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1 Introduction

Current “omics” experiments (proteomics, transcriptomics, metabolomics or ge-
nomics) are multivariate by nature. Modern technology allows the exploration
of the whole genome or a big subset of the proteome, where each gene/protein is
in essence a variable explored to elucidate their relationship with some outcome.
In addition, these experiments are including more experimental factors (time,
dose, etc.) from design or subject specific information such as age, gender, linage
and so on. Hence, in order to discover or evaluate experimental design or sub-
ject specific patterns, some multivariate approaches should be applied. In this
context, Principal Component Analysis (PCA) and Partial Least Squares (PLS)
are the most common. However, it is known that working with raw data could
mask information of interest. So, ANOVA based decomposition is becoming
popular to split variability sources, before the application of such multivariate
approaches. Seminal works on genomics were “de Haan” et al. 2007 on APCA
and Smilde et al. 2005 on ASCA models. However, as far as the authors know,
R implementation of APCA is only available for spect data (ChemoSpec by
Hanson 2012). Meanwhile, ASCA is only offered through a translation of the
original Matlab© code (Nueda et al. 2007). But, the later only accepts up
to three design matrices, limiting and making its use difficult. Here we pro-
vide a flexible implementation of “potentially” any linear model specification for
ANOVA decomposition. It also provides both PCA or PLS analysis capabilities,
statistical significance, parallel permutation test and graphical representations.
The implementation is well-suited to directly analyze gene expression matrices
from microarray and RNA-seq experiments.

2 The model

A detailed explanation of ANOVA decomposition and multivariate analysis can
be found in Zwanenburg et al. 2011. Briefly, let’s assume that G genes will be
explored in a gene expression experiment (e.g. microarray or RNA-seq) with two
main factors A with C levels (A1, . . . , AC) and B with D levels (B1, . . . , BD)

1



for “j” replicates for each A, B and A · B combination levels. This implies an
XGxN matrix where N = C ·D ·J . Then, the ANOVA model for each gene can
be written as (1):

xcdj = µ+ αc + βd + αc · βd + εcdj (1)

where xcdj is the measured expression for “some” gene, at combination “cd” of
factors A and B for replicate “j”; µ is the overall mean; α, β and α · β are
the main and interaction effects respectively; and the error term ε ∼ N(0, σ2).
Equation (1) can also be expressed in matrix form for all genes (2):

X = µ1′ +Xα +Xβ +Xαβ + E (2)

where Xs matrices are of dimension GxN , µ and 1 are vectors of dimension Gx1
and Nx1 respectively. Matrices Xα, Xβ , and Xαβ contain the level averages for
factors A, B and interaction between the two factors respectively.

2.1 The decomposition algorithm

Equation (2) is decomposed iteratively, where for each step a term is calculated
and subtracted from the preceding residuals, to feed the next model as depicted
in equation (3), where “∧” denotes estimated coefficients. In de Haan et al.
2007, Smilde et al. 2005 and Nueda et al. 2007 this procedure is based on mean
calculations given the measurement position through design matrices, which
are error prone. These matrices contain “1” or “0” to identify which measured,
belongs or not to which factor respectively. On the contrary, in this library, the
means are estimated by a maximum likelihood method using lmFit function
provided by “limma” package (Smith 2003). Hence, statistical significance tests
are automatically provided and, if required, empirical Bayes corrections can also
be achieved.

step 0 : X = µ1′ + Eµ ←↩
step 1 : → Êµ = X − µ̂1′ = Xα + Eα←↩
step 2 : → Êα = Êµ − X̂α = Xβ + Eβ←↩
step 3 : → Êβ = Êα − X̂β = Xαβ + Eαβ←↩
step 4 : → Êαβ = Êβ − X̂αβ = Xαβ + Eαβ←↩

Ek ∼ N(0, σ2), k = µ, α, β, αβ

(3)

2.2 PCA and PLSR analysis

Once the model is decomposed, PCA or PLSR can be carried out over each
model term. In this context, PCA is concerned with explaining the variance
structure of a set of observations (e.g. genes) through few linear combinations
of variables (e.g. experimental conditions). It usually follows two main objec-
tives: i) data reduction and ii) interpretation. When it is applied over residuals
Êk with k = µ, α, β, αβ it is known as APCA (de Haan et al. 2007), whereas
when applied over coefficients X̂k it is known as ASCA (Smilde et al. 2005).
On the other hand, PLSR not only generalizes, but also combines features from
regression and PCA, to deal with correlated explanatory variables in linear mod-
els (Abdi & Williams 2003, Shawe-Taylor & Cristianini 2005). It is particularly
useful when one or several dependent variables (outputs - O) must be predicted
from a large and potentially highly correlated set of independent variables (in-
puts X). In our case scenario, X could be the coefficient X̂k matrix or the
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residual Êk and the O matrix a diagonal or design information matrix when
using the coefficients or residuals respectively; or even some particular user-
defined matrix, such as a class matrix from Gene Ontology like in Gene Set
Enrichment Analysis (GSEA) by Subramanian et al. 2005. In any case, the
PLSR approach is useful to explore co-variability between gene expression and
a predefined output class.

3 Other functionalities

� Flexible input data: just a GxN matrix, which is the typical data for
gene/protein expression experiments, and a data.frame with the experi-
mental design.

� Statistics: Student and F-test over coefficients are provided as well as
leverage on PCA. They can be used to filter out rows/genes in PCA/PLSR
analysis.

