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1 Introduction

Expression levels of mRNA molecules are regulated by different processes, comprising inhibition
or activation by transcription factors (TF) and post-transcriptional degradation by microRNAs
(miRNA). birta (Bayesian Inference of Regulation of Transcriptional Activity) uses the regula-
tory networks of TFs and miRNAs together with mRNA and miRNA expression data to infer
switches of regulatory activity between two conditions. A Bayesian network is used to model the
regulatory structure. In the model, mRNA expression levels depend on the activity states of its
regulating miRNAs and TFs and the miRNA expression is dependent on the associated miRNA
activity. birta uses Markov-Chain-Monte-Carlo (MCMC) sampling to infer these activity states,
using one of the conditions as a reference. During MCMC, switch moves - toggling the state of a
regulator between active and inactive - and swap moves - exchanging the activitiy states of either
two miRNAs or two TFs - are used to sample from the posterior distribution. [10]
This vignette presents the application of the birta package in different scenarios including a sim-
ulated and a real data set. The package can be loaded by typing:

> library(birta)

2 Joint inference of transcription factor and miRNA activ-
ities

The main function of the package, birta, provides a flexible and easy-to-use interface to the
method. Before the function is applied to an artifical and a real data set, the most important
options are explained in the following. For a thorough description of all options, see the birta

help page.

� model. There are two different models available to infer activity states. ”all-plug-in” mod-
els mRNA and miRNA expression as gaussian distributions with (limma) estimates for its
parameters from the data, whereas the ”no-plug-in” model implements a fully bayesian ap-
proach, which uses gamma distributions as priors for the unknown parameters. For a detailed
description and comparison of these models, see [10].

� limmamRNA and limmamiRNA are the output of the function limmaAnalysis for
mRNA and miRNA expression data. limma is used to calculate differentially expressed
mRNAs and miRNAs [7]. Its output is used for the initialization of the plug-in parameters
of the model. The initialization of ω, describing the effect of an active regulator on mRNA
expression, as well as the parameterization of the probability distributions is estimated based
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on the limma output. limmaAnalysis is intended to give an easy-to-use interface to differ-
ential expression analysis using limma. However, a customized analysis can be passed to
birta as well.

� sample.weights. In both models, the initial ω vector of the regulator-target graph may
be sampled together with the activity states. This is realised by setting a prior proba-
bility for ω and slightly altering ω with samples from a gaussian distribution (parameters
weightSampleMean and weightSampleVariance) in each iteration.

� potential swaps is the output of get_potential_swaps. In a swap move, two TFs or
two miRNAs, having different activity states, exchange these. This is especially useful
for highly overlapping regulator-target graphs. If not specified, birta automatically calls
get_potential_swaps to calculate all potential swaps with the default threshold of a mini-
mal overlap of targets between regulators. However, if it needs to be pre-computed differently,
it can be directly passed to birta.

� If run.pretest is true, miRNA and TF states are initialized with the result of a hypergeomet-
ric test in order to improve convergence. Each target gene set is tested for overrepresentation
of differentially expressed genes. The corresponding regulator is set active, if the gene set
shows an enrichment with a p-value < 0.05 (default). This option should only be used in case
of observed convergence problems. Otherwise the inference starts with all activity states set
to zero.

� nrep is an integer vector of length four, which specifies the number of replicates for miRNA
and mRNA expression experiments: c(#miRNA-reps-condition1, #miRNA-reps-condition2,
#mRNA-reps-condition1, #mRNA-reps-condition2).

� condition.specific.inference Should inference on TF / miRNA activities be made only
RELATIVE to a reference condition or independently in both conditions? In the first case
this amounts to look, in how far activities of TFs and miRNAs can explain differential gene
expression, whereas in the second case gene expression in each condition is treated as a
function of regulator activities.

2.1 Application to a simulated data set

A simulated expression data set of 1000 genes is used together with a human TF- and miRNA-
target graph. The TF-target gene network was compiled by computing TF binding affinities
to promoter sequences of all human genes according to the TRAP model [6] using TRANSFAC
matrices. The miRNA-target graph includes miRNA-target interactions, which are either experi-
mentally confirmed (Tarbase) [5] or predicted at least by two of the following methdos: miRanda
[1], miRBase [4] and miRDB [8]. For details on the simulation and construction of the regulatory
networks, see [10].
data(humanSim) loads the objects genesets, which holds the regulator-target graphs, as well as
the simulated expression data. The two target networks are named lists associating each TF, resp.
miRNA with its target gene sets. The expression data is stored in a matrix. In this example, there
are five replicates for the ”treated” case and three for the ”control” case for mRNA and miRNA
expression measurements.

> data(humanSim)

> str(head(genesets$TF))

List of 6

$ V$AIRE_01 : chr [1:821] "10368" "51087" "10272" "22846" ...

$ V$AP3_Q6 : chr [1:871] "10368" "51087" "10272" "22846" ...

