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Abstract

This vignette describes the functionality implemented in the synapter package. It allows to
re-analyse label-free quantitative proteomics data obtained on a Synapt G2 instrument to opti-
mise quantitation and identification. Several combination strategies are possible and described.
Typically, a user can combine identification-optimised data (HDMSE data using ion mobility sep-
aration) and quantitation-optimised data (MSE data). Additionally, a method to combine several
data files into a master set while controlling the false discovery rate, is presented.
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1 Introduction

1.1 Background

The main functionality of synapter is to combine proteomics data acquired under different mass spec-
trometry settings or with different samples to (i) optimise the respective qualities of the two data sets
or (ii) increase the number of identifications, thereby decreasing missing values. Besides synapter offers
other functionality inaccessible in the default pipeline, like peptide FDR estimation and filtering on
peptide match type and peptide uniqueness.

The example that motivated the development of this package was to combine data obtained on a
Synapt G2 instrument:

1. HDMSE data, acquired with additional peptide separation using an ion mobility cell, thus leading
to better (both in number and in quality) identification and

2. standard MSE data (acquired without ion mobility separation), providing better data quantita-
tion.

The former is data is called identification peptides and the latter quantitation peptides, irrespective
of the acquisition mode (HDMSE or MSE). This HDMSE/MSE design is used in this document to
illustrate the synapter package.

However, although HDMSE mode possesses superior identification and MSE mode superior quan-
titation capabilities and transferring identifications from HDMSE to MSE is a priori the most efficient
setup, identifications can be transferred between any runs, independently of the acquisition mode. This
allows to reduce the number of missing values, one of the primary limitation of label-free proteomics.
Thus users will benefit from synapter’s functionality even if they run their instruments in a single mode
(HDMSE or MSE only).

However, as will be shown in section 2, transferring identifications from multiple runs to each other
increases analysis time and peptide FDR within the analysis. synapter allows to minimise these effects
to acceptable degree by choosing runs to transfer identifications from and merging them in the master
HDMSE file.

This data processing methodology is described in section 2.2 and the analysis pipeline is described
in section 2.3.

To maximise the benefit of combining better identification and quantitation data, it is also possible
to combine several, previously merged identification data files into one master set. This functionality
is described in section 2.4.

Finally, section 3 illustrates a complete pipeline including synapter and MSnbase (Gatto and Lilley,
2012) packages to perform protein label-free quantitation: how to combine multiple synapter results
to represent the complete experimental design under study and further explore the data, normalise it
and perform robust statistical data analysis inside the R environment.

The rationale underlying synapter’s functionality are described in two research papers, currently in
preparation.

� Shliaha, P.V., Bond N.J., Gatto L. and Lilley K.S. The Effects of Ion Mobility Separation on
Data Independent Acquisition in Proteomics Studies., in prep.

� Bond N.J., Shliaha P.V., Lilley K.S. and Gatto L. Improving qualitative and quantitative perfor-
mance for label free proteomics, in prep.

The first one describes the benefits of ion mobility separation on identification and the effects on
quantitation, that led to the development of synapter, which in described and illustrated in the second
reference.

synapter is written for R , (R Core Team, 2012) an open source, cross platform, freely available
statistical computing environment and programming language1. Functionality available in the R en-
vironment can be extended though the usage of packages. Thousands of developers have contributed

1http://www.r-project.org/
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packages that are distributed via the Comprehensive R Archive Network (CRAN) or through spe-
cific initiatives like the Bioconductor2 project (Gentleman et al., 2004), focusing on the analysis and
comprehension of high-throughput biological data.

synapter is such an R package dedicated to the analysis of label-free proteomics data. To obtain
detailed information about any function in the package, it is possible to access it’s documentation
by preceding it’s name with a question mark at the command line prompt. For example, to obtain
information about the synapter package, one would type ?synapter.

1.2 Installation

synapter is available through the Bioconductor project. Details about the package and the installation
procedure can be found on its page3. Briefly, installation of the package and all its dependencies should
be done using the dedicated Bioconductor infrastructure as shown below:

> source("http://bioconductor.org/biocLite.R")

> ## or, if you have already used the above before

> library("BiocInstaller")

> ## and to install the package

> biocLite("synapter")

After installation, synapter will have to be explicitly loaded with

> library(synapter)

so that all the package’s functionality is available to the user.

1.3 Getting help

There is a general mailing list4 for Bioconductor packages. There is also a on-line form5 if you do not
wish to subscribe to the list. You are also welcome to contact Laurent Gatto (lg390@cam.ac.uk) for
general questions, bugs, comments and suggestions.

synapter is an open source initiative and contributions, whether new code, documentation bug fixes
and new use cases are much appreciated. The official source code is available on the Bioconductor svn
server6. A testing version and easily fork-able source tree is available on github7, which also allows to
report issues (bugs, feature requests, . . . ).

