as(x, "GRanges"), as(x, "RangesList"), as(x, "Ranges"): Alternate
ways of doing grglist(x), granges(x), rglist(x), ranges(x), respectively.

Subsetting and related operations

In the code snippets below, x is a GappedAlignments object.

x[i]: Return a new GappedAlignments object made of the selected alignments. i can be a numeric
or logical vector.

Combining

c(...): Concatenates the GappedAlignment objects in

Other methods

qnarrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Return a new
GappedAlignments object of the same length as x describing how the narrowed query se-
quences align to the reference. The start/end/width arguments describe how to narrow the
query sequences. They must be vectors of integers. NAs and negative values are accepted and

GappedAlignments-class 33

"solved" according to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details).

narrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Return a new
GappedAlignments object of the same length as x describing the narrowed alignments. Unlike
with qnarrow now the start/end/width arguments describe the narrowing on the reference
side, not the query side. Like with qnarrow, they must be vectors of integers. NAs and
negative values are accepted and "solved" according to the rules of the SEW (Start/End/Width)
interface (see ?solveUserSEW for the details).

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

See Also

• GappedAlignmentPairs-class.

• readBamGappedAlignments.

• GRangesList-class.

• GRanges-class.

• findOverlaps-methods.

• coverage-methods.

• seqinfo.

• CompressedIRangesList-class.

• setops-methods.

Examples

library(Rsamtools) # for ScanBamParam() and the ex1.bam file
ex1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
gal <- readGappedAlignments(ex1_file, param=ScanBamParam(what="flag"))
gal

A. BASIC MANIPULATION

length(gal)
head(gal)
names(gal) # no names by default
seqnames(gal)
strand(gal)
head(cigar(gal))
head(qwidth(gal))
table(qwidth(gal))
head(start(gal))
head(end(gal))
head(width(gal))
head(ngap(gal))
seqlevels(gal)

http://samtools.sourceforge.net/

34 GappedAlignments-class

Rename the reference sequences:
seqlevels(gal) <- sub("seq", "chr", seqlevels(gal))
seqlevels(gal)

grglist(gal) # a GRangesList object
stopifnot(identical(unname(elementLengths(grglist(gal))), ngap(gal) + 1L))
granges(gal) # a GRanges object
rglist(gal) # a CompressedIRangesList object
stopifnot(identical(unname(elementLengths(rglist(gal))), ngap(gal) + 1L))
ranges(gal) # an IRanges object
introns(gal) # a GRangesList object
stopifnot(identical(unname(elementLengths(introns(gal))), ngap(gal)))

B. SUBSETTING

gal[strand(gal) == "-"]
gal[grep("I", cigar(gal), fixed=TRUE)]
gal[grep("N", cigar(gal), fixed=TRUE)] # no gaps

A confirmation that all the queries map to the reference with no
gaps:
stopifnot(all(ngap(gal) == 0))

Different ways to subset:
gal[6] # a GappedAlignments object of length 1
grglist(gal)[[6]] # a GRanges object of length 1
rglist(gal)[[6]] # a NormalIRanges object of length 1

D operations are NOT gaps:
ii <- grep("D", cigar(gal), fixed=TRUE)
gal[ii]
ngap(gal[ii])
grglist(gal[ii])

qwidth() vs width():
gal[qwidth(gal) != width(gal)]

This MUST return an empty object:
gal[cigar(gal) == "35M" & qwidth(gal) != 35]
but this doesn’t have too:
gal[cigar(gal) != "35M" & qwidth(gal) == 35]

C. qnarrow()/narrow()

Note that there is no difference between qnarrow() and narrow() when
all the alignments are simple and with no indels.

This trims 3 nucleotides on the left and 5 nucleotides on the right
of each alignment:
qnarrow(gal, start=4, end=-6)
Note that the ’start’ and ’end’ arguments specify what part of each
query sequence should be kept (negative values being relative to the
right end of the query sequence), not what part should be trimmed.

GenomicRanges-comparison 35

Trimming on the left doesn’t change the "end" of the queries.
qnarrow(gal, start=21)
stopifnot(identical(end(qnarrow(gal, start=21)), end(gal)))

GenomicRanges-comparison
Comparing and ordering genomic ranges

Description

Methods for comparing and ordering the elements in one or more GenomicRanges objects.

Details

Two elements of a GenomicRanges object (i.e. two genomic ranges) are considered equal iff they
are on the same underlying sequence and strand, and have the same start and width. The duplicated
and unique methods for GenomicRanges objects are using this equality.

The "natural order" for the elements of a GenomicRanges object is to order them (a) first by se-
quence level, (b) then by strand, (c) then by start, (d) and finally by width. This way, the space
of genomic ranges is totally ordered. Note that the reduce method for GenomicRanges uses this
"natural order" implicitly. Also, note that, because we already do (c) and (d) for regular ranges (see
?‘Ranges-comparison‘), genomic ranges that belong to the same underlying sequence and strand
are ordered like regular ranges. The order, sort and rank methods for GenomicRanges objects are
using this "natural order".

Also the ==, !=, <=, >=, < and > operators between 2 GenomicRanges objects are using this
"natural order".

See Also

GenomicRanges-class, Ranges-comparison

Examples

gr <- GRanges(
seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

duplicated(gr)
duplicated(c(gr[4], gr))
unique(gr)
unique(c(gr[4], gr))
order(gr)
sort(gr)
rank(gr)

gr[2] == gr[2] # TRUE
gr[2] == gr[5] # FALSE
gr == gr[4]
gr >= gr[3]
compare(gr, gr[3])
rangeComparisonCodeToLetter(compare(gr, gr[3]))

36 GRanges-class

GenomicRangesList-class
GenomicRangesList objects

Description

A GenomicRangesList is a List of GenomicRanges. It is a virtual class; SimpleGenomicRangesList
is the basic implementation. The subclass GRangesList provides special behavior and is particu-
larly efficient for storing a large number of elements.

Constructor

GenomicRangesList(...): Constructs a SimpleGenomicRangesList with elements taken from
the arguments in If the only argument is a list, the elements are taken from that list.

Coercion

as(from, "GenomicRangesList"): Supported from types include:
RangedDataList Each element of from is coerced to a GenomicRanges.

Author(s)

Michael Lawrence

See Also

GRangesList, which differs from SimpleGenomicRangesList in that the GRangesList treats its
elements as single, compound ranges, particularly in overlap operations. SimpleGenomicRangesList
is just a barebones list for now, without that compound semantic.

GRanges-class GRanges objects

Description

The GRanges class is a container for the genomic locations and their associated annotations.

Details

The GRanges class stores the sequences of genomic locations and associated annotations. Each ele-
ment in the sequence is comprised of a sequence name, an interval, a strand, and optional metadata
columns (e.g. score, GC content, etc.). This information is stored in four components:

seqnames a ’factor’ Rle object containing the sequence names.
ranges an IRanges object containing the ranges.
strand a ’factor’ Rle object containing the strand information.
mcols a DataFrame object containing the metadata columns. Columns cannot be named "seqnames",

"ranges", "strand", "seqlevels", "seqlengths", "isCircular", "genome", "start", "end",
"width", or "element".

seqinfo a Seqinfo object containing information about the set of genomic sequences present in the
GRanges object.

GRanges-class 37

Constructor

GRanges(seqnames = Rle(), ranges = IRanges(), strand = Rle("*", length(seqnames)), ..., seqinfo):
Creates a GRanges object.

seqnames Rle object, character vector, or factor containing the sequence names.
ranges IRanges object containing the ranges.
strand Rle object, character vector, or factor containing the strand information.
seqinfo a Seqinfo object containing allowed sequence names and lengths (or NA) for each

level(seqnames).
... Optional metadata columns. These columns cannot be named "start", "end", "width",

or "element". A named integer vector "seqlength" can be used instead of seqinfo.

Coercion

In the code snippets below, x is a GRanges object.

as(from, "GRanges"): Creates a GRanges object from a RangedData, RangesList, RleList or
RleViewsList object.

as(from, "RangedData"): Creates a RangedData object from a GRanges object. The strand and
metadata columns become columns in the result. The seqlengths(from), isCircular(from),
and genome(from) vectors are stored in the metadata columns of ranges(rd).

as(from, "RangesList"): Creates a RangesList object from a GRanges object. The strand and
metadata columns become inner metadata columns (i.e. metadata columns on the ranges).
The seqlengths(from), isCircular(from), and genome(from) vectors become the metadata
columns.

as(from, "GappedAlignments"): Creates a GappedAlignments object from a GRanges object.
The metadata columns are propagated. cigar values are created from the sequence width unless
a "cigar" metadata column already exists in from.

as.data.frame(x, row.names = NULL, optional = FALSE, ...): Creates a data.frame with
columns seqnames (factor), start (integer), end (integer), width (integer), strand (factor), as
well as the additional metadata columns stored in mcols(x). Pass an explicit stringsAsFactors=TRUE/FALSE
argument via ... to override the default conversions for the metadata columns in mcols(x).

Accessors

In the following code snippets, x is a GRanges object.

length(x): Get the number of elements.

seqnames(x), seqnames(x) <- value: Get or set the sequence names. value can be an Rle object,
a character vector, or a factor.

ranges(x), ranges(x) <- value: Get or set the ranges. value can be a Ranges object.

names(x), names(x) <- value: Get or set the names of the elements.

strand(x), strand(x) <- value: Get or set the strand. value can be an Rle object, character vector,
or factor.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. If use.names=TRUE
and the metadata columns are not NULL, then the names of x are propagated as the row
names of the returned DataFrame object. When setting the metadata columns, the supplied
value must be NULL or a data.frame-like object (i.e. DataTable or data.frame) object holding
element-wise metadata.

38 GRanges-class

elementMetadata(x), elementMetadata(x) <- value, values(x), values(x) <- value: Alterna-
tives to mcols functions. Their use is discouraged.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences. value
must be a Seqinfo object.

seqlevels(x), seqlevels(x, force=FALSE) <- value: Get or set the sequence levels. seqlevels(x)
is equivalent to seqlevels(seqinfo(x)) or to levels(seqnames(x)), those 2 expressions being
guaranteed to return identical character vectors on a GRanges object. value must be a charac-
ter vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is equiv-
alent to seqlengths(seqinfo(x)). value can be a named non-negative integer or numeric vector
eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is equivalent
to isCircular(seqinfo(x)). value must be a named logical vector eventually with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each
sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by look-
ing up seqlevels(x) against a seqname style database stored in the seqnames.db metadata
package (required).

score(x): Get the “score” column from the element metadata, if any.

Ranges methods

In the following code snippets, x is a GRanges object.

start(x), start(x) <- value: Get or set start(ranges(x)).

end(x), end(x) <- value: Get or set end(ranges(x)).

width(x), width(x) <- value: Get or set width(ranges(x)).

Splitting and Combining

In the code snippets below, x is a GRanges object.

append(x, values, after = length(x)): Inserts the values into x at the position given by after,
where x and values are of the same class.

c(x, ...): Combines x and the GRanges objects in ... together. Any object in ... must belong to the
same class as x, or to one of its subclasses, or must be NULL. The result is an object of the
same class as x.

c(x, ..., ignore.mcols=FALSE) If the GRanges objects have metadata columns (represented
as one DataFrame per object), each such DataFrame must have the same columns in order to
combine successfully. In order to circumvent this restraint, you can pass in an ignore.mcols=TRUE
argument which will combine all the objects into one and drop all of their metadata columns.

split(x, f, drop=FALSE): Splits x according to f to create a GRangesList object. If f is a list-like
object then drop is ignored and f is treated as if it was rep(seq_len(length(f)), sapply(f, length)),
so the returned object has the same shape as f (it also receives the names of f). Otherwise, if
f is not a list-like object, empty list elements are removed from the returned object if drop is
TRUE.

GRanges-class 39

Subsetting

In the code snippets below, x is a GRanges object.

x[i, j], x[i, j] <- value: Get or set elements i with optional metadata columns mcols(x)[,j], where
i can be missing; an NA-free logical, numeric, or character vector; or a ’logical’ Rle object.

x[i,j] <- value: Replaces elements i and optional metadata columns j with value.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRanges object. If n is
negative, returns all but the last abs(n) elements of the GRanges object.

rep(x, times, length.out, each): Repeats the values in x through one of the following conven-
tions:

times Vector giving the number of times to repeat each element if of length length(x), or to
repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except that mul-
tiple consecutive subsequences can be requested for concatenation. As such two of the three
start, end, and width arguments can be used to specify the consecutive subsequences. Alter-
natively, start can take a Ranges object or something that can be converted to a Ranges object
like an integer vector, logical vector or logical Rle. If the concatenation of the consecutive
subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-, ex-
cept that multiple consecutive subsequences can be replaced with a value whose length is a
divisor of the number of elements it is replacing. As such two of the three start, end, and
width arguments can be used to specify the consecutive subsequences. Alternatively, start
can take a Ranges object or something that can be converted to a Ranges object like an integer
vector, logical vector or logical Rle.

subset(x, subset): Returns a new object of the same class as x made of the subset using logical
vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If n is
negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta = NULL, ...):
Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment within

the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value: Replaces
the subsequence window specified on the left (i.e. the subsequence in x specified by start, end
and width) by value. value must either be of class class(x), belong to a subclass of class(x),
be coercible to class(x), or be NULL. If keepLength is TRUE, the elements of value are
repeated to create a GRanges object with the same number of elements as the width of the
subsequence window it is replacing. If keepLength is FALSE, this replacement method can
modify the length of x, depending on how the length of the left subsequence window compares
to the length of value.

x$name, x$name <- value: Shortcuts for mcols(x)$name and mcols(x)$name <- value, re-
spectively. Provided as a convenience, for GRanges objects *only*, and as the result of strong
popular demand. Note that those methods are not consistent with the other $ and $<- methods
in the IRanges/GenomicRanges infrastructure, and might confuse some users by making them

40 GRanges-class

believe that a GRanges object can be manipulated as a data.frame-like object. Therefore we
recommend using them only interactively, and we discourage their use in scripts or packages.
For the latter, use mcols(x)$name and mcols(x)$name <- value, instead of x$name and
x$name <- value, respectively.

