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This document illustrates the use of the networkBMA R package (Fraley et al. 2012) to
uncover regulatory relationships in yeast (Saccharomyces cerevisiae) from microarray data
measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected
to a drug (rapamycin) perturbation.

1 Data

The expression data for this vignette is provided in the networkBMA package in the vignette
database, which consists of three R objects:

timeSeries: A 582 by 102 data frame in which the first two columns are factors iden-
tifying the replicate and time (in minutes) after drug perturbation, and the remaining
100 columns are the expression measurements for a subset of 100 genes from the yeast-
rapamycin experiment described in Yeung et al. (2011). There are 582/6 = 97 replicates
(the 95 segregants plus two parental strains of the segregants), each with measurements
at 6 time points. The complete time series data is available from Array Express (Parkin-
son et al. 2007) with accession number E-MTAB-412
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-412).

reg.known: A 18 by 3 data frame giving known regulatory relationships among this
subset of 100 genes. The first two columns give the regulator and target gene, respec-
tively, while the third encodes the source of the regulatory information (‘YPD’ for Yeast
Proteome Database (Hodges et al. 1999) and ‘SCPD’ for The Promoter Database of Sac-
charomyces cerevisiae (Zhu and Zhang 1999). In this example, we constrained reg.known

to high-confidence experimental results obtained from biochemical (non-high-throughput)
experiments.

reg.prob: A 100 by 100 matrix, giving probability estimates for regulatory relationships
in which the (i, j) entry gives the estimated probability that gene i regulates gene j.
These were computed using the supervised framework integrating multiple data sources
of Lo et al. (2011).

referencePairs: A 2-column data frame giving 287 regulator-gene pairs among the
selected set of 100 genes reported from the literature. In this yeast example, the refer-
ence network was extracted from the documented evidence from the YEASTRACT database
(Teixeira et al. 2006), which includes curated regulatory relationships from the literature
inferred from high-throughput experiments.

brem.data: An 85 by 111 subset of the data used for network inference in yeast (Brem
et al. 2002, Brem and Kruglyak 2005). The rows correspond to genes and the columns
to experiments. Provided courtesy of Rachel Brem.
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> library(networkBMA)

> data(vignette)

> dim(timeSeries)

[1] 582 102

> dim(reg.prob)

[1] 100 100

> dim(brem.data)

[1] 85 111

> reg.known

Regulator TargetGene source

1 YDR216W YKR009C YPD

2 YER040W YPL111W YPD

3 YER040W YKL015W YPD

4 YER040W YOR348C YPD

5 YJR094C YDR523C YPD

6 YKL062W YMR169C YPD

7 YKL062W YPL061W YPD

8 YKL062W YAL062W YPD

9 YKL062W YIL155C YPD

10 YKL062W YFL014W YPD

11 YKL062W YCR021C YPD

12 YKL062W YDR258C YPD

13 YKL062W YJR094C YPD

14 YKL062W YER150W YPD

15 YKL062W YNL194C YPD

16 YBL103C YNL037C YPD

17 YKL112W YCL064C SCPD

18 YKL112W YHR051W SCPD

2 Network Modeling

Given the yeast expression data from the Rapamycin experiments, the networkBMA func-
tion can be invoked to estimate the probabilities of regulatory relationships using iterative
Bayesian Model Averaging (Yeung et al. 2005, 2011):

> edges <- networkBMA(data = timeSeries[,-(1:2)],

+ nTimePoints = length(unique(timeSeries$time)),

+ prior.prob = reg.prob, known = reg.known,

+ nvar = 50, ordering = "bic1+prior")

> edges[1:9,]
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Regulator TargetGene PostProb

1 YBL103C YBL103C 1.0000000

2 YNR053C YBL103C 1.0000000

3 YOR206W YBL103C 1.0000000

4 YKL112W YKL112W 1.0000000

5 YMR229C YKL112W 1.0000000

6 YNR053C YKL112W 0.8878645

7 YLL011W YKL112W 0.1121355

8 YDR216W YDR216W 1.0000000

9 YDL170W YDR216W 1.0000000

For each gene g, the observed gene expression of genes at time t−1 serve as linear predictors
for modeling the observed expression of gene g at time t. BMA modeling results in a weighted
average of models consisting of relatively small numbers of predictors. The probability of
gene h being a linear predictor in the model for gene g is taken as the probability that gene
h regulates gene g in the network.