2 Data analysis using synapter

2.1 Preparing the input data

Preparation of the data for synapter requires the .raw data first to be processed with Waters’ Pro-
teinLynx Global Serve (PLGS) software. The PLGS result is then exported as csv spreadsheet files
in user specified folders. These csv files can then be used as input for synapter.

We also highly recommend users to acquaint themselves with the PLGS search algorithm for data
independent acquisitions (Li et al., 2009).

First the user has to specify the output folders for files to be used in synapter analysis as demon-
strated in figure 1. After the folders are specified ignore the message that appears requiring restarting
PLGS.

2http://www.bioconductor.org/
3http://bioconductor.org/packages/devel/bioc/html/synapter.html
4https://stat.ethz.ch/mailman/listinfo/bioconductor
5http://bioconductor.org/help/mailing-list/mailform/
6http://bioconductor.org/developers/source-control/
7https://github.com/lgatto/synapter/
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Figure 1: Specifying PLGS output folders. The last message can be ignored.

At the first stage PLGS performs noise reduction and centroiding, based on user specified prefer-
ences called processing parameters. These preferences determine thresholds in intensity for discrim-
inating between noise peaks and peptide and fragment ion peaks in high and low energy functions
of an acquisition. The optimal value of these parameters is sample dependant and different between
MSE and HDMSE modes. For synapter to function properly all acquisitions in the analysis have to be
processed with the same thresholds, optimal for the mode identifications are transferred from (typically
HDMSE mode). The user is expected to identify optimal parameters himself for every new sample
type by repeatedly analysing a representative acquisition with different thresholds.

After the ions peaks have been determined and centroided, the ions representing charge states and
isotopes of a peptide are collapsed into a single entity called EMRT (exact mass retention time pair).
The EMRTs in low energy function represent unidentified peptides and are assigned peptides sequences
during database search. The total list of EMRTs can be found in the pep3DAMRT.csv file and it is one
of the synapter input files for the runs used for quantitation (typically MSE mode)

Prior to the database search, randomised entries are added to the database to allow PLGS to
compute protein false positive rate. The randomised entries can either be added automatically or
manually, using the Randomise Databank function in the Databank admin tool. To properly prepare
the files for synapter, the user has to add randomised entries manually via Databank admin tool, since
only then randomised entries identified in the database search will be displayed in the csv output.
Figure 2 demonstrates how to create a randomised databank manually using one randomised entry
per regular entry.

The user is also expected to use a minimum of 1 fragment per peptide, 3 fragments per protein and
1 peptide per protein identification thresholds and 100% False Positive Rate8 for protein identification
during database search for all of the acquisitions in the analysis as demonstrated in figure 3. This
allows to maximise the number of identified peptides from the randomised part of the database,
needed to estimate peptide identifications statistics. The total list of identified peptides is given in
final peptide.csv files. A single final peptide.csv file has to be supplied to synapter for every
run in the analysis (for both identification and quantitation runs).

More details and screenshots are available in a separate document available at http://lgatto.

github.com/synapter/.

8This is erroneously termed false positive rate in the software and manuscript and should be considered a false
discovery rate.
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Figure 2: Databank creation in PLGS.

Figure 3: Databank search options.

2.2 HDMSE/MSE data analysis

The analysis of pairs of HDMSE and MSE data files is based on the following rationale – combine
strengths or each approach by matching high quality HDMSE identifications to quantified MSE EMRTs
applying the following algorithm:

1. Apply various peptide filters to HDMSE and MSE peptides to obtain two sets of reliably identified
unique proteotypic peptides.

2. Use shared HDMSE and MSE peptides to model the deviations in retention time between the
two mass spectrometer runs.

3. Optimise the parameters that will be used to optimally match all HDMSE peptides and quantified
MSE EMRTs using a grid search.

4. Using the best parameters, match identified HDMSE peptides to quantified MSE EMRTs.

2.3 Different pipelines

Three different pipeline are available to the user:
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2.3.1 Graphical user interface

A simple graphical interface (GUI) can be used to preform a complete data analysis. This pipeline is
the most accessible for users that do not feel comfortable with command line interfaces (see below)
and/or for a limited number of analysis to be run manually.

The GUI is a graphical layer between the user and the synergise function that will be described
later. For more details on the underlying data processing and parameters that can be customised, read
?synergise.

Figure 4: Screenshots of the 3 input tabs of the synapterGUI function. From left to right: (1) the
data input tab, (2) the data filtering and retention time modelling tab and (3) the grid search tab.

The graphical interface is shown on figure 4 and is started by calling the synapterGUI() function.
The interface is composed of three tabs, that allow data input and analyses parameters customisation.
The synapterGUI function itself takes one input parameter, n, that defines the number of identifica-
tion/quantitation sets of files that the user wants to analyse. Each set is composed of one identification
final peptide file (typically HDMSE), one quantitation final peptide file (typically MSE), one quanti-
tation Pep3D file (also MSE) and one output directory. In addition, the user also needs to specify one
single fasta file that will be used to filter proteotypic peptide. To perform 3 analysis, as illustrated on
figure 4, the function would be executed like synapterGUI(n = 3) or simply synapterGUI(3).