Author(s)

P. Aboyoun

See Also

GRangesList-class, seqinfo, Vector-class, Ranges-class, Rle-class, DataFrame-class, intra-range-
methods, inter-range-methods, setops-methods, findOverlaps-methods, nearest-methods, coverage-
methods

Examples

seqinfo <- Seqinfo(paste0("chr", 1:3), c(1000, 2000, 1500), NA, "mock1")
gr <-
GRanges(seqnames =

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges = IRanges(
1:10, width = 10:1, names = head(letters,10)),

strand = Rle(
strand(c("-", "+", "*", "+", "-")),
c(1, 2, 2, 3, 2)),

score = 1:10,
GC = seq(1, 0, length=10),
seqinfo=seqinfo)

gr

Summarizing elements
table(seqnames(gr))
sum(width(gr))
summary(mcols(gr)[,"score"])

Renaming the underlying sequences
seqlevels(gr)
seqlevels(gr) <- sub("chr", "Chrom", seqlevels(gr))
gr
seqlevels(gr) <- sub("Chrom", "chr", seqlevels(gr)) # revert

Combining objects
gr2 <- GRanges(seqnames=Rle(c(’chr1’, ’chr2’, ’chr3’), c(3, 3, 4)),

IRanges(1:10, width=5), strand=’-’,
score=101:110, GC = runif(10),
seqinfo=seqinfo)

gr3 <- GRanges(seqnames=Rle(c(’chr1’, ’chr2’, ’chr3’), c(3, 4, 3)),
IRanges(101:110, width=10), strand=’-’,
score=21:30,
seqinfo=seqinfo)

some.gr <- c(gr, gr2)

all.gr <- c(gr, gr2, gr3) ## (This would fail)
all.gr <- c(gr, gr2, gr3, ignore.mcols=TRUE)

GRangesList-class 41

GRangesList-class GRangesList objects

Description

The GRangesList class is a container for storing a collection of GRanges objects. It is derived from
GenomicRangesList.

Constructors

GRangesList(...): Creates a GRangesList object using GRanges objects supplied in

makeGRangesListFromFeatureFragments(seqnames=Rle(factor()), fragmentStarts=list(), fragmentEnds=list(), fragmentWidths=list(), strand=character(0), sep=","):
Constructs a GRangesList object from a list of fragmented features. See the Examples section
below.

Coercion

In the code snippets below, x is a GRangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE): Creates a data.frame with columns
element (character), seqnames (factor), start (integer), end (integer), width (integer), strand
(factor), as well as the additional metadata columns (accessed with mcols(unlist(x))).

as.list(x, use.names = TRUE): Creates a list containing the elements of x.

as(x, "IRangesList"): Turns x into an IRangesList object.

as(from, "GRangesList"): Creates a GRangesList object from a RangedDataList object.

Accessors

In the following code snippets, x is a GRanges object.

seqnames(x), seqnames(x) <- value: Get or set the sequence names in the form of an RleList.
value can be an RleList or CharacterList.

ranges(x), ranges(x) <- value: Get or set the ranges in the form of a CompressedIRangesList.
value can be a RangesList object.

strand(x), strand(x) <- value: Get or set the strand in the form of an RleList. value can be an
RleList or CharacterList object.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. value can
be NULL, or a data.frame-like object (i.e. DataFrame or data.frame) holding element-wise
metadata.

elementMetadata(x), elementMetadata(x) <- value, values(x), values(x) <- value: Alterna-
tives to mcols functions. Their use is discouraged.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences. value
must be a Seqinfo object.

seqlevels(x), seqlevels(x, force=FALSE) <- value: Get or set the sequence levels. seqlevels(x)
is equivalent to seqlevels(seqinfo(x)) or to levels(seqnames(x)), those 2 expressions being
guaranteed to return identical character vectors on a GRangesList object. value must be a
character vector with no NAs. See ?seqlevels for more information.

42 GRangesList-class

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is equiv-
alent to seqlengths(seqinfo(x)). value can be a named non-negative integer or numeric vector
eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is equivalent
to isCircular(seqinfo(x)). value must be a named logical vector eventually with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each
sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by look-
ing up seqlevels(x) against a seqname style database stored in the seqnames.db metadata
package (required).

score(x): Get the “score” column from the element metadata, if any.

List methods

In the following code snippets, x is a GRangesList object.

length(x): Get the number of elements.

names(x), names(x) <- value: Get or set the names of the elements.

elementLengths(x): Get the length of each of the elements.

isEmpty(x): Returns a logical indicating either if the GRangesList has no elements or if all its
elements are empty.

RangesList methods

In the following code snippets, x is a GRangesList object.

start(x), start(x) <- value: Get or set start(ranges(x)).
end(x), end(x) <- value: Get or set end(ranges(x)).
width(x), width(x) <- value: Get or set width(ranges(x)).
shift(x, shift, use.names=TRUE): Returns a new GRangesList object containing intervals with

start and end values that have been shifted by integer vector shift. The use.names argument
determines whether or not to keep the names on the ranges.

isDisjoint(x) Return a vector of logical values indicating whether the ranges of each element of x
are disjoint (i.e. non-overlapping).

disjoin(x, ...) Returns an object of the same type as x containing disjoint ranges calculated on
each element of x.

Combining

In the code snippets below, x is a GRangesList object.

append(x, values, after = length(x)): Inserts the values into x at the position given by after,
where x and values are of the same class.

c(x, ...): Combines x and the GRangesList objects in ... together. Any object in ... must belong
to the same class as x, or to one of its subclasses, or must be NULL. The result is an object of
the same class as x.

unlist(x, recursive = TRUE, use.names = TRUE): Concatenates the elements of x into a single
GRanges object.

GRangesList-class 43

Subsetting

In the following code snippets, x is a GRangesList object.

x[i, j], x[i, j] <- value: Get or set elements i with optional metadata columns mcols(x)[,j], where
i can be missing; an NA-free logical, numeric, or character vector; a ’logical’ Rle object, or
an AtomicList object.

x[[i]], x[[i]] <- value: Get or set element i, where i is a numeric or character vector of length 1.

x$name, x$name <- value: Get or set element name, where name is a name or character vector
of length 1.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRangesList object. If n
is negative, returns all but the last abs(n) elements of the GRangesList object.

rep(x, times, length.out, each): Repeats the values in x through one of the following conven-
tions:

times Vector giving the number of times to repeat each element if of length length(x), or to
repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except that mul-
tiple consecutive subsequences can be requested for concatenation. As such two of the three
start, end, and width arguments can be used to specify the consecutive subsequences. Alter-
natively, start can take a Ranges object or something that can be converted to a Ranges object
like an integer vector, logical vector or logical Rle. If the concatenation of the consecutive
subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-, ex-
cept that multiple consecutive subsequences can be replaced by a value whose length is a
divisor of the number of elements it is replacing. As such two of the three start, end, and
width arguments can be used to specify the consecutive subsequences. Alternatively, start
can take a Ranges object or something that can be converted to a Ranges object like an integer
vector, logical vector or logical Rle.

subset(x, subset): Returns a new object of the same class as x made of the subset using logical
vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If n is
negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta = NULL, ...):
Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment within

the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value: Replaces
the subsequence window specified on the left (i.e. the subsequence in x specified by start, end
and width) by value. value must either be of class class(x), belong to a subclass of class(x),
be coercible to class(x), or be NULL. If keepLength is TRUE, the elements of value are
repeated to create a GRanges object with the same number of elements as the width of the
subsequence window it is replacing. If keepLength is FALSE, this replacement method can
modify the length of x, depending on how the length of the left subsequence window compares
to the length of value.

44 GRangesList-class

Looping

In the code snippets below, x is a GRangesList object.

endoapply(X, FUN, ...): Similar to lapply, but performs an endomorphism, i.e. returns an object
of class(X).

lapply(X, FUN, ...): Like the standard lapply function defined in the base package, the lapply
method for GRangesList objects returns a list of the same length as X, with each element
being the result of applying FUN to the corresponding element of X.

Map(f, ...): Applies a function to the corresponding elements of given GRangesList objects.

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE): Like
the standard mapply function defined in the base package, the mapply method for GRanges-
List objects is a multivariate version of sapply.

mendoapply(FUN, ..., MoreArgs = NULL): Similar to mapply, but performs an endomorphism
across multiple objects, i.e. returns an object of class(list(...)[[1]]).

Reduce(f, x, init, right = FALSE, accumulate = FALSE): Uses a binary function to succes-
sively combine the elements of x and a possibly given initial value.

f A binary argument function.
init An R object of the same kind as the elements of x.
right A logical indicating whether to proceed from left to right (default) or from right to left.
nomatch The value to be returned in the case when "no match" (no element satisfying the

predicate) is found.

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE): Like the standard sapply func-
tion defined in the base package, the sapply method for GRangesList objects is a user-friendly
version of lapply by default returning a vector or matrix if appropriate.

The "range", "reduce" and "restrict" methods

In the code snippets below, x is a GRangesList object. The methods in this section are isomor-
phisms, that is, they are endomorphisms (i.e. they preserve the class of x) who also preserve the
length & names & metadata columns of x. In addition, the seqinfo is preserved too.

range(x): Applies range to each element in x. More precisely, it is equivalent to endoapply(x, range).

reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L): Applies reduce to each element in
x. More precisely, it is equivalent to endoapply(x, reduce, drop.empty.ranges=drop.empty.ranges, min.gapwidth=min.gapwidth).

restrict(x, start = NA, end = NA, keep.all.ranges = FALSE, use.names = TRUE):
Applies restrict to each element in x.

flank(x, width, start = TRUE, end = NA, keep.all.ranges = FALSE, use.names = TRUE, ignore.strand = FALSE):
Applies flank to each element in x.

Author(s)

P. Aboyoun & H. Pages

See Also

GRanges-class, seqinfo, Vector-class, RangesList-class, RleList-class, DataFrameList-class, coverage-
methods, setops-methods, findOverlaps-methods

GRangesList-class 45

Examples

Construction with GRangesList():
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grl <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)
grl

Summarizing elements:
elementLengths(grl)
table(seqnames(grl))

Extracting subsets:
grl[seqnames(grl) == "chr1",]
grl[seqnames(grl) == "chr1" & strand(grl) == "+",]

Renaming the underlying sequences:
seqlevels(grl)
seqlevels(grl) <- sub("chr", "Chrom", seqlevels(grl))
grl

range() and reduce():
range(grl)
reduce(grl) # Doesn’t really reduce anything but note the reordering

of the inner elements in the 3rd top-level element: the
ranges are reordered by sequence name first (the order of
the sequence names is dictated by the sequence levels),
and then by strand.

restrict(grl, start=3)
flank
flank(grl, width =20)

Coerce to IRangesList (seqnames and strand information is lost):
as(grl, "IRangesList")

isDisjoint():
isDisjoint(grl)

disjoin():
disjoin(grl) # metadata columns and order NOT preserved

Construction with makeGRangesListFromFeatureFragments():
filepath <- system.file("extdata", "feature_frags.txt",

package="GenomicRanges")
featfrags <- read.table(filepath, header=TRUE, stringsAsFactors=FALSE)
grl2 <- with(featfrags,

makeGRangesListFromFeatureFragments(seqnames=targetName,
fragmentStarts=targetStart,

46 inter-range-methods

fragmentWidths=blockSizes,
strand=strand))

names(grl2) <- featfrags$RefSeqID
grl2

inter-range-methods Inter range transformations of a GenomicRanges object

Description

See ?‘intra-range-methods‘ and ?‘inter-range-methods‘ in the IRanges package for a quick in-
troduction to intra range and inter range transformations.

This man page documents inter range transformations of a GenomicRanges object (i.e. of an object
that belongs to the GenomicRanges class or one of its subclasses, this includes for example GRanges
objects).

See ?‘intra-range-methods‘ for intra range transformations of a GenomicRanges object.

Usage

S4 method for signature ’GenomicRanges’
range(x, ..., ignore.strand=FALSE, na.rm=FALSE)

S4 method for signature ’GenomicRanges’
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.inframe.attrib=FALSE, ignore.strand=FALSE)

S4 method for signature ’GenomicRanges’
gaps(x, start=1L, end=seqlengths(x))

S4 method for signature ’GenomicRanges’
disjoin(x, ignore.strand=FALSE)

S4 method for signature ’GenomicRanges’
isDisjoint(x, ignore.strand=FALSE)

S4 method for signature ’GenomicRanges’
disjointBins(x, ignore.strand=FALSE)

Arguments

x A GenomicRanges object.

start, end, drop.empty.ranges, min.gapwidth, with.inframe.attrib
See ?‘inter-range-methods‘.

ignore.strand TRUE or FALSE. Whether the strand of the input ranges should be ignored or
not. See details below.

... For range, additional GenomicRanges objects to consider. Ignored otherwise.

na.rm Ignored.

inter-range-methods 47

Details

range returns an object of the same type as x containing range bounds for each distinct (seqname,
strand) pairing. The names (names(x)) and the metadata columns in x are dropped.

reduce returns an object of the same type as x containing reduced ranges for each distinct (seqname,
strand) pairing. The names (names(x)) and the metadata columns in x are dropped. See ?reduce
for more information about range reduction and for a description of the optional arguments.

gaps returns an object of the same type as x containing complemented ranges for each distinct
(seqname, strand) pairing. The names (names(x)) and the columns in x are dropped. For the start
and end arguments of this gaps method, it is expected that the user will supply a named integer
vector (where the names correspond to the appropriate seqlevels). See ?gaps for more information
about range complements and for a description of the optional arguments.

disjoin returns an object of the same type as x containing disjoint ranges for each distinct (seqname,
strand) pairing. The names (names(x)) and the metadata columns in x are dropped.

isDisjoint returns a logical value indicating whether the ranges in x are disjoint (i.e. non-overlapping).

disjointBins returns bin indexes for the ranges in x, such that ranges in the same bin do not overlap.
If ignore.strand=FALSE, the two features cannot overlap if they are on different strands.

Author(s)

P. Aboyoun

See Also

• The GenomicRanges and GRanges classes.

• The Ranges class in the IRanges package.

• The inter-range-methods man page in the IRanges package.

Examples

gr <- GRanges(
seqnames=Rle(paste("chr", c(1, 2, 1, 3), sep=""), c(1, 3, 2, 4)),
ranges=IRanges(1:10, width=10:1, names=letters[1:10]),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10,
GC=seq(1, 0, length=10)

)
gr

range(gr)
reduce(gr)
gaps(gr, start = 1, end = 10)

disjoin(), isDisjoint(), disjointBins():
disjoin(gr)
isDisjoint(gr)
stopifnot(isDisjoint(disjoin(gr)))
disjointBins(gr)
stopifnot(all(sapply(split(gr, disjointBins(gr)), isDisjoint)))

48 intra-range-methods

intra-range-methods Intra range transformations of a GenomicRanges object

Description

See ?‘intra-range-methods‘ and ?‘inter-range-methods‘ in the IRanges package for a quick in-
troduction to intra range and inter range transformations.

This man page documents intra range transformations of a GenomicRanges object (i.e. of an object
that belongs to the GenomicRanges class or one of its subclasses, this includes for example GRanges
objects).

See ?‘inter-range-methods‘ for inter range transformations of a GenomicRanges object.