$ V$CEBPA_01 : chr [1:852] "10368" "51087" "10272" "93408" ...

$ V$EN1_01 : chr [1:841] "10368" "51087" "10272" "22846" ...
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$ V$FOXJ2_02 : chr [1:858] "10368" "51087" "10272" "268" ...

$ V$HELIOSA_01: chr [1:790] "10368" "51087" "10272" "22846" ...

> str(head(genesets$miRNA))

List of 6

$ hsa-miR-548a-3p: chr [1:42] "114818" "1306" "145773" "169200" ...

$ hsa-miR-766 : chr [1:15] "10071" "1087" "11007" "158747" ...

$ hsa-miR-15a : chr [1:26] "10611" "1264" "1399" "145773" ...

$ hsa-miR-15b : chr [1:30] "10611" "114757" "1264" "145773" ...

$ hsa-miR-16 : chr [1:30] "1399" "145773" "169026" "192670" ...

$ hsa-miR-195 : chr [1:26] "10492" "1399" "145773" "169026" ...

> head(sim$dat.mRNA)

control.1 control.2 control.3 control.4 control.5 treated.1

114818 -0.131363521 -0.106038466 -0.3083316 -0.15966962 -0.15487331 -0.4292146

1306 -0.184995472 -0.514438355 -0.4312150 -0.34521239 0.06595186 -0.8549238

145773 -0.584408159 -0.416174064 -0.4950412 -0.08120659 -0.13051279 -2.3737003

169200 -0.012647299 -0.013087558 -0.8544657 -0.19007296 -0.15861887 -0.1464592

1823 0.009880467 -0.003646771 -0.6783295 -0.58769338 -0.02450959 -0.1580861

1982 -0.021820271 0.151964598 -0.8124917 -0.51106594 -0.15358637 0.3049217

treated.2 treated.3 treated.4 treated.5

114818 0.17680336 -0.4920621 0.3057739177 -0.2496781

1306 -0.09336761 -0.4404861 -0.0004008015 -0.1225919

145773 -2.31265679 -2.2920097 -2.2225012098 -2.3626999

169200 0.12669181 -0.1547725 -0.1841533338 -0.4108952

1823 -0.15493929 -0.4758073 -0.2910310564 0.1876621

1982 -0.04991545 -0.3105898 -0.0831039217 0.2711129

limmaAnalysis fits a linear model to all mRNA and miRNA expression values and computes
log fold changes and p-values for differential expression for comparisons of two groups. A design
matrix must be generated and passed to limmaAnalysis together with contrasts (see the limma
vignette for details). The output contains estimates of the variance and fold changes, which are
used to parameterize and initialize the model.

> design = model.matrix(~0+factor(c(rep("control", 5), rep("treated", 5))))

> colnames(design) = c("control", "treated")

> contrasts = "treated - control"

> limmamRNA = limmaAnalysis(sim$dat.mRNA, design, contrasts)

> limmamiRNA = limmaAnalysis(sim$dat.miRNA, design, contrasts)

Since miRNA expressions are available, miRNAs are assumed to be active under the condition,
where it is upregulated and its targets are downregulated. In general, transcription factor expres-
sion is not informative for its activity, thus a switch in regulatory acitvity is predicted. However,
a condition specific model, considering expression values of differentially expressed TFs can be
applied with birta and is discussed in section 2.2.
Now, the data is passed to birta. To keep the computations low in this example, the ω vector
is not sampled (sample.weights=FALSE), potential swaps were pre-computed and the number of
iterations is very low. In a real application, the number of iterations should be much higher to
make sure, that the Markov-Cahin has converged.

> sim_result = birta(sim$dat.mRNA, sim$dat.miRNA, limmamRNA=limmamRNA,

+ limmamiRNA=limmamiRNA, nrep=c(5,5,5,5), genesets=genesets,

+ model="all-plug-in", niter=50000, nburnin=10000,

+ sample.weights=FALSE, potential_swaps=potential_swaps)
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Figure 1 shows the log-likelihood during the sampling to check the convergence.

> plotConvergence(sim_result, nburnin=10000, title="simulation")
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Figure 1: Log-likelihood during MCMC sampling for the simulated data set.

The sim_result object is a list and the sampled activity states can be accessed via miRNAs-

tates1 and miRNAstates2 respectively. Each vector contains the frequency, with which a specific
regulator was sampled from the posterior distribution. A value of 0 means, that the regulator was
never sampled as active, meaning switching it to active fits the model very badly. A value of 1
means, that the regulator of interest is most certainly active, since switching its state to active
substantially increases the likelihood of the model.