Data input The first tab uses a tree structure to represent the input sets to be analysed. The unique
fasta file is located at the very top of the hierarchy and each subsequent node (file set) can be
opened and populated. Files are added by selecting the respective node, clicking the Add button
and selecting the corresponding file using the file selection dialogue that opens. The file names
then appear as new nodes (see for example the identification file in set 1) and can be removed
with the Remove button.

The Master box needs to be checked if the identification inputs are master files (see section 2.4).

Filtering and modelling The second tab allows to specify peptide filtering and retention time mod-
elling parameters. Modelling accounts for systematic deviation in retention time for peptides
between mass spectrometry runs (figure 5) by fitting a curve through deviation of retention time
vs retention time plot.

For a detailed description of the parameters and the processing pipeline, see the documentation
of the synergise function.

Grid search Matching peptides to quantified EMRTs is done in the two dimensional retention time
vs. precursor mass space. The optimal tolerances in both dimensions are estimated by a grid
search that uses common identification/quantitation peptides. The size of the grid, i.e. the
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> plotRt(ups25b, what = "model", nsd = 1)
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Figure 5: Figure illustrating retention time modelling between two runs in synapter, as generated by
the plotRt function.

range of the retention time (nsd, number of standard deviations in the retention time model)
and mass tolerance (ppm) to be searched can be defined here. In addition, it is possible to select
a subset of the data to reduce search time. For a detailed description of the parameters, see the
documentation of the synergise function.

Once all the input has been specified, pressing the Run button in the lower left corner of the GUI
starts the synapter run: all n analyses are executed one after each other and a complete report in html

as well as several result files are created in the respective output folders.

2.3.2 Wrapper function

The synergise function is a high level wrapper that implements a suggested analysis to combine two
files (see next paragraph for details). A set of parameters can be passed, although sensible defaults
are provided. While the analysis is executed, a html report is created, including all result files in text
spreadsheet (csv format) and binary R output. This level allows easy scripting for automated batch
analysis. Using data from the synapterdata package, the following code chunk illustrates the synergise
usage. An example report can be found online at http://lgatto.github.com/synapter/.

> library(synapterdata)

> hdmsefile <- getHDMSeFinalPeptide()[2]

> basename(hdmsefile)

[1] "HDMSe_101111_25fmol_UPS1_in_Ecoli_04_IA_final_peptide.csv.gz"
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> msefile <- getMSeFinalPeptide()[2]

> basename(msefile)

[1] "MSe_101111_25fmol_UPS1_in_Ecoli_03_IA_final_peptide.csv.gz"

> msepep3dfile <- getMSePep3D()[2]

> basename(msepep3dfile)

[1] "MSe_101111_25fmol_UPS1_in_Ecoli_03_Pep3DAMRT.csv.gz"

> fas <- getFasta()

> basename(fas)

[1] "EcoliK12_enolase_UPSsimga_NB.fasta"

> ## the synergise input is a (named) list of filenames

> input <- list(identpeptide = hdmsefile, quantpeptide = msefile, quantpep3d = msepep3dfile,

+ fasta = fas)

> ## a report and result files will be stored in the 'output' directory

> output <- tempdir()

> output

[1] "D:\\biocbld\\bbs-2.11-bioc\\tmpdir\\RtmpErK3kx"

> res <- synergise(filenames = input, outputdir = output)

> performance(res)

(S) Synapter: 4745 EMRTs uniquely matched.

(I) Ident: 5642 peptides.

(Q) Quant: 2685 peptides.

Enrichment (S/Q): 76.72%

Overlap:

Q S QS

240 2282 2445

See ?synergise for details.

2.3.3 Detailed step-by-step analysis

The user can have detailed control on each step of the analysis by executing each low-level function
manually. This pipeline, including generation of data containers (class instances) and all available
operations are available in ?Synapter. This strategy allows the maximum flexibility to develop new
unexplored approaches.

2.4 Using master peptide files

While analysing one MSE file against one single HDMSE file increased the total number of reliably
identified and quantified features compared to each single MSE analysis, a better procedure can be
applied when replicates are available. Consider the following design with two pairs of files: HDMSE

1 ,
MSE

1 , HDMSE
2 and MSE

2 . The classical approach would lead to combining for example, HDMSE
1

and MSE
1 and HDMSE

2 and MSE
2 . However, HDMSE

1 – MSE
2 and HDMSE

2 – MSE
1 would also be

suitable, possibly leading to new identified and quantified features. Instead of repeating all possible
combinations, which could hardly be applied for more replicates, we allow to merge HDMSE

1 and
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HDMSE
2 into a new master HDMSE

12 and then using it to transfer identification to both MSE runs. In
addition to leading to a simpler set of analyses, this approach also allows to control the false positive
rate during the HDMSE merging (see section 2.4.1). Such master HDMSE files can be readily created
with the makeMaster function, as described in section 2.4.2.