Usage

S4 method for signature ’GenomicRanges’
shift(x, shift=0L, use.names=TRUE)

S4 method for signature ’GenomicRanges’
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

S4 method for signature ’GenomicRanges’
flank(x, width, start=TRUE, both=FALSE,

use.names=TRUE, ignore.strand=FALSE)

S4 method for signature ’GenomicRanges’
resize(x, width, fix="start", use.names=TRUE,

ignore.strand=FALSE)

S4 method for signature ’GenomicRanges’
restrict(x, start=NA, end=NA, keep.all.ranges=FALSE,

use.names=TRUE)

Arguments

x A GenomicRanges object.
shift, use.names, start, end, width, both, fix, keep.all.ranges

See ?‘intra-range-methods‘.

ignore.strand TRUE or FALSE. Whether the strand of the input ranges should be ignored or
not. See details below.

Details

shift behaves like the shift method for Ranges objects. See ?‘intra-range-methods‘ for the details.

narrow behaves like the narrow method for Ranges objects. See ?‘intra-range-methods‘ for the
details.

flank returns an object of the same type and length as x containing intervals of width width that
flank the intervals in x. The start argument takes a logical indicating whether x should be flanked
at the "start" (TRUE) or the "end" (FALSE), which for strand(x) != "-" is start(x) and end(x)
respectively and for strand(x) == "-" is end(x) and start(x) respectively. The both argument

map-methods 49

takes a single logical value indicating whether the flanking region width positions extends into the
range. If both=TRUE, the resulting range thus straddles the end point, with width positions on
either side.

resize returns an object of the same type and length as x containing intervals that have been re-
sized to width width based on the strand(x) values. Elements where strand(x) == "+" or
strand(x) == "*" are anchored at start(x) and elements where strand(x) == "-" are anchored
at the end(x). The use.names argument determines whether or not to keep the names on the ranges.

restrict returns an object of the same type and length as x containing restricted ranges for distinct
seqnames. The start and end arguments can be a named numeric vector of seqnames for the ranges
to be resticted or a numeric vector or length 1 if the restriction operation is to be applied to all the
sequences in x. See ?‘intra-range-methods‘ for more information about range restriction and for
a description of the optional arguments.

Author(s)

P. Aboyoun

See Also

• The GenomicRanges and GRanges classes.

• The Ranges class in the IRanges package.

• The intra-range-methods man page in the IRanges package.

Examples

gr <- GRanges(
seqnames=Rle(paste("chr", c(1, 2, 1, 3), sep=""), c(1, 3, 2, 4)),
ranges=IRanges(1:10, width=10:1, names=letters[1:10]),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10,
GC=seq(1, 0, length=10)

)
gr

shift(gr, 1)
narrow(gr[-10], start=2, end=-2)
flank(gr, 10)
resize(gr, 10)
restrict(gr, start=3, end=7)

map-methods Mapping ranges between sequences

Description

The GenomicRanges package provides several methods for the map generic. They each translate a
set of input ranges through a certain type of alignment and return a RangesMapping object.

50 map-methods

Usage

S4 method for signature ’GenomicRanges,GRangesList’
map(from, to)
S4 method for signature ’GenomicRanges,GappedAlignments’
map(from, to)

Arguments

from The input ranges to map, usually a GenomicRanges

to The alignment between the sequences in from and the sequences in the result.

Details

The methods currently depend on the type of to:

GRangesList Each element is taken to represent an alignment of a sequence on a genome. The typ-
ical case is a set of transcript models, as might be obtained via GenomicFeatures::exonsBy.
The method translates the input ranges to be relative to the transcript start. This is useful, for
example, when predicting coding consequences of changes to the genomic sequence.

GappedAlignments Each element is taken to represent the alignment of a (read) sequence. The
CIGAR string is used to translate the input ranges to be relative to the read start. This is
useful, for example, when determining the cycle (read position) at which a particular genomic
mismatch occurs.

Value

An object of class RangesMapping. The GenomicRanges package provides some additional meth-
ods on this object:

as(from, "GenomicRanges"): Creates a GenomicRanges with seqnames and
ranges from the space and ranges of from. The hits are coerced to a DataFrame
and stored as the values of the result.

granges(x): Like the above, except returns just the range information as a
GRanges, without the matching information.

Author(s)

M. Lawrence

See Also

The RangesMapping class is the typical return value.

nearest-methods 51

nearest-methods Finding the nearest genomic range neighbor

Description

The nearest, precede and follow methods find nearest neighbors between GenomicRanges objects
(i.e. objects that belong to the GenomicRanges class or one of its subclasses, this includes for
example GRanges objects).

Usage

S4 method for signature ’GenomicRanges,GenomicRanges’
precede(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,missing’
precede(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,GenomicRanges’
follow(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,missing’
follow(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,GenomicRanges’
nearest(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,missing’
nearest(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,GenomicRanges’
distance(x, y, ignore.strand=FALSE, ...)

S4 method for signature ’GenomicRanges,GenomicRanges’
distanceToNearest(x, subject,

ignore.strand=FALSE, ...)
S4 method for signature ’GenomicRanges,missing’
distanceToNearest(x, subject,

ignore.strand=FALSE, ...)

Arguments

x, subject, y GenomicRanges objects.

select See ?‘nearest-methods‘.
ignore.strand TRUE or FALSE. Whether the strand of the input ranges should be ignored or

not. See details below.

52 nearest-methods

... Additional arguments for methods.

Details

precede identifies which subject(s) the query precedes. Returns the index of the range in subject
that is directly preceded by the range in x. When ignore.strand=TRUE, the strand for both x and
subject are set to "+". When select="arbitrary" an integer vector is returned with a single match
per x. If no match is found an NA is returned. When select="all" a Hits object is returned with
all matches for x. If x does not have a match in subject the x is not included in the Hits object.
Overlapping ranges are excluded. Matching by strand :

• x on + strand can match to ranges on both + and * strands. In the case of a tie the first range
by order is chosen.

• x on - strand can match to ranges on both - and * strands. In the case of a tie the first range by
order is chosen.

• x on * strand can match to ranges on any of +, - or * strands. In the case of a tie the first range
by order is chosen.

follow identifies which subject(s) the query follows. Returns the index of the interval in subject
that is directly followed by the range in x. When ignore.strand=TRUE, both x and subject strand
are set to "+". When select="arbitrary" an integer vector is returned with a single match per x. If
no match is found an NA is returned. When select="all" a Hits object is returned with all matches
for x. If x does not have a match in subject the x is not included in the Hits object. Overlapping
ranges are excluded. See the precede above for details of strand matching.

nearest does conventional nearest neighbor finding. It returns an integer vector containing the index
of the nearest neightbor range in subject for each range in x. If there is no nearest neighbor NA
is returned. If ignore.strand=TRUE, both x and subject strand are set to "+". nearest calls
precede and follow and thus the strand matching for * follows the conventions documented under
those functions.

distance calculates the number of positions separating two features. The value is zero if the features
overlap and NA if the features are on different sequences, or different strands (if ignore.strand is
FALSE).

distanceToNearest returns the distance for each range in x to its nearest neighbor in the subject.
If ignore.strand=TRUE, both x and subject strand are set to "+".

Author(s)

P. Aboyoun and V. Obenchain <vobencha@fhcrc.org>

See Also

• The GenomicRanges and GRanges classes.

• The Ranges and Hits classes in the IRanges package.

• The nearest-methods man page in the IRanges package.

• findOverlaps-methods for finding just the overlapping ranges.

Examples

--
precede() and follow()
--
query <- GRanges("A", IRanges(c(5, 20), width=1), strand="+")

phicoef 53

subject <- GRanges("A", IRanges(rep(c(10, 15), 2), width=1),
strand=c("+", "+", "-", "-"))

precede(query, subject)
follow(query, subject)

strand(query) <- "-"
precede(query, subject)
follow(query, subject)

ties choose first in order
query <- GRanges("A", IRanges(10, width=1), c("+", "-", "*"))
subject <- GRanges("A", IRanges(c(5, 5, 5, 15, 15, 15), width=1),

rep(c("+", "-", "*"), 2))
precede(query, subject)
precede(query, rev(subject))

--
nearest()
--
When multiple ranges overlap an "arbitrary" range is chosen
query <- GRanges("A", IRanges(5, 15))
subject <- GRanges("A", IRanges(c(1, 15), c(5, 19)))
nearest(query, subject)

select="all" returns all hits
nearest(query, subject, select="all")

Ranges in ’x’ will self-select when ’subject’ is present
query <- GRanges("A", IRanges(c(1, 10), width=5))
nearest(query, query)

Ranges in ’x’ will not self-select when ’subject’ is missing
nearest(query)

phicoef Calculate the "phi coefficient" between two binary variables

Description

The phicoef function calculates the "phi coefficient" between two binary variables.

Usage

phicoef(x, y=NULL)

Arguments

x, y Two logical vectors of the same length. If y is not supplied, x must be a 2x2
integer matrix (or an integer vector of length 4) representing the contingency
table of two binary variables.

Value

The "phi coefficient" between the two binary variables. This is a single numeric value ranging from
-1 to +1.

54 seqinfo

Author(s)

H. Pages

References

http://en.wikipedia.org/wiki/Phi_coefficient

Examples

set.seed(33)
x <- sample(c(TRUE, FALSE), 100, replace=TRUE)
y <- sample(c(TRUE, FALSE), 100, replace=TRUE)
phicoef(x, y)
phicoef(rep(x, 10), c(rep(x, 9), y))

stopifnot(phicoef(table(x, y)) == phicoef(x, y))
stopifnot(phicoef(y, x) == phicoef(x, y))
stopifnot(phicoef(x, !y) == - phicoef(x, y))
stopifnot(phicoef(x, x) == 1)

seqinfo Accessing sequence information

Description

A set of generic functions for getting/setting sequence information from/on an object.

Usage

seqinfo(x)
seqinfo(x, new2old=NULL, force=FALSE) <- value

seqnames(x)
seqnames(x) <- value

seqlevels(x)
seqlevels(x, force=FALSE) <- value

seqlengths(x)
seqlengths(x) <- value

isCircular(x)
isCircular(x) <- value

genome(x)
genome(x) <- value

seqnameStyle(x)
seqnameStyle(x) <- value

http://en.wikipedia.org/wiki/Phi_coefficient

seqinfo 55

Arguments

x The object from/on which to get/set the sequence information.
new2old The new2old argument allows the user to rename, drop, add and/or reorder the

"sequence levels" in x.
new2old can be NULL or an integer vector with one element per row in Seqinfo
object value (i.e. new2old and value must have the same length) describing how
the "new" sequence levels should be mapped to the "old" sequence levels, that is,
how the rows in value should be mapped to the rows in seqinfo(x). The values
in new2old must be >= 1 and <= length(seqinfo(x)). NAs are allowed and
indicate sequence levels that are being added. Old sequence levels that are not
represented in new2old will be dropped, but this will fail if those levels are in
use (e.g. if x is a GRanges object with ranges defined on those sequence levels)
unless force=TRUE is used (see below).
If new2old=NULL, then sequence levels can only be added to the existing ones,
that is, value must have at least as many rows as seqinfo(x) (i.e. length(values) >= length(seqinfo(x)))
and also seqlevels(values)[seq_len(length(seqlevels(x)))] must be identical to
seqlevels(x).

force Force dropping sequence levels currently in use. This is achieved by drop-
ping the elements in x where those levels are used (hence typically reducing
the length of x).

value Typically a Seqinfo object for the seqinfo setter.
Either a named or unnamed character vector for the seqlevels setter.
A vector containing the sequence information to store for the other setters.

Details

Various classes implement methods for those generic functions.

The Seqinfo class plays a central role for those generics because:

• It has methods for all those generics (except seqinfo). That is, the seqnames, seqlevels,
seqlengths, isCircular, genome and seqnameStyle getters and setters are defined for Seqinfo
objects.

• For classes that implement it, the seqinfo getter should return a Seqinfo object.
• Default seqlevels, seqlengths, isCircular, genome, and seqnameStyle getters and setters are

provided. By default, seqlevels(x) does seqlevels(seqinfo(x)), seqlengths(x) does seqlengths(seqinfo(x)),
isCircular(x) does isCircular(seqinfo(x)), genome(x) does genome(seqinfo(x)), and seqnameStyle(x)
does seqnameStyle(seqinfo(x)). So any class with a seqinfo getter will have all the above
getters work out-of-the-box. If, in addition, the class defines a seqinfo setter, then all the
corresponding setters will also work out-of-the-box.
See the GRanges, GRangesList, GappedAlignments, and GappedAlignmentPairs classes for
examples of classes that define the seqinfo getter and setter (those 4 classes are defined in the
GenomicRanges package).
See the TranscriptDb class (defined in the GenomicFeatures package) for an example of a
class that defines only the seqinfo getter (no setter).

The GenomicRanges package defines seqinfo and seqinfo<- methods for these low-level IRanges
data structures: List, RangesList and RangedData. Those objects do not have the means to
formally store sequence information. Thus, the wrappers simply store the Seqinfo object within
metadata(x). Initially, the metadata is empty, so there is some effort to generate a reasonable de-
fault Seqinfo. The names of any List are taken as the seqnames, and the universe of RangesList
or RangedData is taken as the genome.

56 Seqinfo-class

Note

The full list of methods defined for a given generic can be seen with e.g. showMethods("seqinfo")
or showMethods("seqnames") (for the getters), and showMethods("seqinfo<-") or showMethods("seqnames<-")
(for the setters aka replacement methods). Please be aware that this shows only methods defined in
packages that are currently attached.

See Also

• Seqinfo-class.

• GRanges-class.

• GRangesList-class.

• GappedAlignments-class.

• GappedAlignmentPairs-class.

• TranscriptDb-class.

Examples

showMethods("seqinfo")
showMethods("seqinfo<-")

showMethods("seqnames")
showMethods("seqnames<-")

if (interactive())
?‘GRanges-class‘

Seqinfo-class Seqinfo objects

Description

A Seqinfo object is a table-like object that contains basic information about a set of genomic se-
quences. The table has 1 row per sequence and 1 column per sequence attribute. Currently the only
attributes are the length, circularity flag, and genome provenance (e.g. hg19) of the sequence, but
more attributes might be added in the future as the need arises.

Details

Typically Seqinfo objects are not used directly but are part of higher level objects. Those higher
level objects will generally provide a seqinfo accessor for getting/setting their Seqinfo component.

Constructor

Seqinfo(seqnames, seqlengths=NA, isCircular=NA, genome=NA): Creates a Seqinfo object.