There are options for including known regulatory relationships and prior priobabilities in
the modeling (see Lo et al. 2011), as well as for ordering the variables, and for specifying
the number of ordered variables to be included in the modeling.

3 Assessment of Network Models

Although, except for synthetic data, the true underlying network is unknown, the results
can be assessed using a set of regulator-target gene network edges reported in the literature.
The comparison is done as follows:

� Let E be the set of regulator-target gene edges resulting from networkBMA, possibly
reduced using a probability threshold. In the context of the example in Section 2, E
corresponds to the set of edges represented in the object edges.

� Let K be the set of known regulator-target gene edges hardcoded in the modeling. In
the example in Section 2, K corresponds to reg.known.

� Let L be the set regulator-target gene edges reported in the literature. In the example
in Section 2, L corresponds to referencePairs.

� Let E\K and L\K be the set of pairs in E and L, respectively, with any hardcoded edges
removed. In the example of Section 2, E represented by edges contains 483 pairs, and L
represented by referencePairs contains 287 pairs. Both E and L include all 18 of the
known hardcoded edges K represented by reg.known. Hence E\K contains 465 pairs,
and L\K contains 269 pairs.

� Let U be the set of all directed pairs r-g such that r is a regulator in L\K and g is a
target gene in L\K. For the example of Section 2, L\K has 11 unique regulator genes
and 99 unique target genes. So there are 11 × 99 or 1089 pairs in U . Assume further
that the linked pairs in U are precisely those pairs in L\K, and that all other pairs are
unlinked.
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� Let U\K be the set of pairs in U with any hardcoded eges removed (hardcoded edges
may resurface in the unlinked pairs). For the example of Section 2, 17 of the 18 pairs in
K occur in U , so there are 1089 - 17 = 1072 edges in U\K.

The assessment is done using the contingency table of (E\K)∩ (U\K) relative to U\K. For
the example of Section 2, the assessment would be done with the 57 of the 465 pairs in E\K
that also belong to U\K.

A function called contabs.netBMA is provided to produce contingency tables from a
reference network according the procedure described above. Here we compare the edges
produced in Section 2 by networkBMA modeling on the yeast data with the reference network
referencePairs made up of results reported in the literature:

> ctables <- contabs.netwBMA( edges, referencePairs, reg.known,

+ thresh=c(.5,.75,.9))

> ctables

TP FN FP TN

0.0402434734464825 23 246 33 770

0.0454930593677872 23 246 33 770

0.0547610726848114 23 246 32 771

0.0621177818036108 22 247 31 772

0.120313556351554 22 247 31 772

0.121759397028104 22 247 30 773

0.166119151754663 22 247 28 775

0.193411367909935 22 247 28 775

0.264308050711243 21 248 28 775

0.267765506855866 21 248 26 777

0.439806592523595 21 248 25 778

0.460479253259967 21 248 25 778

0.529176356437926 21 248 24 779

0.618320042575671 21 248 23 780

0.78955796127144 20 249 22 781

0.808602928008677 19 250 22 781

0.815135804441225 19 250 21 782

0.833880848245337 19 250 21 782

0.894277522630439 19 250 20 783

0.933660013920575 19 250 18 785

0.937882218196389 19 250 18 785

1 18 251 15 788

Another function called ‘contabs’ is provided for computing contingency tables when the
true underlying network is known. The scores function can be used to obtain common
assessment statistics from the contingency tables, including sensitivity, specificity, precision,
recall, and false discovery rate among other measures.

> scores( ctables, what = c("FDR", "precision", "recall"))
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FDR precision recall