We will use data from the synapterdata to illustrate how to create master files.

2.4.1 Choosing which HDMSE files to combine

In a more complex design, a greater number of HDMSE files might need to be combined. When
combining files, one also accumulates false peptides assignments. The extent to which combining files
increases new reliable identification at the cost of accumulating false assignments can be estimated
with the estimateMasterFdr function.

To illustrate how FDR is estimated for master HDMSE files, let’s consider two extreme cases.

� In the first one, the two files (each with 1000 peptides filtered at an FDR of 0.01) to be combined
are nearly identical, sharing 900 peptides. The combined data will have 900(shared) + 2 ×
100(unique) peptides and each file, taken separately is estimated to have 1000× 0.01 = 10 false
positive identifications. We thus estimate the upper FDR bound after merging the two files to
be 20

1100 = 0.0182.

� In the second hypothetical case, the two files (again each with 1000 peptides filtered at a FDR
of 0.01) to be combined are very different and share only 100 peptides. The combined data will
have 100(shared) + 2 × 900(unique) peptides and, as above, each file is estimated to have 10
false discoveries. In this case, we obtain an upper FDR bound of 20

1900 = 0.0105.

In general, the final false discovery for two files will be

FDRmaster =
nfd1 + nfd2

union(peptides HDMSE
1 , peptides HDMSE

2 )

where nfdi is the number of false discoveries in HDMSE file i. Note that we do not make any
assumptions about repeated identification in multiple files here.

estimateMasterFdr generalised this for any number of HDMSE files and indicates the best combi-
nation at a fixed user-specified masterFdr level. Mandatory input is a list of HDMSE file names and
a fasta database file name to filter non-unique proteotypic peptides.

The result of estimateMasterFdr stores the number of unique proteotypic peptides and FDR for
all possible 57 combinations of 6 files. A summary can be printed on the console or plotted with
plot(cmb) (see figure 6).

> ## using the full set of 6 HDMSe files and a fasta database from the

> ## synapterdata package

> inputfiles <- getHDMSeFinalPeptide()

> fasta <- getFasta()

> cmb <- estimateMasterFdr(inputfiles, fasta, masterFdr = 0.02, verbose = FALSE)

> cmb

6 files - 57 combinations

Best combination: 4 5

- 5740 proteotypic peptides

- 6642 unique peptides

- 0.017 FDR

The best combination can be extracted with the bestComb function.

> bestComb(cmb)

[1] 4 5
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> plot(cmb)
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Figure 6: Figure illustrating the relation between the number of unique peptides in the combined
HDMSE file and the resulting false discovery rate. The symbols on the figure represent the number of
files for that particular combination. The dotted line is the user defined threshold for the combined
FDR (masterFdr parameter). The best combination, i.e the one that maximises the number of unique
peptides while keeping the FDR below masterFdr is highlighted in red.

See ?estimateMasterFdr and references therein for more details about the function and the re-
turned object.

2.4.2 Generating a master file

Now that we have identified which files should be used to create the master file, we can directly pass
the relevant identification files to the makeMaster function to generate the master file. The function
has one mandatory input parameter, pepfiles, a list oh identification file names to be merged. The
output is an object of class MasterPeptides that stores the relevant peptides from the original input
files. The result can be saved to disk using saveRDS for further analysis, as described in section 2.2.

> master <- makeMaster(inputfiles[bestComb(cmb)], verbose = FALSE)

> master

Object of class "MasterPeptides"

1st Master [ 1 2 ] has 6699 peptides

2nd Master [ 2 1 ] has 6709 peptides

[1] HDMSe_111111_50fmol_UPS1_in_Ecoli_04_IA_final_peptide.csv.gz

[2] HDMSe_111111_50fmol_UPS1_in_Ecoli_02_IA_final_peptide.csv.gz

More details can be found in the function documentation accessible with ?makeMaster.
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2.5 Summary

Two functions are needed to choose a set of IR files and create the master IR. One function enables to
perform a complete identification transfer, eiter through a command line or graphical interface. Table
1 summarises all there is to know to utilise synapter’s functionality.

Function Description
synapterGUI() Opens the graphical user interface
synergise Runs the complete identification transfer
estimateMasterFdr Chooses which files to be used to create the master IR
makeMaster Creates the master IR

Table 1: The synapter functions.

3 Analysing complete experiments

The functionality described in this section relies on the MSnbase package (Gatto and Lilley, 2012),
which is installed by default with synapter. Please refer to the MSnbase Bioconductor web page9, the
associated vignettes and the respective manual pages for more details.