Seqinfo-class 57

Accessor methods

In the code snippets below, x is a Seqinfo object.

length(x): Return the number of sequences in x.

seqnames(x), seqnames(x) <- value: Get/set the names of the sequences in x. Those names
must be non-NA, non-empty and unique. They are also called the sequence levels or the keys
of the Seqinfo object.
Note that, in general, the end-user should not try to alter the sequence levels with seqnames(x) <- value.
The recommended way to do this is with seqlevels(x) <- value as described below.

names(x), names(x) <- value: Same as seqnames(x) and seqnames(x) <- value.

seqlevels(x): Same as seqnames(x).

seqlevels(x) <- value: Can be used to rename, drop, add and/or reorder the sequence levels. value
must be either a named or unnamed character vector. When value has names, the names only
serve the purpose of mapping the new sequence levels to the old ones. Otherwise (i.e. when
value is unnamed) this mapping is implicitly inferred from the following rules:
(1) If the number of new and old levels are the same, and if the positional mapping between
the new and old levels shows that some or all of the levels are being renamed, and if the levels
that are being renamed are renamed with levels that didn’t exist before (i.e. are not present in
the old levels), then seqlevels(x) <- value will just rename the sequence levels. Note that in
that case the result is the same as with seqnames(x) <- value but it’s still recommended to
use seqlevels(x) <- value as it is safer.
(2) Otherwise (i.e. if the conditions for (1) are not satisfied) seqlevels(x) <- value will
consider that the sequence levels are not being renamed and will just perform x <- x[value].
See below for some examples.

seqlengths(x), seqlengths(x) <- value: Get/set the length for each sequence in x.

isCircular(x), isCircular(x) <- value: Get/set the circularity flag for each sequence in x.

genome(x), genome(x) <- value: Get/set the genome identifier or assembly name for each se-
quence in x.

seqnameStyle(x): List the matching seqname styles for x. Note that this information is not stored
in x but inferred by looking up seqnames(x) against a seqname style database stored in the
seqnames.db metadata package (required).

Subsetting

In the code snippets below, x is a Seqinfo object.

x[i]: A Seqinfo object can be subsetted only by name i.e. i must be a character vector. This is a
convenient way to drop/add/reorder the rows (aka the sequence levels) of a Seqinfo object.
See below for some examples.

Coercion

In the code snippets below, x is a Seqinfo object.

as.data.frame(x): Turns x into a data frame.

as(x, "GRanges"), as(x, "GenomicRanges"), as(x, "RangesList"): Turns x (with no NA
lengths) into a GRanges or RangesList.

58 Seqinfo-class

Combining Seqinfo objects

There are no c or rbind method for Seqinfo objects. Both would be expected to just append the
rows in y to the rows in x resulting in an object of length length(x) + length(y). But that would
tend to break the constraint that the seqnames of a Seqinfo object must be unique keys.

So instead, a merge method is provided.

In the code snippet below, x and y are Seqinfo objects.

merge(x, y): Merge x and y into a single Seqinfo object where the keys (aka the seqnames) are
union(seqnames(x), seqnames(y)). If a row in y has the same key as a row in x, and if
the 2 rows contain compatible information (NA values are compatible with anything), then
they are merged into a single row in the result. If they cannot be merged (because they con-
tain different seqlengths, and/or circularity flags, and/or genome identifiers), then an error is
raised. In addition to check for incompatible sequence information, merge(x, y) also com-
pares seqnames(x) with seqnames(y) and issues a warning if each of them has names not in
the other. The purpose of these checks is to try to detect situations where the user might be
combining or comparing objects based on different reference genomes.

intersect(x, y): Finds the intersection between two Seqinfo objects by merging them and subset-
ting for the intersection of their sequence names. This makes it easy to avoid warnings about
the objects not being subsets of each other during overlap operations.

Author(s)

H. Pages

See Also

seqinfo

Examples

Note that all the arguments (except ’genome’) must have the
same length. ’genome’ can be of length 1, whatever the lengths
of the other arguments are.
x <- Seqinfo(seqnames=c("chr1", "chr2", "chr3", "chrM"),

seqlengths=c(100, 200, NA, 15),
isCircular=c(NA, FALSE, FALSE, TRUE),
genome="toy")

length(x)
seqnames(x)
names(x)
seqlevels(x)
seqlengths(x)
isCircular(x)
genome(x)
seqnameStyle(x) # UCSC

x[c("chrY", "chr3", "chr1")] # subset by names

Rename, drop, add and/or reorder the sequence levels:
xx <- x
seqlevels(xx) <- sub("chr", "ch", seqlevels(xx)) # rename
xx
seqlevels(xx) <- rev(seqlevels(xx)) # reorder
xx

setops-methods 59

seqlevels(xx) <- c("ch1", "ch2", "chY") # drop/add/reorder
xx
seqlevels(xx) <- c(chY="Y", ch1="1", "22") # rename/reorder/drop/add
xx

y <- Seqinfo(seqnames=c("chr3", "chr4", "chrM"),
seqlengths=c(300, NA, 15))

y
merge(x, y) # rows for chr3 and chrM are merged
suppressWarnings(merge(x, y))

Note that, strictly speaking, merging 2 Seqinfo objects is not
a commutative operation, i.e., in general ’z1 <- merge(x, y)’
is not identical to ’z2 <- merge(y, x)’. However ’z1’ and ’z2’
are guaranteed to contain the same information (i.e. the same
rows, but typically not in the same order):
suppressWarnings(merge(y, x))

This contradicts what ’x’ says about circularity of chr3 and chrM:
isCircular(y)[c("chr3", "chrM")] <- c(TRUE, FALSE)
y
if (interactive()) {
merge(x, y) # raises an error

}

setops-methods Set operations on GRanges/GRangesList/GappedAlignments objects

Description

Performs set operations on GRanges/GRangesList/GappedAlignments objects.

Usage

Set operations
S4 method for signature ’GRanges,GRanges’
union(x, y, ignore.strand=FALSE, ...)
S4 method for signature ’GRanges,GRanges’
intersect(x, y, ignore.strand=FALSE, ...)
S4 method for signature ’GRanges,GRanges’
setdiff(x, y, ignore.strand=FALSE, ...)

Parallel set operations
S4 method for signature ’GRanges,GRanges’
punion(x, y, fill.gap=FALSE, ignore.strand=FALSE, ...)
S4 method for signature ’GRanges,GRanges’
pintersect(x, y, resolve.empty=c("none", "max.start", "start.x"), ignore.strand=FALSE, ...)
S4 method for signature ’GappedAlignments,GRanges’
pintersect(x, y, ...)
S4 method for signature ’GRanges,GRanges’
psetdiff(x, y, ignore.strand=FALSE, ...)

60 setops-methods

Arguments

x, y For union, intersect, setdiff , pgap: x and y must both be GRanges objects.
For punion: one of x or y must be a GRanges object, the other one can be a
GRanges or GRangesList object.
For pintersect: one of x or y must be a GRanges object, the other one can be a
GRanges, GRangesList or GappedAlignments object.
For psetdiff: x and y can be any combination of GRanges and/or GRangesList
objects, with the exception that if x is a GRangesList object then y must be a
GRangesList too.
In addition, for the "parallel" operations, x and y must be of equal length (i.e.
length(x) == length(y)).

fill.gap Logical indicating whether or not to force a union by using the rule start = min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty One of "none", "max.start", or "start.x" denoting how to handle ambiguous
empty ranges formed by intersections. "none" - throw an error if an ambiguous
empty range is formed, "max.start" - associate the maximum start value with
any ambiguous empty range, and "start.x" - associate the start value of x with
any ambiguous empty range. (See pintersect for the definition of an ambiguous
range.)

ignore.strand For set operations: If set to TRUE, then the strand of x and y is set to "*" prior
to any computation.
For parallel set operations: If set to TRUE, the strand information is ignored in
the computation and the result has the strand information of x.

... Further arguments to be passed to or from other methods.

Details

The pintersect methods involving GRanges, GRangesList and/or GappedAlignments objects use
the triplet (sequence name, range, strand) to determine the element by element intersection of fea-
tures, where a strand value of "*" is treated as occurring on both the "+" and "-" strand.

The psetdiff methods involving GRanges and/or GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element set difference of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand.

Value

For union, intersect, setdiff , and pgap: a GRanges.

For punion and pintersect: when x or y is not a GRanges object, an object of the same class as this
non-GRanges object. Otherwise, a GRanges object.

For psetdiff: either a GRanges object when both x and y are GRanges objects, or a GRangesList
object when y is a GRangesList object.

Author(s)

P. Aboyoun

See Also

IRanges-setops, GRanges-class, GRangesList-class, GappedAlignments-class, findOverlaps-methods

setops-methods 61

Examples

A. SET OPERATIONS

x <- GRanges("chr1", IRanges(c(2, 9) , c(7, 19)), strand=c("+", "-"))
y <- GRanges("chr1", IRanges(5, 10), strand="-")

union(x, y)
union(x, y, ignore.strand=TRUE)

intersect(x, y)
intersect(x, y, ignore.strand=TRUE)

setdiff(x, y)
setdiff(x, y, ignore.strand=TRUE)

B. PARALLEL SET OPERATIONS

Not run:
punion(x, shift(x, 7)) # will fail

End(Not run)
punion(x, shift(x, 7), fill.gap=TRUE)

pintersect(x, shift(x, 6))
Not run:
pintersect(x, shift(x, 7)) # will fail

End(Not run)
pintersect(x, shift(x, 7), resolve.empty="max.start")

psetdiff(x, shift(x, 7))

C. MORE EXAMPLES

GRanges object:
gr <- GRanges(seqnames=c("chr2", "chr1", "chr1"),

ranges=IRanges(1:3, width = 12),
strand=Rle(strand(c("-", "*", "-"))))

GRangesList object
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6))
gr2 <- GRanges(seqnames=c("chr1", "chr1"),

ranges=IRanges(c(7,13), width = 3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grlist <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)

62 strand-utils

Parallel intersection of a GRanges and a GRangesList object
pintersect(gr, grlist)
pintersect(grlist, gr)

Parallel intersection of a GappedAlignments and a GRanges object
library(Rsamtools) # because file ex1.bam is in this package
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)
pintersect(galn, shift(as(galn, "GRanges"), 6L))

Parallel set difference of a GRanges and a GRangesList object
psetdiff(gr, grlist)

Parallel set difference of two GRangesList objects
psetdiff(grlist, shift(grlist, 3))

strand-utils Strand utilities

Description

Some useful strand methods.

Usage

S4 method for signature ’missing’
strand(x)
S4 method for signature ’character’
strand(x)
S4 method for signature ’factor’
strand(x)
S4 method for signature ’integer’
strand(x)
S4 method for signature ’logical’
strand(x)
S4 method for signature ’Rle’
strand(x)
S4 method for signature ’DataTable’
strand(x)
S4 replacement method for signature ’DataTable’
strand(x) <- value

Arguments

x The object from which to obtain a strand factor, can be missing.

value Replacement value for the strand.

Details

If x is missing, returns an empty factor with the standard levels that any strand factor should have:
+, -, and *.

If x is a character vector or factor, it is coerced to a factor with the levels listed above.

SummarizedExperiment-class 63

If x is an integer vector, it is coerced to a factor with the levels listed above. 1 and -1 values in x are
mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x is a logical vector, it is coerced to a factor with the levels listed above. FALSE and TRUE
values in x are mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x is a ’logical’-Rle vector, it is transformed with runValue(x) <- strand(runValue(x)) and
returned.

If x inherits from DataTable, the "strand" column is returned as a factor with the levels listed
above. If x has no "strand" column, this return value is populated with NAs.

Author(s)

Michael Lawrence

See Also

strand

Examples

strand()
strand(c("+", "-", NA, "*"))
strand(c(-1L, 1L, NA, -1L, NA))
strand(c(FALSE, FALSE, TRUE, NA, TRUE, FALSE))
strand(Rle(c(FALSE, FALSE, TRUE, NA, TRUE, FALSE)))

SummarizedExperiment-class
SummarizedExperiment instances

Description

The SummarizedExperiment class is an eSet-like container where rows represent ranges of in-
terest (as a GRanges-class) and columns represent samples (with sample data summarized as a
DataFrame-class). A SummarizedExperiment contains one or more assays, each represented by
a matrix of numeric or other mode.

Usage

Constructors

SummarizedExperiment(assays, ...)
S4 method for signature ’SimpleList’
SummarizedExperiment(assays, rowData = GRangesList(),

colData = DataFrame(), exptData = SimpleList(), ...,
verbose = FALSE)

S4 method for signature ’missing’
SummarizedExperiment(assays, ...)
S4 method for signature ’list’
SummarizedExperiment(assays, ...)
S4 method for signature ’matrix’

64 SummarizedExperiment-class

SummarizedExperiment(assays, ...)

Accessors

assays(x, ..., withDimnames=TRUE)
assays(x, ...) <- value
assay(x, i, ...)
assay(x, i, ...) <- value
rowData(x, ...)
rowData(x, ...) <- value
colData(x, ...)
colData(x, ...) <- value
exptData(x, ...)
exptData(x, ...) <- value
S4 method for signature ’SummarizedExperiment’
dim(x)
S4 method for signature ’SummarizedExperiment’
dimnames(x)
S4 replacement method for signature ’SummarizedExperiment,NULL’
dimnames(x) <- value
S4 replacement method for signature ’SummarizedExperiment,list’
dimnames(x) <- value

colData access

S4 method for signature ’SummarizedExperiment’
x$name
S4 replacement method for signature ’SummarizedExperiment,ANY’
x$name <- value
S4 method for signature ’SummarizedExperiment,ANY,missing’
x[[i, j, ...]]
S4 replacement method for signature ’SummarizedExperiment,ANY,missing,ANY’
x[[i, j, ...]] <- value

rowData access
see ’GRanges compatibility’, below

Subsetting

S4 method for signature ’SummarizedExperiment’
x[i, j, ..., drop=TRUE]
S4 replacement method for signature ’SummarizedExperiment,ANY,ANY,SummarizedExperiment’
x[i, j] <- value

Coercion

S4 method for signature ’SummarizedExperiment’
updateObject(object, ..., verbose=FALSE)

SummarizedExperiment-class 65

Arguments

assays A list or SimpleList of matrix elements, or a matrix. Each element of the
list must have the same dimensions, and dimension names (if present) must be
consistent across elements and with the row names of rowData, colData.

rowData A GRanges or GRangesList instance describing the ranges of interest. Row
names, if present, become the row names of the SummarizedExperiment. The
length of the GRanges or the GRangesList must equal the number of rows of
the matrices in assays.

colData An optional DataFrame describing the samples. Row names, if present, be-
come the column names of the SummarizedExperiment.

exptData An optional SimpleList of arbitrary content describing the overall experiment.

... For SummarizedExperiment, S4 methods list and matrix, arguments identical
to those of the SimpleList method.
For assay, ... may contain withNames, which is forwarded to assays.
For other accessors, ignored.

verbose A logical(1) indicating whether messages about data coercion during construc-
tion should be printed.

x, object An instance of SummarizedExperiment-class.

i, j For assay, assay<-, i is a integer or numeric scalar; see ‘Details’ for additional
constraints.
For [,SummarizedExperiment, [,SummarizedExperiment<-, i, j are instances
that can act to subset the underlying rowData, colData, and matrix elements
of assays.
For [[,SummarizedExperiment, [[<-,SummarizedExperiment, i is a scalar
index (e.g., character(1) or integer(1)) into a column of colData.

name A symbol representing the name of a column of colData.

withDimnames A logical(1), indicating whether dimnames should be applied to extracted assay
elements.

drop A logical(1), ignored by these methods.

value An instance of a class specified in the S4 method signature or as outlined in
‘Details’.