0.0402434734464825 0.5892857 0.4107143 0.08550186

0.0454930593677872 0.5892857 0.4107143 0.08550186

0.0547610726848114 0.5818182 0.4181818 0.08550186

0.0621177818036108 0.5849057 0.4150943 0.08178439

0.120313556351554 0.5849057 0.4150943 0.08178439

0.121759397028104 0.5769231 0.4230769 0.08178439

0.166119151754663 0.5600000 0.4400000 0.08178439

0.193411367909935 0.5600000 0.4400000 0.08178439

0.264308050711243 0.5714286 0.4285714 0.07806691

0.267765506855866 0.5531915 0.4468085 0.07806691

0.439806592523595 0.5434783 0.4565217 0.07806691

0.460479253259967 0.5434783 0.4565217 0.07806691

0.529176356437926 0.5333333 0.4666667 0.07806691

0.618320042575671 0.5227273 0.4772727 0.07806691

0.78955796127144 0.5238095 0.4761905 0.07434944

0.808602928008677 0.5365854 0.4634146 0.07063197

0.815135804441225 0.5250000 0.4750000 0.07063197

0.833880848245337 0.5250000 0.4750000 0.07063197

0.894277522630439 0.5128205 0.4871795 0.07063197

0.933660013920575 0.4864865 0.5135135 0.07063197

0.937882218196389 0.4864865 0.5135135 0.07063197

1 0.4545455 0.5454545 0.06691450

Areas under the ROC and Precision-Recall curves covered by contingency tables can also be
estimated using functions roc and prc, with the option to plot the associated curves. The
following gives the ROC and Precision-Recall curvers associated with the default contingency
tables, in which the threshholds are all values for posterior probabilities that appear in edges.

> roc( contabs.netwBMA( edges, referencePairs), plotit = TRUE)

area sector width

0.552955098 0.002765027 0.021087680

> title("ROC")

> prc( contabs.netwBMA( edges, referencePairs), plotit = TRUE)

area sector width

0.27665213 0.02082793 0.03484321

> title("Precision-Recall")

The resulting plots are shown in Figure 1. The output components are as follows:

� area: The estimated area under the curve for the horizontal sector ranging from 0 to 1.
This should be used with caution when the sector in which the data falls is small.

� sector: The estimated area under the horizontal sector covered by the contingency
tables.

� width: The width of the horizontal sector covered by the contingency tables.
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Figure 1: ROC and Precision-Recall curve sectors for a networkBMA model of the yeast-
rapamycin test data. The black lines delineate the estimated curves. The vertical red lines
delineate the range of horizontal values covered by the contingency tables. The dotted black
lines are linear interpolants outside this range. The diagonal blue line on the ROC plot
indicates the line betwween (0,0) and (1,1).

4 Linear Modeling for Static Gene Expression Data

networkBMA relies on sparse linear modeling via iterative Bayesian model averaging (BMA).
BMA addresses uncertainty in model selection, and builds a weighted–average model from
plausible models. The resulting model has better overall predictive ability than constituent
models, and tends to use few variables from among a larger set. BMA has been iteratively
extended to data with more variables that observations (Yeung at al. 2005, 2009, 2011). The
networkBMA package includes a function, iterateBMAlm, for linear modeling via iterative
BMA. We illustrate its use on a static gene expression dataset (without any time points),
brem.data, to infer the regulators of a particular gene by regressing it on the expression
levels of the other genes. Function iterateBMAlm can be applied to each gene so as to infer
all edges in the network. For one gene, the procedure is as follows:

> gene <- "YNL037C"

> variables <- which(rownames(brem.data) != gene)

> control <- iBMAcontrolLM(OR = 50, nbest = 20, thresProbne0 = 5)

> iBMAmodel.YNL037C <- iterateBMAlm( x = t(brem.data[variables,]),

+ y = unlist(brem.data[gene,]), control = control)

Function iBMAcontrolLM facilitates input of BMA control parameters, including nbest

for specifying the number of best models of each size to be initially retained, OR for defining
the width of ‘Occam’s window’ for model exclusion, and thresProbne0 for determining the
cutoff for probability (in percent) of a variable being included in the modeling (Raftery et al.
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2005). See the R help documentation for iBMAcontrolLM for a detailed description of these
parameters, and Hoeting et al. (1999) for a tutorial on the underlying BMA paradigm. The
estimated posterior probabilities (in percent) for genes that regulate YBL103C can be seen as
follows:

> iBMAmodel.YNL037C$probne0[iBMAmodel.YNL037C$probne0 > 0]

YDL170W YHR051W YPR002W YML123C YIL136W YAL062W YJR148W

36.178933 75.032631 100.000000 7.010839 100.000000 32.299339 32.299339

YNL036W YFR022W YPL265W YOR348C YCL064C YFL014W YOR388C

63.821067 100.000000 100.000000 100.000000 74.315241 15.737407 7.281450

YDR380W YGR183C YJL153C

67.700661 24.967369 32.299339
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