The synapterdata already provides preprocessed PLGS data. Six Synapter instances are available:
3 replicates (labelled a, b and c) of the Universal Proteomics Standard (UPS1) 48 protein mix at 25
fmol and 3 replicates at 50 fmol, in a constant E. coli background. The 6 files can be loaded in your
working space with

> data(ups25a, ups25b, ups25c, ups50a, ups50b, ups50c)

3.1 Applying the Top 3 approach

We will start by describing the analysis of ups25a in details, and then show how to analyse all the
runs using more compact code. The first step of our analysis is to convert the synapter object output
(a Synapter instance), into a MSnbase-compatible object, called an MSnSet, that we will name ms25a.
We can obtain a description of the MSnSet object by typing its name.

> ms25a <- as(ups25a, "MSnSet")

> class(ups25a)[1]

[1] "Synapter"

> class(ms25a)[1]

[1] "MSnSet"

> ms25a

MSnSet (storageMode: lockedEnvironment)

assayData: 5642 features, 1 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: AALESTLAAITESLK IAAANVPAFVSGK ...

NDSALGLFNGDIGIALDR (5642 total)

9http://bioconductor.org/packages/release/bioc/html/MSnbase.html
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fvarLabels: peptide.seq protein.Accession ... qval (20

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

MSnbase version: 1.6.2

It contains quantitation information about 5642 peptides for 1 sample. In the code chunk below,
we update the default sample name Synapter1 with a more meaningful one.

> sampleNames(ms25a)

[1] "Synapter1"

> sampleNames(ms25a) <- "ups25a"

> sampleNames(ms25a)

[1] "ups25a"

Quantitative data and meta-data, which has been acquired by synapter, can be extracted with the
exprs and fData methods.

> tail(exprs(ms25a))

ups25a

AFLNDK NA

IEAQLNDVIADLDAVR 1671

AVFNGLINVAQHAIK 1499

LEEVK 664

VALQGNMDPSMLYAPPAR 2969

NDSALGLFNGDIGIALDR NA

> tail(fData(ms25a)[, c(2, 9)])

protein.Accession precursor.retT

AFLNDK MNME_ECODH 33.51

IEAQLNDVIADLDAVR MNME_ECODH 84.16

AVFNGLINVAQHAIK B1XFY9_ECODH 76.22

LEEVK B1X7F0_ECODH 41.41

VALQGNMDPSMLYAPPAR DCUP_ECODH 67.60

NDSALGLFNGDIGIALDR B1XDM5_ECODH 97.66

> ## all fetaure metadata

> fvarLabels(ms25a)

[1] "peptide.seq" "protein.Accession"

[3] "protein.Description" "protein.falsePositiveRate"

[5] "peptide.matchType" "peptide.mhp"

[7] "peptide.score" "precursor.mhp"

[9] "precursor.retT" "precursor.inten"

[11] "precursor.Mobility" "spectrumID"

[13] "Intensity" "ion_ID"

[15] "ion_area" "ion_counts"

[17] "pval" "Bonferroni"

[19] "BH" "qval"
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We will describe a how to process the data using a Top 3 approach, where the 3 most intense pep-
tides of each protein are used to compute the protein intensity, using the topN and combineFeatures

methods. The former allows to extract the top most intense peptides (default n is 3) and remove
all other peptides from the MSnSet object. The latter than aggregates the n most intense peptides
per protein using a user-defined function (sum, below). Finally, we also scale protein intensity values
depending on the actual number of peptides that have summed. This number of quantified peptides
can be calculated (after topN, but before combineFeatures) with nQuants.

> ms25a <- topN(ms25a, groupBy = fData(ms25a)$protein.Accession, n = 3)

> nPeps <- nQuants(ms25a, fcol = "protein.Accession")

> ms25a <- combineFeatures(ms25a, fData(ms25a)$protein.Accession, "sum",

+ na.rm = TRUE, verbose = FALSE)

> head(exprs(ms25a))

ups25a

6PGL_ECODH 71555

ABDH_ECODH 47542

ACCA_ECODH 38249

ACCD_ECODH 25615

ACP_ECODH 16388

APT_ECODH 0

> head(nPeps)

ups25a

6PGL_ECODH 3

ABDH_ECODH 3

ACCA_ECODH 3

ACCD_ECODH 3

ACP_ECODH 1

APT_ECODH 0

> ## scale intensities

> exprs(ms25a) <- exprs(ms25a) * (3/nPeps)

> ## NaN result from the division by 0, when no peptide was found for

> ## that protein

> head(exprs(ms25a))

ups25a

6PGL_ECODH 71555

ABDH_ECODH 47542

ACCA_ECODH 38249

ACCD_ECODH 25615

ACP_ECODH 49164

APT_ECODH NaN

3.2 Batch processing

The code chunk below repeats the above processing for the other 5 UPS1/E. coli runs.