Details

The SummarizedExperiment class is meant for numeric and other data types derived from a se-
quencing experiment. The structure is rectangular, like an eSet in Biobase.

The rows of a SummarizedExperiment instance represent ranges (in genomic coordinates) of
interest. The ranges of interest are described by a GRanges-class or a GRangesList-class instance,
accessible using the rowData function, described below. The GRanges and GRangesList classes
contains sequence (e.g., chromosome) name, genomic coordinates, and strand information. Each
range can be annotated with additional data; this data might be used to describe the range (analogous
to annotations associated with genes in a eSet) or to summarize results (e.g., statistics of differential
abundance) relevant to the range. Rows may or may not have row names; they often will not.

Each column of a SummarizedExperiment instance represents a sample. Information about the
samples are stored in a DataFrame-class, accessible using the function colData, described below.
The DataFrame must have as many rows as there are columns in the SummarizedExperiment,
with each row of the DataFrame providing information on the sample in the corresponding column

66 SummarizedExperiment-class

of the SummarizedExperiment. Columns of the DataFrame represent different sample attributes,
e.g., tissue of origin, etc. Columns of the DataFrame can themselves be annotated (via the mcols
function) in a fashion similar to the varMetadata facilities of the eSet class. Column names typi-
cally provide a short identifier unique to each sample.

A SummarizedExperiment can also contain information about the overall experiment, for instance
the lab in which it was conducted, the publications with which it is associated, etc. This information
is stored as a SimpleList-class, accessible using the exptData function. The form of the data
associated with the experiment is left to the discretion of the user.

The SummarizedExperiment is appropriate for matrix-like data. The data are accessed using the
assays function, described below. This returns a SimpleList-class instance. Each element of the list
must itself be a matrix (of any mode) and must have dimensions that are the same as the dimensions
of the SummarizedExperiment in which they are stored. Row and column names of each matrix
must either be NULL or match those of the SummarizedExperiment during construction. It is
convenient for the elements of SimpleList of assays to be named.

The SummarizedExperiment class has the following slots; this detail of class structure is not
relevant to the user.

exptData A SimpleList-class instance containing information about the overall experiment.

rowData A GRanges-class instance defining the ranges of interest and associated metadata.

colData A DataFrame-class instance describing the samples and associated metadata.

assays A SimpleList-class instance, each element of which is a matrix summarizing data associated
with the corresponding range and sample.

Constructor

Instances are constructed using the SummarizedExperiment function with arguments outlined
above.

Coercion

Package version 1.9.59 introduced a new way of representing ‘assays’. If you have a serialized
instance x of a SummarizedExperiment (e.g., from using the save function with a version of
GenomicRanges prior to 1.9.59), it should be updated by invoking x <- updateObject(x).

Accessors

In the following code snippets, x is a SummarizedExperiment instance.

assays(x), assays(x) <- value: Get or set the assays. value is a list or SimpleList, each element
of which is a matrix with the same dimensions as x.

assay(x, i), assay(x, i) <- value: A convenient alternative (to assays(x)[[i]], assays(x)[[i]] <- value)
to get or set the ith (default first) assay element. value must be a matrix of the same dimension
as x, and with dimension names NULL or consistent with those of x.

rowData(x), rowData(x) <- value: Get or set the row data. value is a GenomicRanges instance.
Row names of value must be NULL or consistent with the existing row names of x.

colData(x), colData(x) <- value: Get or set the column data. value is a DataFrame instance.
Row names of value must be NULL or consistent with the existing column names of x.

exptData(x), exptData(x) <- value: Get or set the experiment data. value is a list or SimpleList
instance, with arbitrary content.

dim(x): Get the dimensions (ranges x samples) of the SummarizedExperiment.

SummarizedExperiment-class 67

dimnames(x), dimnames(x) <- value: Get or set the dimension names. value is usually a list
of length 2, containing elements that are either NULL or vectors of appropriate length for
the corresponding dimension. value can be NULL, which removes dimension names. This
method implies that rownames, rownames<-, colnames, and colnames<- are all available.

GRanges compatibility (rowData access)

Many GRanges-class operations are supported on ‘SummarizedExperiment’ and derived instances,
using rowData.

Supported operations include: compare, countOverlaps, coverage, disjointBins, distance, distanceToNearest,
duplicated, end, end<-, findOverlaps, flank, follow, granges, isDisjoint, match, mcols, mcols<-,
narrow, nearest, order, precede, ranges, ranges<-, rank, resize, restrict, seqinfo, seqinfo<-,
seqnames, shift, sort, start, start<-, strand, strand<-, width, width<-.

Not all GRanges-class operations are supported, because they do not make sense for ‘Summarized-
Experiment’ objects (e.g., length, name, as.data.frame, c, splitAsList), involve non-trivial combi-
nation or splitting of rows (e.g., disjoin, gaps, reduce, unique), or have not yet been implemented
(Ops, resolveHits, map, seqselect, seqselect<-, window, window<-).

Subsetting

In the code snippets below, x is a SummarizedExperiment instance.

x[i,j], x[i,j] <- value: Create or replace a subset of x. i, j can be numeric, logical, character,
or missing. value must be a SummarizedExperiment instance with dimensions, dimension
names, and assay elements consistent with the subset x[i,j] being replaced.

Additional subsetting accessors provide convenient access to colData columns

x$name, x$name <- value Access or replace column name in x.

x[[i, ...]], x[[i, ...]] <- value Access or replace column i in x.

Implementation and Extension

This section contains advanced material meant for package developers.

SummarizedExperiment is implemented as an S4 class, and can be extended in the usual way,
using contains="SummarizedExperiment" in the new class definition.

In addition, the representation of the assays slot of SummarizedExperiment is as a virtual class
Assays. This allows derived classes (contains="Assays") to easily implement alternative require-
ments for the assays, e.g., backed by file-based storage like NetCDF or the ff package, while
re-using the existing SummarizedExperiment class without modification. The requirements on
Assays are list-like semantics (e.g., sapply, [[subsetting, names) with elements having matrix-
or array-like semantics (e.g., dim, dimnames). These requirements can be made more precise if
developers express interest.

The current assays slot is implemented as a reference class that has copy-on-change semantics.
This means that modifying non-assay slots does not copy the (large) assay data, and at the same
time the user is not surprised by reference-based semantics. Updates to non-assay slots are very
fast; updating the assays slot itself can be 5x or more faster than with an S4 instance in the slot.

In a little more detail, a small reference class hierarchy (not exported from the GenomicRanges
name space) defines a reference class ShallowData with a single field data of type ANY, and
a derived class ShallowSimpleListAssays that specializes the type of data as SimpleList, and
contains=c("ShallowData", "Assays"). The assays slot contains an instance of ShallowSimpleListAssays.

68 summarizeOverlaps

Invoking assays() on a SummarizedExperiment re-dispatches from the assays slot to retrieve the
SimpleList from the field of the reference class. This was achieved by implementing a generic
(not exported) value(x, name, ...), with a method implemented on SummarizedExperiment that
retrieves a slot when name is a slot containing an S4 object in x, and a field when name is a slot con-
taining a ShallowData instance in x. Copy-on-change semantics is maintained by implementing
the clone method (clone methods are supposed to do a deep copy, update methods a shallow copy;
the clone generic is introduced, and not exported, in the GenomicRanges package). The ‘getter’
and ‘setter’ code for methods implemented on SummarizedExperiment use value for slot access,
and clone for replacement. This makes it easy to implement ShallowData instances for other slots
if the need arises.

Author(s)

Martin Morgan, mtmorgan@fhcrc.org

See Also

GRanges, DataFrame, SimpleList,

Examples

nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowData <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),

IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))

colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])

sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowData=rowData, colData=colData)

sset
assays(sset) <- endoapply(assays(sset), asinh)
head(assay(sset))

sset[, sset$Treatment == "ChIP"]

summarizeOverlaps Perform overlap queries between reads and genomic features

Description

summarizeOverlaps extends findOverlaps by providing options to resolve reads that overlap mul-
tiple features. Each read is counted a maximum of once.

Usage

S4 method for signature ’GRanges,GappedAlignments’
summarizeOverlaps(

features, reads, mode, ignore.strand=FALSE, ...)
S4 method for signature ’GRangesList,GappedAlignments’

summarizeOverlaps(
features, reads, mode, ignore.strand=FALSE, ...)

S4 method for signature ’GRanges,GappedAlignmentPairs’

mtmorgan@fhcrc.org

summarizeOverlaps 69

summarizeOverlaps(
features, reads, mode, ignore.strand=FALSE, ...)

S4 method for signature ’GRangesList,GappedAlignmentPairs’
summarizeOverlaps(

features, reads, mode, ignore.strand=FALSE, ...)

Arguments

features A GRanges or a GRangesList containing genomic regions of interest. This will
commonly be a GRanges of exons or transcripts or a GRangesList of exons by
gene or transcripts by gene.

reads A GappedAlignments (single-end), GappedAlignmentPairs (paired-end), or Bam-
FileList or BamViews objects containing the reads to be mapped to the genomic
regions of interest.
The BamFileList and BamViews methods can handle single or paired-end reads
by appropriately specifying the singleEnd argument. Currently singleEnd is set
once for all files in the list (i.e., the list cannot contain both single and paired-end
read files.). See ?summerizeOverlaps,GRanges,BamFileList-method.

mode Character name of a function that defines the counting method to be used.
Modes include ‘Union’, ‘IntersectionStrict’, or ‘IntersectionNotEmpty’ and are
designed after the counting modes in the HTSeq package by Simon Anders (see
references). All methods are gap-aware and count a read a maximum of once.
A user can provide their own count function as the mode argument when using
the BamFileList or BamViews methods.

• Union : (Default) Reads that overlap any portion of exactly one feature
are counted. Reads that overlap multiple features are discarded. For mode
‘Union’ gapped reads are handled the same as simple reads. If any portion
of the gapped read hits >1 feature the read is discarded.
The number of reads counted depends on the quality of the features (i.e.,
do the features overlap, have gaps, etc.). Of the three modes ‘Union’ tends
to be the most conservative and often resuts in the lowest number of read
counts. This is because the method does not attempt to resolve a read that
hits multiple subjects but simply discards them. Both ‘IntersectionStrict’
and ‘IntersectionNotEmpty’ have rules that attempt to assign a ‘multi-hit
read’ to a single feature.

• IntersectionStrict : The read must fall completely within a single feature to
be counted. A read can overlap multiple features but must fall within only
one. In the case of gapped reads, all portions of the read fragment must
fall within the same feature for the read to be counted. The fragments can
overlap multiple features but collectively they must fall within only one.

• IntersectionNotEmpty : For this counting mode, the features are partitioned
into unique disjoint regions. This is accomplished by disjoining the feature
ranges then removing ranges shared by more than one feature. The result is
a group of non-overlapping regions each of which belong to a single feature.
Simple and gapped reads are counted if,

– the read or exactly 1 of the read fragments overlaps a unique disjoint
region

– the read or >1 read fragments overlap >1 unique disjoint region from
the same feature

ignore.strand A logical value indicating if strand should be considered when matching.

70 summarizeOverlaps

... Additional arguments for other methods. If using multiple cores, you can pass
arguments in here to be used by mclapply to indicate the number of cores to use
etc.

Details

features : A ‘feature’ can be any portion of a genomic region such as a gene, transcript, exon etc.
When the features argument is a GRanges the rows define the features. The result will be the
same length as the GRanges. When features is a GRangesList the highest list-level defines
the features and the result will be the same length as the GRangesList.
Each count ‘mode’ attempts to assign a read that overlapps multiple features to a single feature.
If there are ranges that should be considered together (e.g., exons by transcript or cds regions
by gene) the GRangesList would be appropriate. If there is no grouping in the data then a
GRanges would be appropriate.

paired-end reads : Paired-end reads should be provided in a GappedAlignmentPairs container.
Paired-end reads are counted the same as single-end reads with gaps.
The BamFileList and BamViews methods have an additional argument, singleEnd, to indicate
if the bam files contain single or paired-end reads. See ?summarizeOverlaps,GRanges,BamFileList-method
for details.

Value

A SummarizedExperiment object. The assays slot holds the counts, rowData holds the features,
colData will either be NULL or hold any metadata that was present in the reads.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

References

HTSeq : http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

htseq-count : http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

See Also

• DESeq, DEXSeq and edgeR packages

• BamFileList and BamViews classes

• GappedAlignments and GappedAlignmentPairs classes

• readGappedAlignments and readGappedAlignmentPairs

Examples

reads <- GappedAlignments(
names = c("a","b","c","d","e","f","g"),
seqnames = Rle(c(rep(c("chr1", "chr2"), 3), "chr1")),
pos = as.integer(c(1400, 2700, 3400, 7100, 4000, 3100, 5200)),
cigar = c("500M", "100M", "300M", "500M", "300M",

"50M200N50M", "50M150N50M"),
strand = strand(rep("+", 7)))

’features’ as GRanges

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

summarizeOverlaps 71

##

features <- GRanges(
seqnames = c(rep("chr1", 7), rep("chr2", 4)), strand = "+",
ranges = IRanges(c(1000, 3000, 3600, 4000, 4000, 5000, 5400, 2000,

3000, 7000, 7500), width = c(500, 500, 300, 500, 900, 500, 500,
900, 500, 600, 300)),

group_id = c("A", "B", "C", "C", "D", "D", "E", "F", "G", "H", "H"))

Each row is a feature the read can ’hit’.
rowsAsFeatures <- data.frame(

union = assays(summarizeOverlaps(features, reads))$counts,
intStrict = assays(summarizeOverlaps(features, reads,

mode="IntersectionStrict"))$counts,
intNotEmpty = assays(summarizeOverlaps(features, reads,

mode="IntersectionNotEmpty"))$counts,
countOverlaps = countOverlaps(features, reads))

Results from countOverlaps() are included to highlight how
summarizeOverlaps() counts a read only once. For these 7
reads, ’Union’ is the most conservative counting mode, followed
by ’Intersectionstrict’ and then ’IntersectionNotEmpty’.

colSums(rowsAsFeatures)

’features’ as GRangesList
##

Each highest list-level is a feature the read can ’hit’.
lst <- split(features, mcols(features)[["group_id"]])
listAsFeatures <- data.frame(

union = assays(summarizeOverlaps(lst, reads))$counts,
intStrict = assays(summarizeOverlaps(lst, reads,

mode="IntersectionStrict"))$counts,
intNotEmpty = assays(summarizeOverlaps(lst, reads,

mode="IntersectionNotEmpty"))$counts,
countOverlaps = countOverlaps(lst, reads))

’reads’ as BamFileList
##

Count BAM files and prepare output for DESeq or edgeR analysis
library(Rsamtools)
library(DESeq)
library(edgeR)

fls <- list.files(system.file("extdata",package="GenomicRanges"),
recursive=TRUE, pattern="*bam$", full=TRUE)

names(fls) <- basename(fls)
bfl <- BamFileList(fls, index=character())

features <- GRanges(
seqnames = c(rep("chr2L", 4), rep("chr2R", 5), rep("chr3L", 2)),
ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600, 4000,

72 utils

7500, 5000, 5400), width=c(rep(500, 3), 600, 900, 500, 300, 900,
300, 500, 500)), "-",

group_id=c(rep("A", 4), rep("B", 5), rep("C", 2)))

solap <- summarizeOverlaps(features, bfl)

deseq <- newCountDataSet(assays(solap)$counts, rownames(colData(solap)))

edger <- DGEList(assays(solap)$counts, group=rownames(colData(solap)))

paired-end reads
##

library("TxDb.Dmelanogaster.UCSC.dm3.ensGene")
exbygene <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, "gene")
fl <- system.file("extdata", "untreated3_chr4.bam",

package="pasillaBamSubset")

Paired-end reads are stored in a GappedAlignmentPairs object
reads <- readGappedAlignmentPairs(fl)

res <- summarizeOverlaps(exbygene, reads, "Union")
stopifnot(length(assays(res)$counts) == length(exbygene))

utils seqlevels utility functions

Description

Rename or subset the seqlevels in a GenomicRanges, GRangesList or GappedAlignments object.