� Permutation test: a parallel permutation test implementation is also
provided.

� Visualization: the package also offers different methods to visualize the
results e.g. screeplots for PCA and biplots or loading plots for both PCA
and PLSR.

4 Example

Prado-Lopez et al. 2010 studied differentiation of human embryonic stem cells
under hypoxia conditions (Gene Expression Omnibus accession GSE37761).
They measured gene expression at different time points for controlled oxygen lev-
els. In this context, factor A stands for “time” with C = 3 levels {0.5, 1, 5days}
and factor B for “oxygen” with D = 3 levels {1, 5, 21%} and J = 2 replicates,
yielding a total of 18 samples. The rest of the dataset was excluded in order to
account for balance design using the following commands:

> library(stemHypoxia)

> data(stemHypoxia) #This will load M and design objects in memory

> timeIndex <- design$time %in% c("0.5","1","5") #time levels

> oxygenIndex <- design$oxygen %in% c("1","5","21") #oxygen levels

> design<-design[ timeIndex & oxygenIndex,]# Both time & oxygen

> design$time <-as.factor(design$time)

> design$oxygen<-as.factor(design$oxygen)

> rownames(M)<-M[,1] #Gene ID as row.names of M

> M <- M[,colnames(M) %in% design$samplename] #Just what is needed

Now we can explore microarray gene expression data present on M matrix,
with N =40736 rows (genes) and 18 columns (samples/microarrays). In addi-
tion, the experimental design data.frame contains columns (main effects e.g.
time and oxygen) and the sample names (samplename). Just to give an idea,
the head of design and M (fot the first three microarrays) might look like these:

> head(design)
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time oxygen samplename

3 0.5 1 12h_1_1

4 0.5 1 12h_1_2

5 0.5 5 12h_5_1

6 0.5 5 12h_5_2

7 0.5 21 12h_21_1

8 0.5 21 12h_21_2

> head(M)[,1:3]

12h_1_1 12h_1_2 12h_5_1

A_24_P66027 7.182159 7.511787 8.225355

A_32_P77178 6.385337 6.035340 6.440119

A_23_P212522 9.562124 9.390391 9.211380

A_24_P934473 6.287920 6.397256 6.264863

A_24_P9671 12.007126 11.995345 12.281969

A_32_P29551 10.175562 9.272561 9.360349

Then, the ANOVA decomposition (see section 2.1) of equation (1) can be
obtained by:

> library(lmdme)

> fit <- lmdme(model=~time*oxygen,data=M,design=design)

> fit

lmDME object:

Data dimension: 40736 x 18

Design (head):

time oxygen samplename

3 0.5 1 12h_1_1

4 0.5 1 12h_1_2

5 0.5 5 12h_5_1

6 0.5 5 12h_5_2

7 0.5 21 12h_21_1

8 0.5 21 12h_21_2

Model:~time * oxygen

Model deflaction:

Step Names Formula CoefCols

1 1 (Intercept) ~ 1 1

2 2 time ~ -1 + time 3

3 3 oxygen ~ -1 + oxygen 3

4 4 time:oxygen ~ -1 + time:oxygen 9

where a brief description of the used data and design information is dis-
played and how the decomposition process was carried out: which Formula was
applied in the corresponding Step, how many coefficients where calculated for
each gene (CoefCols) and how the steps were named (Names).
So, now, let’s choose those subjects/genes where at least one interaction coeffi-
cient is statistically different from zero (F-test over the coefficients) and perform
ASCA over them.
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> id<-F.p.values(fit,term="time:oxygen")[[1]]<0.001

> sum(id) #The amount of genes for further exploration

[1] 305

> decomposition(fit,decomposition="pca", type="coefficient",

+ term="time:oxygen", subset=id, scale="row")

> biplot(fit,xlabs=rep("o",sum(id)), mfcol=NULL)

These instructions will perform ASCA and store the results inside the fit

object. The user can also visualize the associated biplot (see Figure 1).
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Figure 1: Biplot of ANOVA Simultaneous Component Analysis over genes sat-
isfying F-value<0.001 over the interaction coefficients (time*oxygen)

In addition, PLSR can be applied on the same term, against the identity
matrix (default option) and obtain the corresponding biplot (see Fig. 2).

> fit.plsr<-fit

> decomposition(fit.plsr,decomposition="plsr", type="coefficient",

+ term="time:oxygen", subset=id,scale="row")

> biplot(fit.plsr, which = "loadings", xlabs=rep("o",sum(id)),

+ ylabs=colnames(coefficients(fit.plsr,term="time:oxygen")[[1]]),

+ var.axes=TRUE, mfcol=NULL)
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Figure 2: Biplot of ANOVA Partial Least Squares over genes satisfying F-value
< 0.001 over the interaction coefficients (time*oxygen).
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The interaction effect can also be displayed by means of using loadingplot
function (see Fig. 3). In the case of an ANOVA-PCA/PLS analysis, the user
only needs to change the type=“residuals” parameter in decomposition func-
tion call.

> loadingplot(fit,term.x="time",term.y="oxygen")
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Figure 3: ANOVA Simultaneous Component Analysis loadingplot over genes
satisfying F-value < 0.001 over the interaction coefficients (time*oxygen).
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Session Info

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] stemHypoxia_0.99.1 lmdme_1.0.0 pls_2.3-0 limma_3.14.0
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loaded via a namespace (and not attached):

[1] tools_2.15.1
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