> nms <- ls(pattern = "^ups")[2:6]

> nms

[1] "ups25b" "ups25c" "ups50a" "ups50b" "ups50c"
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> tmp <- sapply(nms, function(.ups) {
+ cat("Processing", .ups, "... ")

+ ## get the object from workspace and convert to MSnSet

+ x <- get(.ups, envir = .GlobalEnv)

+ x <- as(x, "MSnSet")

+ sampleNames(x) <- .ups

+ ## extract top 3 peptides

+ x <- topN(x, groupBy = fData(x)$protein.Accession, n = 3)

+ ## calculate the number of peptides that are available

+ nPeps <- nQuants(x, fcol = "protein.Accession")

+ ## sum top3 peptides into protein quantitation

+ x <- combineFeatures(x, fData(x)$protein.Accession, "sum", na.rm = TRUE,

+ verbose = FALSE)

+ ## adjust protein intensity based on actual number of top peptides

+ exprs(x) <- exprs(x) * (3/nPeps)

+ ## adjust feature variable names for combine

+ x <- updateFvarLabels(x, .ups)

+ ## save the new MSnExp instance in the workspace

+ varnm <- sub("ups", "ms", .ups)

+ assign(varnm, x, envir = .GlobalEnv)

+ cat("done\n")
+ })

Processing ups25b ... done

Processing ups25c ... done

Processing ups50a ... done

Processing ups50b ... done

Processing ups50c ... done

We now have 6 MSnSet instances, containing protein quantitation for the 6 UPS/E. coli runs.

3.3 Combining data and filtering

We now want to filter data out based on missing quantitation data, retaining proteins that have
been quantified in at a least two out of three replicates. Filtering based on missing data can be
done using the filterNA method and a maximum missing data content as defined by pNA. Multiple
MSnSet instances can be combined with the combine method, which is described in details in the
MSnbase-demo vignette10. The 6 objects have appropriate distinct sample names and common feature
(protein) names, which will be used to properly combine the quantitation data.

> ms25 <- combine(ms25a, ms25b)

> ms25 <- combine(ms25, ms25c)

> dim(ms25)

[1] 729 3

> ms25 <- filterNA(ms25, pNA = 1/3)

> dim(ms25)

[1] 709 3

Once combined and filtered, the 25 fmol group retains 709 entries with at least 2 out of 3 quanti-
tation values, out of the 729 total number of proteins.

10The vignette is accessible from within R with vignette("MSnbase-demo", package = "MSnbase").
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> ms50 <- combine(ms50a, ms50b)

> ms50 <- combine(ms50, ms50c)

> dim(ms50)

[1] 729 3

> ms50 <- filterNA(ms50, pNA = 1/3)

> dim(ms50)

[1] 709 3

Similarly, the 50 fmol group retains 709 entries with at least 2 out of 3 quantitation values, out of
the 729 initial proteins.

We now combine the two subgroups into one MSnSet object that contains all 6 samples and filter
for proteins that are observed in both groups, i.e retaining proteins with a maximum of 2/6 missing
values. We also compute a summary table with the number of protein that have 4, 5, or 6 quantitation
values across the 6 samples.

> msUps <- combine(ms25, ms50)

> msUps <- filterNA(msUps, pNA = 2/6)

> head(exprs(msUps))

ups25a ups25b ups25c ups50a ups50b ups50c

6PGL_ECODH 71555 62114 60655 59920 56185 53874

ABDH_ECODH 47542 37805 36746 45570 43163 39506

ACCA_ECODH 38249 31543 29570 30697 29656 27851

ACCD_ECODH 25615 22247 20295 22206 19698 19819

ACP_ECODH 49164 738365 706538 734425 712076 655842

AROB_ECODH 5442 4050 3684 4095 4500 3879

> table(apply(exprs(msUps), 1, function(.x) sum(!is.na(.x))))

4 5 6

6 25 674

We obtain a final data set containing 705 proteins. Finally, we normalise protein intensities in each
sample to correct for experimental loading biases and pipetting errors. To do so, we compute 6 sample
medians using all constant E. coli background proteins and divide each protein by its respective sample
mean.

> ecoli <- -grep("ups$", featureNames(msUps))

> meds <- apply(exprs(msUps)[ecoli, ], 2, median, na.rm = TRUE)

> exprs(msUps) <- t(apply(exprs(msUps), 1, "/", meds))

This same procedure could be applied with a set of constant spikes to estimate absolute protein
quantities.

3.4 Statistical analysis of differentially expressed proteins

The UPS1 spiked-in protein mix is composed of 48 proteins, 47 of which have been observed and
quantified in our final data object. In this section, we will illustrate how to analyse the 705 proteins to
extract those that show differences between the two groups and show that these candidates represent
the UPS1 spikes.

The R environment and many of the available packages allow extremely powerful statistical analysis.
In this document, we will apply a standard t-test on log2 transformed data for convenience, to calculate
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p-value for individual proteins (pv variable below). For best performance with small number of samples
and more complex designs, we recommend the Bioconductor limma package (Smyth, 2005)11. We then
perform multiple comparison adjustment using the qvalue from the qvalue package, that implements
the method from (Storey and Tibshirani, 2003) (qv variable below). The multtest package provides
several other p-value adjustment methods. We will also compute log2 fold-changes and illustrate the
results on a volcano plot (figure 7). Figure 8 illustrates the UPS1 proteins and samples on a classical
heatmap.