Usage

S4 method for signature ’GenomicRanges,character’
keepSeqlevels(x, value, ...)
S4 method for signature ’GenomicRanges,character’

renameSeqlevels(x, value, ...)

Arguments

x The GenomicRanges, GRangesList or GappedAlignments object in which the
seqlevels will be removed or renamed.

value For keepSeqlevels, a GRanges, GRangesList or GappedAlignments or charac-
ter vector. x is subset on the seqlevels in value.

For renameSeqlevels, a named character vector where the names are the ‘old’
and the values are the ‘new’ seqlevels.

... Arguments passed to other functions.

utils 73

Details

Many operations on GRanges objects require the seqlevels to match before a comparison can be
made (e.g., findOverlaps(type="within")). keepSeqlevels and renameSeqlevels are convenience
functions for subsetting and renaming the seqlevels of these objects.

keepSeqlevels subsets x based on the seqlevels provided in value. If value does not match any
seqlevels in x the original x is returned. When x is a GRangesList, there may be multiple chromo-
somes in a single list element. If not all chromosomes are specified in value, a reduced list element
is returned. All empty list elements are dropped. See examples.

renameSeqlevels renames the seqlevels in x to those provided in value. value is a named character
vector where the names are the ‘old’ seqlevel names and the values are the ‘new’. If no names in
value match the seqlevels in x the original x is returned.

Value

The x object with seqlevels removed or renamed. If x has no seqlevels (empty object) or no replace-
ment values match the current seqlevels in x the unchanged x is returned.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

VCF

Examples

gr1 <- GRanges(seqnames = c("chr1", "chr2"),
ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr2 <- GRanges(seqnames = c("chr1", "chr1", "chr2", "chr3", "chr3"),
ranges = IRanges(c(1, 4, 8, 9, 16), width=5),
strand = "-", score = c(3L, 2L, 5L, 6L, 2L),
GC = c(0.4, 0.1, 0.55, 0.20, 0.10))

gr3 <- GRanges(seqnames = c("CHROM4", "CHROM4"),
ranges = IRanges(c(20, 45), width=6),
strand = "+", score = c(2L, 5L), GC = c(0.30, 0.45))

GRanges :
gr3_rename <- renameSeqlevels(gr3, c(CHROM4="chr4"))
gr3_rename

gr2_subset_chr <- keepSeqlevels(gr2, c("chr1", "chr2"))
gr2_subset_gr <- keepSeqlevels(gr2, gr1)
identical(gr2_subset_chr, gr2_subset_gr)

GRangesList :
grl1 <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)
grl2 <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3_rename)
grl1_rename <- renameSeqlevels(grl1, c(CHROM4="chr4"))
identical(grl1_rename, grl2)

grl1_subset <- keepSeqlevels(grl1, "chr3")

74 utils

GappedAlignments :
library(Rsamtools)
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)

galn_rename <- renameSeqlevels(galn, c(seq2="chr2"))
galn_subset <- keepSeqlevels(galn_rename, gr1)
galn_subset

See ?VCF for examples using renameSeqlevels and keepSeqlevels with
VCF class objects

Index

∗Topic classes
Constraints, 7
GappedAlignmentPairs-class, 25
GappedAlignments-class, 29
Seqinfo-class, 56

∗Topic manip
cigar-utils, 2
phicoef, 53

∗Topic methods
Constraints, 7
countGenomicOverlaps, 12
coverage-methods, 15
encodeOverlaps-methods, 17
findOverlaps-methods, 20
findSpliceOverlaps, 23
GappedAlignmentPairs-class, 25
GappedAlignments-class, 29
GenomicRanges-comparison, 35
seqinfo, 54
Seqinfo-class, 56
setops-methods, 59
strand-utils, 62
summarizeOverlaps, 68
utils, 72

∗Topic utilities
countGenomicOverlaps, 12
coverage-methods, 15
encodeOverlaps-methods, 17
findOverlaps-methods, 20
findSpliceOverlaps, 23
inter-range-methods, 46
intra-range-methods, 48
nearest-methods, 51
setops-methods, 59
summarizeOverlaps, 68
utils, 72

<,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison), 35

<=,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison), 35

==,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison), 35

>,GenomicRanges,GenomicRanges-method

(GenomicRanges-comparison), 35
>=,GenomicRanges,GenomicRanges-method

(GenomicRanges-comparison), 35
[,GRangesList-method (GRangesList-class),

41
[,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
[,GappedAlignments-method

(GappedAlignments-class), 29
[,GenomicRanges-method (GRanges-class),

36
[,Seqinfo-method (Seqinfo-class), 56
[,SummarizedExperiment-method

(SummarizedExperiment-class),
63

[<-,GRangesList,ANY,ANY,ANY-method
(GRangesList-class), 41

[<-,GenomicRanges,ANY,ANY,ANY-method
(GRanges-class), 36

[<-,SummarizedExperiment,ANY,ANY,SummarizedExperiment-method
(SummarizedExperiment-class),
63

[[,GappedAlignmentPairs,ANY,ANY-method
(GappedAlignmentPairs-class), 25

[[,SummarizedExperiment,ANY,missing-method
(SummarizedExperiment-class),
63

[[<-,GRangesList,ANY,ANY-method
(GRangesList-class), 41

[[<-,GRangesList-method
(GRangesList-class), 41

[[<-,SummarizedExperiment,ANY,missing,ANY-method
(SummarizedExperiment-class),
63

[[<-,SummarizedExperiment,ANY,missing-method
(SummarizedExperiment-class),
63

$,GenomicRanges-method (GRanges-class),
36

$,SummarizedExperiment-method
(SummarizedExperiment-class),
63

$<-,GenomicRanges-method

75

76 INDEX

(GRanges-class), 36
$<-,SummarizedExperiment,ANY-method

(SummarizedExperiment-class),
63

$<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

%in%,ANY,GappedAlignments-method
(findOverlaps-methods), 20

%in%,GRangesList,GRangesList-method
(findOverlaps-methods), 20

%in%,GRangesList,GenomicRanges-method
(findOverlaps-methods), 20

%in%,GRangesList,RangedData-method
(findOverlaps-methods), 20

%in%,GRangesList,RangesList-method
(findOverlaps-methods), 20

%in%,GappedAlignmentPairs,ANY-method
(findOverlaps-methods), 20

%in%,GappedAlignments,ANY-method
(findOverlaps-methods), 20

%in%,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 20

%in%,GenomicRanges,GRangesList-method
(findOverlaps-methods), 20

%in%,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 20

%in%,GenomicRanges,RangedData-method
(findOverlaps-methods), 20

%in%,GenomicRanges,RangesList-method
(findOverlaps-methods), 20

%in%,RangedData,GRangesList-method
(findOverlaps-methods), 20

%in%,RangedData,GenomicRanges-method
(findOverlaps-methods), 20

%in%,RangesList,GRangesList-method
(findOverlaps-methods), 20

%in%,RangesList,GenomicRanges-method
(findOverlaps-methods), 20

as.data.frame,GappedAlignments-method
(GappedAlignments-class), 29

as.data.frame,GenomicRanges-method
(GRanges-class), 36

as.data.frame,GRangesList-method
(GRangesList-class), 41

as.data.frame,Seqinfo-method
(Seqinfo-class), 56

assay (SummarizedExperiment-class), 63
assay,SummarizedExperiment,ANY-method

(SummarizedExperiment-class),
63

assay,SummarizedExperiment,character-method
(SummarizedExperiment-class),
63

assay,SummarizedExperiment,missing-method
(SummarizedExperiment-class),
63

assay,SummarizedExperiment,numeric-method
(SummarizedExperiment-class),
63

assay<- (SummarizedExperiment-class), 63
assay<-,SummarizedExperiment,character,matrix-method

(SummarizedExperiment-class),
63

assay<-,SummarizedExperiment,missing,matrix-method
(SummarizedExperiment-class),
63

assay<-,SummarizedExperiment,numeric,matrix-method
(SummarizedExperiment-class),
63

assays (SummarizedExperiment-class), 63
assays,SummarizedExperiment-method

(SummarizedExperiment-class),
63

Assays-class
(SummarizedExperiment-class),
63

assays<- (SummarizedExperiment-class),
63

assays<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
63

assays<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
63

BamFile, 23
BamFileList, 69, 70
BamViews, 69, 70

c,GappedAlignments-method
(GappedAlignments-class), 29

c,GenomicRanges-method (GRanges-class),
36

checkConstraint (Constraints), 7
cigar (GappedAlignments-class), 29
cigar,GappedAlignments-method

(GappedAlignments-class), 29
cigar-utils, 2
cigarNarrow (cigar-utils), 2
cigarOpTable (cigar-utils), 2
cigarQNarrow (cigar-utils), 2
cigarToCigarTable (cigar-utils), 2
cigarToIRanges (cigar-utils), 2

INDEX 77

cigarToIRangesListByAlignment
(cigar-utils), 2

cigarToIRangesListByRName (cigar-utils),
2

cigarToQWidth (cigar-utils), 2
cigarToRleList (cigar-utils), 2
cigarToWidth (cigar-utils), 2
class:Constraint (Constraints), 7
class:ConstraintORNULL (Constraints), 7
class:GappedAlignmentPairs

(GappedAlignmentPairs-class), 25
class:GappedAlignments

(GappedAlignments-class), 29
class:GenomicRanges (GRanges-class), 36
class:GenomicRangesList

(GenomicRangesList-class), 36
class:GRanges (GRanges-class), 36
class:GRangesList (GRangesList-class), 41
class:Seqinfo (Seqinfo-class), 56
class:SimpleGenomicRangesList

(GenomicRangesList-class), 36
coerce,GappedAlignmentPairs,GRangesList-method

(GappedAlignmentPairs-class), 25
coerce,GappedAlignments,GRanges-method

(GappedAlignments-class), 29
coerce,GappedAlignments,GRangesList-method

(GappedAlignments-class), 29
coerce,GappedAlignments,Ranges-method

(GappedAlignments-class), 29
coerce,GappedAlignments,RangesList-method

(GappedAlignments-class), 29
coerce,GenomicRanges,GappedAlignments-method

(GRanges-class), 36
coerce,GenomicRanges,RangedData-method

(GRanges-class), 36
coerce,GenomicRanges,RangesList-method

(GRanges-class), 36
coerce,GRangesList,CompressedIRangesList-method

(GRangesList-class), 41
coerce,GRangesList,IRangesList-method

(GRangesList-class), 41
coerce,RangedData,GRanges-method

(GRanges-class), 36
coerce,RangedDataList,GenomicRangesList-method

(GenomicRangesList-class), 36
coerce,RangedDataList,GRangesList-method

(GRangesList-class), 41
coerce,RangesList,GRanges-method

(GRanges-class), 36
coerce,RangesMapping,GenomicRanges-method

(map-methods), 49
coerce,RleList,GRanges-method

(GRanges-class), 36
coerce,RleViewsList,GRanges-method

(GRanges-class), 36
coerce,Seqinfo,GenomicRanges-method

(Seqinfo-class), 56
coerce,Seqinfo,GRanges-method

(Seqinfo-class), 56
coerce,Seqinfo,RangesList-method

(Seqinfo-class), 56
colData (SummarizedExperiment-class), 63
colData,SummarizedExperiment-method

(SummarizedExperiment-class),
63

colData<- (SummarizedExperiment-class),
63

colData<-,SummarizedExperiment,DataFrame-method
(SummarizedExperiment-class),
63

compare, 67
compare,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

compare,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison), 35

compare,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

compare,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

CompressedIRangesList, 4, 32
CompressedIRangesList-class, 33
CompressedRleList, 4
Constraint (Constraints), 7
constraint (Constraints), 7
Constraint-class (Constraints), 7
constraint<- (Constraints), 7
ConstraintORNULL (Constraints), 7
ConstraintORNULL-class (Constraints), 7
Constraints, 7
countCompatibleOverlaps

(encodeOverlaps-methods), 17
countGenomicOverlaps, 12
countOverlaps, 67
countOverlaps,ANY,GappedAlignments-method

(findOverlaps-methods), 20
countOverlaps,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

countOverlaps,GappedAlignmentPairs,ANY-method
(findOverlaps-methods), 20

countOverlaps,GappedAlignments,ANY-method

78 INDEX

(findOverlaps-methods), 20
countOverlaps,GappedAlignments,GappedAlignments-method

(findOverlaps-methods), 20
countOverlaps,GenomicRanges,GenomicRanges-method

(findOverlaps-methods), 20
countOverlaps,GenomicRanges,GRangesList-method

(findOverlaps-methods), 20
countOverlaps,GenomicRanges,RangedData-method

(findOverlaps-methods), 20
countOverlaps,GenomicRanges,RangesList-method

(findOverlaps-methods), 20
countOverlaps,GRangesList,GenomicRanges-method

(findOverlaps-methods), 20
countOverlaps,GRangesList,GRangesList-method

(findOverlaps-methods), 20
countOverlaps,GRangesList,RangedData-method

(findOverlaps-methods), 20
countOverlaps,GRangesList,RangesList-method

(findOverlaps-methods), 20
countOverlaps,RangedData,GenomicRanges-method

(findOverlaps-methods), 20
countOverlaps,RangedData,GRangesList-method

(findOverlaps-methods), 20
countOverlaps,RangesList,GenomicRanges-method

(findOverlaps-methods), 20
countOverlaps,RangesList,GRangesList-method

(findOverlaps-methods), 20
countOverlaps,SummarizedExperiment,ANY-method

(SummarizedExperiment-class),
63

countOverlaps,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

coverage, 5, 15, 16, 67
coverage,GappedAlignmentPairs-method

(coverage-methods), 15
coverage,GappedAlignments-method

(coverage-methods), 15
coverage,GenomicRanges-method

(coverage-methods), 15
coverage,GRangesList-method

(coverage-methods), 15
coverage,SummarizedExperiment-method

(SummarizedExperiment-class),
63

coverage-methods, 15, 28, 33, 40, 44

DataFrame, 4, 36–38, 41, 63, 65, 66, 68
DataFrame-class, 40
DataFrameList-class, 44
DataTable, 37
dim,SummarizedExperiment-method