> ## use log2 data for t-test

> exprs(msUps) <- log2(exprs(msUps))

> ## apply a t-test and extract the p-value

> pv <- apply(exprs(msUps), 1, function(x) t.test(x[1:3], x[4:6])$p.value)

> ## calculate q-values

> library(qvalue)

> qv <- qvalue(pv)$qvalues

> ## calculate log2 fold-changes

> lfc <- apply(exprs(msUps), 1, function(x) mean(x[1:3], na.rm = TRUE) -

+ mean(x[4:6], na.rm = TRUE))

> ## create a summary table

> res <- data.frame(cbind(exprs(msUps), pv, qv, lfc))

> ## reorder based on q-values

> res <- res[order(res$qv), ]

> head(round(res, 3))

ups25a ups25b ups25c ups50a ups50b ups50c pv qv lfc

P01112ups -0.053 -0.015 -0.001 1.072 1.118 1.080 0 0.000 -1.113

P00918ups -0.247 -0.201 -0.214 0.616 0.667 0.674 0 0.001 -0.873

P01008ups 0.112 0.106 0.178 1.075 1.132 1.090 0 0.001 -0.967

Q06830ups 0.174 0.118 0.156 1.073 1.095 1.100 0 0.002 -0.940

P10145ups -0.323 -0.332 -0.274 0.689 0.764 0.788 0 0.003 -1.057

P02788ups 0.564 0.647 0.601 1.494 1.532 1.532 0 0.003 -0.915

In the above example, quantitation values and statistics data are saved in a summary dataframe
(res), that can be exported to a comma-separated spreadsheet with

> write.csv(res, file = "upsResults.csv")

A total 29 proteins show a statistically different pattern between the two groups, at a false discovery
rate of 10%. Table 2 summarises the results for all UPS1 proteins.

null device

1

11http://www.bioconductor.org/packages/release/bioc/html/limma.html
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> plot(res$lfc, -log10(res$qv), col = ifelse(grepl("ups$", rownames(res)),

+ "#4582B3AA", "#A1A1A180"), pch = 19, xlab = expression(log[2] ~ fold -

+ change), ylab = expression(-log[10] ~ q - value))

> grid()

> abline(v = -1, lty = "dotted")

> abline(h = -log10(0.1), lty = "dotted")

> legend("topright", c("UPS", "E. coli"), col = c("#4582B3AA", "#A1A1A1AA"),

+ pch = 19, bty = "n")
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Figure 7: On the volcano plot, each protein is represented by a dot and positioned according to its log2
fold-change along the x axis and −log10 of its q-value along the y axis. Proteins with large fold-changes
are positioned on the sides of the plot, while proteins with low q-values are at the top of the figure.
The most promising candidates are this located on the top corners. In our case, the UPS proteins (in
blue) have log2 fold-changes around -1 (vertical dotted line), as expected. The horizontal dotted line
represents a q-value threshold of 0.10.
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> heatmap(exprs(msUps)[grep("ups", featureNames(msUps)), ])
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Figure 8: A heatmap of all UPS1 proteins present in the final data set.
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ups25a ups25b ups25c ups50a ups50b ups50c pv qv lfc
P01112ups -0.05 -0.01 -0.00 1.07 1.12 1.08 0.00 0.00 -1.11
P00918ups -0.25 -0.20 -0.21 0.62 0.67 0.67 0.00 0.00 -0.87
P01008ups 0.11 0.11 0.18 1.07 1.13 1.09 0.00 0.00 -0.97
Q06830ups 0.17 0.12 0.16 1.07 1.09 1.10 0.00 0.00 -0.94
P10145ups -0.32 -0.33 -0.27 0.69 0.76 0.79 0.00 0.00 -1.06
P02788ups 0.56 0.65 0.60 1.49 1.53 1.53 0.00 0.00 -0.92
P02753ups -1.90 -1.82 -1.91 -1.01 -0.92 -0.88 0.00 0.00 -0.94
P01375ups 0.81 0.93 0.96 1.82 1.76 1.69 0.00 0.01 -0.86
P69905ups -1.44 -1.56 -1.51 -0.64 -0.58 -0.58 0.00 0.01 -0.91
P00167ups 0.87 0.89 0.97 1.92 1.96 1.94 0.00 0.01 -1.03
P12081ups -0.09 0.10 -0.02 0.94 1.04 1.05 0.00 0.01 -1.01
P00709ups -0.19 -0.31 -0.32 0.42 0.50 0.51 0.00 0.01 -0.75
O00762ups 0.43 0.27 0.26 1.09 1.21 1.21 0.00 0.01 -0.85
P05413ups -0.17 -0.40 -0.28 0.58 0.68 0.69 0.00 0.02 -0.93
P00441ups -0.23 -0.41 -0.39 0.29 0.41 0.41 0.00 0.03 -0.71
P04040ups -0.06 0.14 0.21 1.09 1.25 1.24 0.00 0.03 -1.10
P02787ups 0.00 0.15 0.07 1.50 1.53 1.24 0.00 0.03 -1.35