(SummarizedExperiment-class),

63
dimnames,SummarizedExperiment-method

(SummarizedExperiment-class),
63

dimnames<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
63

dimnames<-,SummarizedExperiment,NULL-method
(SummarizedExperiment-class),
63

disjoin,GenomicRanges-method
(inter-range-methods), 46

disjoin,GRangesList-method
(GRangesList-class), 41

disjointBins, 67
disjointBins,GenomicRanges-method

(inter-range-methods), 46
disjointBins,SummarizedExperiment-method

(SummarizedExperiment-class),
63

distance, 67
distance,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

distance,GenomicRanges,GenomicRanges-method
(nearest-methods), 51

distance,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

distance,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

distanceToNearest, 67
distanceToNearest,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

distanceToNearest,GenomicRanges,GenomicRanges-method
(nearest-methods), 51

distanceToNearest,GenomicRanges,missing-method
(nearest-methods), 51

distanceToNearest,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

distanceToNearest,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

duplicated, 67
duplicated,GenomicRanges-method

(GenomicRanges-comparison), 35
duplicated,SummarizedExperiment-method

(SummarizedExperiment-class),
63

INDEX 79

elementMetadata,GRangesList-method
(GRangesList-class), 41

elementMetadata,SummarizedExperiment-method
(SummarizedExperiment-class),
63

elementMetadata<-,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

elementMetadata<-,GappedAlignments-method
(GappedAlignments-class), 29

elementMetadata<-,GenomicRanges-method
(GRanges-class), 36

elementMetadata<-,GRangesList-method
(GRangesList-class), 41

elementMetadata<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

encodeOverlaps, 18
encodeOverlaps,GRangesList,GRangesList-method

(encodeOverlaps-methods), 17
encodeOverlaps-methods, 17
end, 67
end,GappedAlignments-method

(GappedAlignments-class), 29
end,GenomicRanges-method

(GRanges-class), 36
end,GRangesList-method

(GRangesList-class), 41
end,SummarizedExperiment-method

(SummarizedExperiment-class),
63

end<-,GenomicRanges-method
(GRanges-class), 36

end<-,GRangesList-method
(GRangesList-class), 41

end<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

exptData (SummarizedExperiment-class),
63

exptData,SummarizedExperiment-method
(SummarizedExperiment-class),
63

exptData<-
(SummarizedExperiment-class),
63

exptData<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
63

exptData<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
63

extractQueryStartInTranscript

(encodeOverlaps-methods), 17
extractSkippedExonRanks

(encodeOverlaps-methods), 17
extractSkippedExonRanks,character-method

(encodeOverlaps-methods), 17
extractSkippedExonRanks,factor-method

(encodeOverlaps-methods), 17
extractSkippedExonRanks,OverlapEncodings-method

(encodeOverlaps-methods), 17
extractSpannedExonRanks

(encodeOverlaps-methods), 17
extractSpannedExonRanks,character-method

(encodeOverlaps-methods), 17
extractSpannedExonRanks,factor-method

(encodeOverlaps-methods), 17
extractSpannedExonRanks,OverlapEncodings-method

(encodeOverlaps-methods), 17
extractSteppedExonRanks

(encodeOverlaps-methods), 17
extractSteppedExonRanks,character-method

(encodeOverlaps-methods), 17
extractSteppedExonRanks,factor-method

(encodeOverlaps-methods), 17
extractSteppedExonRanks,OverlapEncodings-method

(encodeOverlaps-methods), 17

findCompatibleOverlaps
(encodeOverlaps-methods), 17

findCompatibleOverlaps,GappedAlignmentPairs,GRangesList-method
(encodeOverlaps-methods), 17

findCompatibleOverlaps,GappedAlignments,GRangesList-method
(encodeOverlaps-methods), 17

findOverlaps, 13, 19–21, 67
findOverlaps,ANY,GappedAlignments-method

(findOverlaps-methods), 20
findOverlaps,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

findOverlaps,GappedAlignmentPairs,ANY-method
(findOverlaps-methods), 20

findOverlaps,GappedAlignments,ANY-method
(findOverlaps-methods), 20

findOverlaps,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 20

findOverlaps,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 20

findOverlaps,GenomicRanges,GRangesList-method
(findOverlaps-methods), 20

findOverlaps,GenomicRanges,RangedData-method
(findOverlaps-methods), 20

findOverlaps,GenomicRanges,RangesList-method
(findOverlaps-methods), 20

80 INDEX

findOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 20

findOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 20

findOverlaps,GRangesList,RangedData-method
(findOverlaps-methods), 20

findOverlaps,GRangesList,RangesList-method
(findOverlaps-methods), 20

findOverlaps,RangedData,GenomicRanges-method
(findOverlaps-methods), 20

findOverlaps,RangedData,GRangesList-method
(findOverlaps-methods), 20

findOverlaps,RangesList,GenomicRanges-method
(findOverlaps-methods), 20

findOverlaps,RangesList,GRangesList-method
(findOverlaps-methods), 20

findOverlaps,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

findOverlaps,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

findOverlaps-methods, 20, 28, 33, 40, 44, 52,
60

findSpliceOverlaps, 23
findSpliceOverlaps,GappedAlignmentPairs,GRangesList-method

(findSpliceOverlaps), 23
findSpliceOverlaps,GappedAlignments,GRangesList-method

(findSpliceOverlaps), 23
findSpliceOverlaps,GRangesList,GRangesList-method

(findSpliceOverlaps), 23
findSpliceOverlaps-methods

(findSpliceOverlaps), 23
first (GappedAlignmentPairs-class), 25
first,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
flank, 67
flank,GenomicRanges-method

(intra-range-methods), 48
flank,GRangesList-method

(GRangesList-class), 41
flank,SummarizedExperiment-method

(SummarizedExperiment-class),
63

flipQuery (encodeOverlaps-methods), 17
follow, 67
follow,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

follow,GenomicRanges,GenomicRanges-method
(nearest-methods), 51

follow,GenomicRanges,missing-method

(nearest-methods), 51
follow,SummarizedExperiment,ANY-method

(SummarizedExperiment-class),
63

follow,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

GappedAlignmentPairs, 15, 16, 18–21, 23,
24, 30, 55, 69, 70

GappedAlignmentPairs
(GappedAlignmentPairs-class), 25

GappedAlignmentPairs-class, 16, 21, 25, 33,
56

GappedAlignments, 13, 15, 16, 18–21, 23,
24, 26, 27, 55, 60, 69, 70, 72

GappedAlignments
(GappedAlignments-class), 29

GappedAlignments-class, 16, 21, 28, 29, 56,
60

gaps, 47
gaps,GenomicRanges-method

(inter-range-methods), 46
genome (seqinfo), 54
genome,ANY-method (seqinfo), 54
genome,Seqinfo-method (Seqinfo-class), 56
genome<- (seqinfo), 54
genome<-,ANY-method (seqinfo), 54
genome<-,Seqinfo-method (Seqinfo-class),

56
GenomicRanges, 8, 35, 36, 46–52, 72
GenomicRanges (GRanges-class), 36
GenomicRanges-class, 8, 35
GenomicRanges-class (GRanges-class), 36
GenomicRanges-comparison, 35
GenomicRangesList

(GenomicRangesList-class), 36
GenomicRangesList-class, 36
GenomicRangesORGRangesList-class

(GRanges-class), 36
GenomicRangesORmissing-class

(GRanges-class), 36
GRanges, 13, 15, 16, 20, 21, 23, 32, 46–49,

51, 52, 55, 60, 63, 65–70, 72, 73
GRanges (GRanges-class), 36
granges, 67
granges (GappedAlignments-class), 29
granges,GappedAlignments-method

(GappedAlignments-class), 29
granges,RangesMapping-method

(map-methods), 49
granges,SummarizedExperiment-method

(SummarizedExperiment-class),

INDEX 81

63
GRanges-class, 16, 21, 28, 33, 36, 44, 56, 60
GRangesList, 13, 15–21, 23, 24, 28, 32, 36,

38, 55, 60, 65, 69, 70, 72, 73
GRangesList (GRangesList-class), 41
GRangesList-class, 16, 21, 28, 33, 40, 41, 56,

60
grg (GappedAlignments-class), 29
grglist (GappedAlignments-class), 29
grglist,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
grglist,GappedAlignments-method

(GappedAlignments-class), 29

Hits, 18, 21, 24, 52
Hits-class, 21

inter-range-methods, 40, 46, 47
intersect,GRanges,GRanges-method

(setops-methods), 59
intersect,Seqinfo,Seqinfo-method

(Seqinfo-class), 56
IntersectionNotEmpty

(summarizeOverlaps), 68
IntersectionStrict (summarizeOverlaps), 68
intra-range-methods, 40, 48, 49
introns (GappedAlignments-class), 29
introns,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
introns,GappedAlignments-method

(GappedAlignments-class), 29
IRanges, 4, 16, 32, 36
IRanges-class, 5
IRanges-setops, 60
IRangesList, 4, 41
IRangesList-class, 5
is, 8
isCircular (seqinfo), 54
isCircular,ANY-method (seqinfo), 54
isCircular,Seqinfo-method (Seqinfo-class),

56
isCircular<- (seqinfo), 54
isCircular<-,ANY-method (seqinfo), 54
isCircular<-,Seqinfo-method

(Seqinfo-class), 56
isCompatibleWithSkippedExons

(encodeOverlaps-methods), 17
isCompatibleWithSkippedExons,character-method

(encodeOverlaps-methods), 17
isCompatibleWithSkippedExons,factor-method

(encodeOverlaps-methods), 17
isCompatibleWithSkippedExons,OverlapEncodings-method

(encodeOverlaps-methods), 17

isCompatibleWithSplicing
(encodeOverlaps-methods), 17

isCompatibleWithSplicing,character-method
(encodeOverlaps-methods), 17

isCompatibleWithSplicing,factor-method
(encodeOverlaps-methods), 17

isCompatibleWithSplicing,OverlapEncodings-method
(encodeOverlaps-methods), 17

isDisjoint, 67
isDisjoint,GenomicRanges-method

(inter-range-methods), 46
isDisjoint,GRangesList-method

(GRangesList-class), 41
isDisjoint,SummarizedExperiment-method

(SummarizedExperiment-class),
63

isProperPair
(GappedAlignmentPairs-class), 25

isProperPair,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

keepSeqlevels (utils), 72
keepSeqlevels,GappedAlignments,character-method

(utils), 72
keepSeqlevels,GappedAlignments,GappedAlignments-method

(utils), 72
keepSeqlevels,GappedAlignments,GenomicRanges-method

(utils), 72
keepSeqlevels,GappedAlignments,GRangesList-method

(utils), 72
keepSeqlevels,GenomicRanges,character-method

(utils), 72
keepSeqlevels,GenomicRanges,GappedAlignments-method

(utils), 72
keepSeqlevels,GenomicRanges,GenomicRanges-method

(utils), 72
keepSeqlevels,GenomicRanges,GRangesList-method

(utils), 72
keepSeqlevels,GRangesList,character-method

(utils), 72
keepSeqlevels,GRangesList,GappedAlignments-method

(utils), 72
keepSeqlevels,GRangesList,GenomicRanges-method

(utils), 72
keepSeqlevels,GRangesList,GRangesList-method

(utils), 72

lapply, 44
last (GappedAlignmentPairs-class), 25
last,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
left (GappedAlignmentPairs-class), 25

82 INDEX

left,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

length,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

length,GappedAlignments-method
(GappedAlignments-class), 29

length,GenomicRanges-method
(GRanges-class), 36

length,Seqinfo-method (Seqinfo-class), 56
List, 36

makeGappedAlignmentPairs, 27, 28
makeGRangesListFromFeatureFragments

(GRangesList-class), 41
map, 49
map,GenomicRanges,GappedAlignments-method

(map-methods), 49
map,GenomicRanges,GRangesList-method

(map-methods), 49
map-methods, 49
mapply, 44
match, 67
match,ANY,GappedAlignments-method

(findOverlaps-methods), 20
match,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

match,GappedAlignmentPairs,ANY-method
(findOverlaps-methods), 20

match,GappedAlignments,ANY-method
(findOverlaps-methods), 20

match,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 20

match,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 20

match,GenomicRanges,GRangesList-method
(findOverlaps-methods), 20

match,GenomicRanges,RangedData-method
(findOverlaps-methods), 20

match,GenomicRanges,RangesList-method
(findOverlaps-methods), 20

match,GRangesList,GenomicRanges-method
(findOverlaps-methods), 20

match,GRangesList,GRangesList-method
(findOverlaps-methods), 20

match,GRangesList,RangedData-method
(findOverlaps-methods), 20

match,GRangesList,RangesList-method
(findOverlaps-methods), 20

match,RangedData,GenomicRanges-method
(findOverlaps-methods), 20

match,RangedData,GRangesList-method
(findOverlaps-methods), 20

match,RangesList,GenomicRanges-method
(findOverlaps-methods), 20

match,RangesList,GRangesList-method
(findOverlaps-methods), 20

match,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

match,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

mcols, 66, 67
mcols,SummarizedExperiment-method

(SummarizedExperiment-class),
63

mcols<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

merge,missing,Seqinfo-method
(Seqinfo-class), 56

merge,NULL,Seqinfo-method
(Seqinfo-class), 56

merge,Seqinfo,missing-method
(Seqinfo-class), 56

merge,Seqinfo,NULL-method
(Seqinfo-class), 56

merge,Seqinfo,Seqinfo-method
(Seqinfo-class), 56

names, 30
names,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
names,GappedAlignments-method

(GappedAlignments-class), 29
names,GenomicRanges-method

(GRanges-class), 36
names,Seqinfo-method (Seqinfo-class), 56
names<-,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
names<-,GappedAlignments-method

(GappedAlignments-class), 29
names<-,GenomicRanges-method

(GRanges-class), 36
names<-,Seqinfo-method (Seqinfo-class), 56
narrow, 67
narrow,GappedAlignments-method

(GappedAlignments-class), 29
narrow,GenomicRanges-method

(intra-range-methods), 48
narrow,SummarizedExperiment-method

(SummarizedExperiment-class),
63

nearest, 67

INDEX 83

nearest,ANY,SummarizedExperiment-method
(SummarizedExperiment-class),
63

nearest,GenomicRanges,GenomicRanges-method
(nearest-methods), 51

nearest,GenomicRanges,missing-method
(nearest-methods), 51

nearest,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

nearest,SummarizedExperiment,missing-method
(SummarizedExperiment-class),
63

nearest,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

nearest-methods, 40, 51, 52
ngap,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
ngap,GappedAlignments-method