P10636-8ups 0.73 0.53 0.56 1.49 1.50 1.58 0.00 0.03 -0.92
P06396ups 0.23 0.30 0.04 1.18 1.27 1.30 0.00 0.04 -1.06
P16083ups -0.18 -0.41 -0.28 1.17 1.15 1.17 0.00 0.04 -1.45
P02768ups 0.55 0.34 0.40 1.35 1.43 1.41 0.00 0.04 -0.97
P01127ups 0.33 0.14 0.22 1.18 1.18 1.21 0.00 0.04 -0.96
P08758ups 0.27 0.09 0.08 1.14 1.18 1.16 0.00 0.05 -1.01
P00915ups 0.06 -0.18 0.06 1.10 1.14 1.16 0.00 0.06 -1.15
P15559ups 0.12 -0.09 -0.08 0.88 0.93 0.88 0.00 0.06 -0.91
P55957ups -1.08 -1.46 -1.33 -0.35 -0.39 -0.18 0.00 0.06 -0.98
P62988ups 0.51 0.27 0.37 1.29 1.29 1.24 0.00 0.06 -0.89
P01031ups -0.41 -0.65 -0.64 0.63 0.64 0.63 0.00 0.06 -1.20
P61626ups -0.10 -0.36 -0.32 0.62 0.68 0.67 0.01 0.09 -0.92
P51965ups -0.89 -1.18 -1.30 0.02 -0.04 -0.01 0.01 0.14 -1.11
P01344ups -0.04 -0.40 -0.06 0.57 0.72 0.64 0.01 0.15 -0.81
P01579ups -0.95 -0.72 -0.66 -0.26 -0.25 -0.16 0.02 0.20 -0.55
P41159ups 0.28 -0.21 -0.24 0.78 0.86 1.03 0.02 0.21 -0.94
P62937ups -1.38 -0.69 -1.12 0.31 0.38 0.26 0.02 0.21 -1.38
P68871ups -0.21 -0.44 -0.59 0.37 0.36 0.36 0.02 0.22 -0.78
P08263ups -1.11 -0.64 -1.52 0.19 0.25 0.28 0.03 0.30 -1.33
P99999ups -1.20 -1.99 -1.95 -0.90 -0.19 -0.84 0.04 0.32 -1.07
P10599ups -0.88 -1.13 0.17 1.39 0.90 0.76 0.04 0.32 -1.63
P02144ups -0.96 -0.12 -0.07 0.99 1.06 1.00 0.04 0.32 -1.40
P01133ups -0.80 0.01 -0.38 0.53 0.56 0.50 0.06 0.43 -0.92
P02741ups -0.26 -1.16 -1.09 0.31 0.32 0.30 0.06 0.43 -1.15
P61769ups -0.66 -0.15 -0.16 0.72 0.38 -0.03 0.07 0.47 -0.68
P63165ups -0.98 0.08 0.22 1.07 1.12 1.11 0.07 0.47 -1.33
O76070ups -0.46 0.25 0.33 0.88 0.80 0.94 0.08 0.48 -0.83
P06732ups 1.50 0.54 0.56 1.32 1.36 1.38 0.27 0.50 -0.48
P63279ups -1.86 -3.08 -1.58 -0.64 -0.68 -0.69 0.08 0.50 -1.50
P09211ups 1.73 -1.86 -1.84 -0.76 -0.33 -0.65 0.95 0.59 -0.08

Table 2: UPS1 proteins.
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4 Session information

All software and respective versions used to produce this document are listed below.

� R version 2.15.2 (2012-10-26), i386-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: Biobase 2.18.0, BiocGenerics 0.4.0, MSnbase 1.6.2, Rcpp 0.10.2,
codetools 0.2-8, ggplot2 0.9.3, knitr 1.0, mzR 1.4.6, qvalue 1.32.0, synapter 1.0.1,
synapterdata 0.99.3, xtable 1.7-0

� Loaded via a namespace (and not attached): BiocInstaller 1.8.3, IRanges 1.16.4, MASS 7.3-23,
RColorBrewer 1.0-5, affy 1.36.0, affyio 1.26.0, colorspace 1.2-0, dichromat 1.2-4, digest 0.6.0,
evaluate 0.4.3, formatR 0.7, grid 2.15.2, gtable 0.1.2, hwriter 1.3, labeling 0.1, lattice 0.20-13,
limma 3.14.3, multtest 2.14.0, munsell 0.4, parallel 2.15.2, plyr 1.8, preprocessCore 1.20.0,
proto 0.3-10, reshape2 1.2.2, scales 0.2.3, splines 2.15.2, stats4 2.15.2, stringr 0.6.2,
survival 2.37-2, tcltk 2.15.2, tcltk2 1.2-3, tools 2.15.2, vsn 3.26.0, zlibbioc 1.4.0
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