(GappedAlignments-class), 29

Ops,GenomicRanges,numeric-method
(intra-range-methods), 48

order, 67
order,GenomicRanges-method

(GenomicRanges-comparison), 35
order,SummarizedExperiment-method

(SummarizedExperiment-class),
63

OverlapEncodings, 18, 19

pgap,GRanges,GRanges-method
(setops-methods), 59

phicoef, 53
pintersect, 60
pintersect,GappedAlignments,GRanges-method

(setops-methods), 59
pintersect,GRanges,GappedAlignments-method

(setops-methods), 59
pintersect,GRanges,GRanges-method

(setops-methods), 59
pintersect,GRanges,GRangesList-method

(setops-methods), 59
pintersect,GRangesList,GRanges-method

(setops-methods), 59
pintersect,GRangesList,GRangesList-method

(setops-methods), 59
precede, 67
precede,ANY,SummarizedExperiment-method

(SummarizedExperiment-class),
63

precede,GenomicRanges,GenomicRanges-method
(nearest-methods), 51

precede,GenomicRanges,missing-method
(nearest-methods), 51

precede,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
63

precede,SummarizedExperiment,SummarizedExperiment-method
(SummarizedExperiment-class),
63

psetdiff,GRanges,GRanges-method
(setops-methods), 59

psetdiff,GRanges,GRangesList-method
(setops-methods), 59

psetdiff,GRangesList,GRangesList-method
(setops-methods), 59

punion,GRanges,GRanges-method
(setops-methods), 59

punion,GRanges,GRangesList-method
(setops-methods), 59

punion,GRangesList,GRanges-method
(setops-methods), 59

qnarrow (GappedAlignments-class), 29
qnarrow,GappedAlignments-method

(GappedAlignments-class), 29
queryLoc2refLoc (cigar-utils), 2
queryLocs2refLocs (cigar-utils), 2
qwidth (GappedAlignments-class), 29
qwidth,GappedAlignments-method

(GappedAlignments-class), 29

range,GenomicRanges-method
(inter-range-methods), 46

range,GRangesList-method
(GRangesList-class), 41

RangedData, 20
RangedDataList, 41
Ranges, 32, 47–49, 52
ranges, 67
ranges,GappedAlignments-method

(GappedAlignments-class), 29
ranges,GRanges-method (GRanges-class),

36
ranges,GRangesList-method

(GRangesList-class), 41
ranges,SummarizedExperiment-method

(SummarizedExperiment-class),
63

Ranges-class, 40
Ranges-comparison, 35
ranges<-,GenomicRanges-method

(GRanges-class), 36

84 INDEX

ranges<-,GRangesList-method
(GRangesList-class), 41

ranges<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

RangesList, 20, 32
RangesList-class, 44
RangesMapping, 49, 50
rank, 67
rank,GenomicRanges-method

(GenomicRanges-comparison), 35
rank,SummarizedExperiment-method

(SummarizedExperiment-class),
63

readBamGappedAlignmentPairs, 26–28
readBamGappedAlignments, 30, 33
readGappedAlignmentPairs, 70
readGappedAlignmentPairs

(GappedAlignmentPairs-class), 25
readGappedAlignments, 70
readGappedAlignments

(GappedAlignments-class), 29
reduce, 47
reduce,GenomicRanges-method

(inter-range-methods), 46
reduce,GRangesList-method

(GRangesList-class), 41
renameSeqlevels (utils), 72
renameSeqlevels,GappedAlignments,character-method

(utils), 72
renameSeqlevels,GenomicRanges,character-method

(utils), 72
renameSeqlevels,GRangesList,character-method

(utils), 72
resize, 67
resize,GenomicRanges-method

(intra-range-methods), 48
resize,SummarizedExperiment-method

(SummarizedExperiment-class),
63

restrict, 67
restrict,GenomicRanges-method

(intra-range-methods), 48
restrict,GRangesList-method

(GRangesList-class), 41
restrict,SummarizedExperiment-method

(SummarizedExperiment-class),
63

rglist (GappedAlignments-class), 29
rglist,GappedAlignments-method

(GappedAlignments-class), 29
right (GappedAlignmentPairs-class), 25

right,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

Rle, 31, 36, 37, 63
Rle-class, 40
RleList, 16
RleList-class, 5, 16, 44
rname (GappedAlignments-class), 29
rname,GappedAlignments-method

(GappedAlignments-class), 29
rname<- (GappedAlignments-class), 29
rname<-,GappedAlignments-method

(GappedAlignments-class), 29
rowData (SummarizedExperiment-class),

63
rowData,SummarizedExperiment-method

(SummarizedExperiment-class),
63

rowData<- (SummarizedExperiment-class),
63

rowData<-,SummarizedExperiment,GenomicRanges-method
(SummarizedExperiment-class),
63

rowData<-,SummarizedExperiment,GRangesList-method
(SummarizedExperiment-class),
63

sapply, 44
score,GenomicRanges-method

(GRanges-class), 36
score,GRangesList-method

(GRangesList-class), 41
selectEncodingWithCompatibleStrand

(encodeOverlaps-methods), 17
Seqinfo, 27, 31, 36, 38, 41, 55
Seqinfo (Seqinfo-class), 56
seqinfo, 28, 33, 40, 44, 54, 58, 67
seqinfo,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
seqinfo,GappedAlignments-method

(GappedAlignments-class), 29
seqinfo,GRanges-method (GRanges-class),

36
seqinfo,GRangesList-method

(GRangesList-class), 41
seqinfo,List-method (seqinfo), 54
seqinfo,RangedData-method (seqinfo), 54
seqinfo,RangesList-method (seqinfo), 54
seqinfo,SummarizedExperiment-method

(SummarizedExperiment-class),
63

Seqinfo-class, 56, 56
seqinfo<- (seqinfo), 54

INDEX 85

seqinfo<-,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

seqinfo<-,GappedAlignments-method
(GappedAlignments-class), 29

seqinfo<-,GenomicRanges-method
(GRanges-class), 36

seqinfo<-,GRangesList-method
(GRangesList-class), 41

seqinfo<-,List-method (seqinfo), 54
seqinfo<-,RangedData-method (seqinfo), 54
seqinfo<-,SummarizedExperiment-method

(SummarizedExperiment-class),
63

seqlengths (seqinfo), 54
seqlengths,ANY-method (seqinfo), 54
seqlengths,Seqinfo-method (Seqinfo-class),

56
seqlengths<- (seqinfo), 54
seqlengths<-,ANY-method (seqinfo), 54
seqlengths<-,Seqinfo-method

(Seqinfo-class), 56
seqlevels, 27, 31, 38, 41
seqlevels (seqinfo), 54
seqlevels,ANY-method (seqinfo), 54
seqlevels,Seqinfo-method (Seqinfo-class), 56
seqlevels<- (seqinfo), 54
seqlevels<-,ANY-method (seqinfo), 54
seqlevels<-,Seqinfo-method (Seqinfo-class),

56
seqnames, 67
seqnames (seqinfo), 54
seqnames,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
seqnames,GappedAlignments-method

(GappedAlignments-class), 29
seqnames,GRanges-method

(GRanges-class), 36
seqnames,GRangesList-method

(GRangesList-class), 41
seqnames,RangedData-method (seqinfo), 54
seqnames,RangesList-method (seqinfo), 54
seqnames,Seqinfo-method (Seqinfo-class),

56
seqnames,SummarizedExperiment-method

(SummarizedExperiment-class),
63

seqnames<- (seqinfo), 54
seqnames<-,GappedAlignments-method

(GappedAlignments-class), 29
seqnames<-,GenomicRanges-method

(GRanges-class), 36
seqnames<-,GRangesList-method

(GRangesList-class), 41
seqnames<-,Seqinfo-method

(Seqinfo-class), 56
seqnameStyle (seqinfo), 54
seqnameStyle,ANY-method (seqinfo), 54
seqnameStyle,Seqinfo-method

(Seqinfo-class), 56
seqnameStyle<- (seqinfo), 54
seqnameStyle<-,ANY-method (seqinfo), 54
seqselect,GenomicRanges-method

(GRanges-class), 36
seqselect<-,GenomicRanges-method

(GRanges-class), 36
setClass, 8
setdiff,GRanges,GRanges-method

(setops-methods), 59
setMethod, 8
setops-methods, 33, 40, 44, 59
shift, 67
shift,GenomicRanges-method

(intra-range-methods), 48
shift,GRangesList-method

(GRangesList-class), 41
shift,SummarizedExperiment-method

(SummarizedExperiment-class),
63

show,GappedAlignmentPairs-method
(GappedAlignmentPairs-class), 25

show,GappedAlignments-method
(GappedAlignments-class), 29

show,GenomicRanges-method
(GRanges-class), 36

show,GRangesList-method
(GRangesList-class), 41

show,Seqinfo-method (Seqinfo-class), 56
show,SummarizedExperiment-method

(SummarizedExperiment-class),
63

showMethods, 8
SimpleGenomicRangesList-class

(GenomicRangesList-class), 36
SimpleList, 66, 68
solveUserSEW, 3, 33
sort, 67
sort,GenomicRanges-method

(GenomicRanges-comparison), 35
sort,SummarizedExperiment-method

(SummarizedExperiment-class),
63

splitCigar (cigar-utils), 2
start, 67
start,GappedAlignments-method

86 INDEX

(GappedAlignments-class), 29
start,GenomicRanges-method

(GRanges-class), 36
start,GRangesList-method

(GRangesList-class), 41
start,SummarizedExperiment-method

(SummarizedExperiment-class),
63

start<-,GenomicRanges-method
(GRanges-class), 36

start<-,GRangesList-method
(GRangesList-class), 41

start<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

strand, 36, 63, 67
strand,character-method (strand-utils), 62
strand,DataTable-method (strand-utils), 62
strand,factor-method (strand-utils), 62
strand,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
strand,GappedAlignments-method

(GappedAlignments-class), 29
strand,GRanges-method (GRanges-class),

36
strand,GRangesList-method

(GRangesList-class), 41
strand,integer-method (strand-utils), 62
strand,logical-method (strand-utils), 62
strand,missing-method (strand-utils), 62
strand,Rle-method (strand-utils), 62
strand,SummarizedExperiment-method

(SummarizedExperiment-class),
63

strand-utils, 62
strand<-,DataTable-method (strand-utils),

62
strand<-,GappedAlignments-method

(GappedAlignments-class), 29
strand<-,GenomicRanges-method

(GRanges-class), 36
strand<-,GRangesList-method

(GRangesList-class), 41
strand<-,SummarizedExperiment-method

(SummarizedExperiment-class),
63

subsetByOverlaps,ANY,GappedAlignments-method
(findOverlaps-methods), 20

subsetByOverlaps,GappedAlignmentPairs,ANY-method
(findOverlaps-methods), 20

subsetByOverlaps,GappedAlignments,ANY-method
(findOverlaps-methods), 20

subsetByOverlaps,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 20

subsetByOverlaps,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 20

subsetByOverlaps,GenomicRanges,GRangesList-method
(findOverlaps-methods), 20

subsetByOverlaps,GenomicRanges,RangedData-method
(findOverlaps-methods), 20

subsetByOverlaps,GenomicRanges,RangesList-method
(findOverlaps-methods), 20

subsetByOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 20

subsetByOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 20

subsetByOverlaps,GRangesList,RangedData-method
(findOverlaps-methods), 20

subsetByOverlaps,GRangesList,RangesList-method
(findOverlaps-methods), 20

subsetByOverlaps,RangedData,GenomicRanges-method
(findOverlaps-methods), 20

subsetByOverlaps,RangedData,GRangesList-method
(findOverlaps-methods), 20

subsetByOverlaps,RangesList,GenomicRanges-method
(findOverlaps-methods), 20

subsetByOverlaps,RangesList,GRangesList-method
(findOverlaps-methods), 20

summarizeCigarTable (cigar-utils), 2
SummarizedExperiment, 70
SummarizedExperiment

(SummarizedExperiment-class),
63

SummarizedExperiment,list-method
(SummarizedExperiment-class),
63

SummarizedExperiment,matrix-method
(SummarizedExperiment-class),
63

SummarizedExperiment,missing-method
(SummarizedExperiment-class),
63

SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
63

SummarizedExperiment-class, 63
summarizeOverlaps, 13, 14, 68
summarizeOverlaps,GRanges,GappedAlignmentPairs-method

(summarizeOverlaps), 68
summarizeOverlaps,GRanges,GappedAlignments-method

(summarizeOverlaps), 68
summarizeOverlaps,GRangesList,GappedAlignmentPairs-method

(summarizeOverlaps), 68
summarizeOverlaps,GRangesList,GappedAlignments-method

INDEX 87

(summarizeOverlaps), 68

TranscriptDb, 13, 55
TranscriptDb-class, 56

Union (summarizeOverlaps), 68
union,GRanges,GRanges-method

(setops-methods), 59
unique,GenomicRanges-method

(GenomicRanges-comparison), 35
unlist,GappedAlignmentPairs-method

(GappedAlignmentPairs-class), 25
updateObject,GappedAlignments-method

(GappedAlignments-class), 29
updateObject,GRanges-method

(GRanges-class), 36
updateObject,GRangesList-method

(GRangesList-class), 41
updateObject,Seqinfo-method

(Seqinfo-class), 56
updateObject,SummarizedExperiment-method

(SummarizedExperiment-class),
63

utils, 72

validCigar (cigar-utils), 2
validObject, 8
values,SummarizedExperiment-method

(SummarizedExperiment-class),
63

values<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

VCF, 73
Vector-class, 40, 44
Views, 39, 43

width, 67
width,GappedAlignments-method

(GappedAlignments-class), 29
width,GenomicRanges-method

(GRanges-class), 36
width,GRangesList-method

(GRangesList-class), 41
width,SummarizedExperiment-method

(SummarizedExperiment-class),
63

width<-,GenomicRanges-method
(GRanges-class), 36

width<-,GRangesList-method
(GRangesList-class), 41

width<-,SummarizedExperiment-method
(SummarizedExperiment-class),
63

window,GenomicRanges-method
(GRanges-class), 36

	cigar-utils
	Constraints
	countGenomicOverlaps
	coverage-methods
	encodeOverlaps-methods
	findOverlaps-methods
	findSpliceOverlaps
	GappedAlignmentPairs-class
	GappedAlignments-class
	GenomicRanges-comparison
	GenomicRangesList-class
	GRanges-class
	GRangesList-class
	inter-range-methods
	intra-range-methods
	map-methods
	nearest-methods
	phicoef
	seqinfo
	Seqinfo-class
	setops-methods
	strand-utils
	SummarizedExperiment-class
	summarizeOverlaps
	utils
	Index