> sim$TFstates[sim$TFstates == 1]

V$GATA3_03

1

> sim$miRNAstates[sim$miRNAstates == 1]

hsa-miR-155 hsa-miR-96

1 1

> sim_result$miRNAstates1[sim_result$miRNAstates1 > 0]

named numeric(0)

> sim_result$miRNAstates2[sim_result$miRNAstates2 > 0]

hsa-miR-96

1
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birta with a miRNA-target graph only

It is possible to apply birta only to either miRNA-target or TF-target graph. To do this, the
miRNA-target graph from the above example is simply extracted and passed to birta with the
expression data. An example application to a TF-target graph without miRNAs is shown in the
next section.

> genesetsmiRNA = genesets["miRNA"]

> result_miRonly = birta(sim$dat.mRNA, sim$dat.miRNA, limmamRNA=limmamRNA,

+ limmamiRNA=limmamiRNA, nrep=c(5,5,5,5), genesets=genesetsmiRNA,

+ model="all-plug-in", niter=50000, nburnin=10000,

+ sample.weights=FALSE, potential_swaps=potential_swaps)

> result_miRonly$miRNAstates1[result_miRonly$miRNAstates1 > 0]

named numeric(0)

> result_miRonly$miRNAstates2[result_miRonly$miRNAstates2 > 0]

hsa-miR-96

1

2.2 Application to an E. Coli data set

Preprocessed microarray data [3], as well as a filtered TF-target graph [2] is used to demonstrate the
utility of birta on a real data set to infer TF activity states. The expression experiment consists of
three replicates from E. Coli during aerobic growth and four replicates during anaerobic growth.
The TF-target graph contains annotations for 160 transcription factors. Expression values are
stored in an ExpressionSet .

> data(EColiOxygen)

> EColiOxygen

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4205 features, 7 samples

element names: exprs

protocolData: none

phenoData

rowNames: GSM18261 GSM18262 ... GSM18289 (7 total)

varLabels: Strain GrowthProtocol GenotypeVariation Description

varMetadata: labelDescription

featureData

featureNames: 1 2 ... 4205 (4205 total)

fvarLabels: symbol Entrez

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

pubMedIds: 15129285

Annotation: org.EcK12.eg.db

> head(exprs(EColiOxygen))

GSM18261 GSM18262 GSM18263 GSM18286 GSM18287 GSM18288 GSM18289

947315 10.277125 10.22119 10.410919 10.208393 10.179176 10.186009 10.009045

945490 10.138638 10.17328 10.215396 10.170649 9.993040 10.277822 9.968522

944896 11.016805 11.28574 11.308092 11.287854 11.582083 11.632015 11.463312

945321 8.726455 9.00633 8.973156 9.149897 9.245039 9.298647 9.113609

944895 11.179725 11.09959 11.270414 10.792218 10.750200 11.289802 10.960788

947758 12.399980 12.50940 12.043803 12.460848 12.531210 12.440010 12.510939
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Differentially expressed genes are calculated using limmaAnalysis, which is then passed to
birta, together with the TF-target graph EColiNetwork. Here we use birta to look for regulator
activities that can explain differential gene expression between anaerobic and aerobic growth:

> design = model.matrix(~0+factor(pData(EColiOxygen)$GrowthProtocol))

> colnames(design) = c("aerobic.growth", "anaerobic.growth")

> contrasts = "anaerobic.growth - aerobic.growth"

> limmamRNA = limmaAnalysis(EColiOxygen, design, contrasts)

> ecoli_result = birta(EColiOxygen, nrep=c(0, 0, 3, 4),

+ genesets=EColiNetwork, limmamRNA=limmamRNA,

+ model="all-plug-in", niter=50000, nburnin=10000,

+ sample.weights=FALSE, condition.specific.inference=FALSE, run.pretest=TRUE)

> plotConvergence(ecoli_result, nburnin=10000, title="E. Coli")
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Figure 2: Log-likelihood during MCMC sampling for the E. Coli data set.

The log-likelihood is shown in Figure 2. For active TFs, a cutoff of 0.9 is chosen. The total
number of target genes is shown together with the number of differentially expressed target genes
for the predicted active TFs:

> activeTFs = ecoli_result$TFActivitySwitch[ecoli_result$TFActivitySwitch > 0.9]

> sort(activeTFs)

named numeric(0)

> if(length(activeTFs) > 0){

+ DEgenes = limmamRNA$pvalue.tab$ID[limmamRNA$pvalue.tab$adj.P.Val < 0.05]

+ DEgenesInTargets = sapply(ecoli_result$genesetsTF[names(activeTFs)],

+ function(x) c(length(which(x %in% DEgenes)), length(x)))

+ rownames(DEgenesInTargets) = c("#DEgenes", "#targets")

+ DEgenesInTargets[,order(DEgenesInTargets["#targets",], decreasing=T)]

+ }
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Using transcription factor expression

In accordance with recent findings [9], the default model of birta does not suppose that the
mRNA expression levels of a TF and its (putative) target genes are generally correlated. However,
assuming a correlation of TF expression and its targets might be correct in some cases. Thus, an
extended model of birta allows to integrate TF expression of differentially expressed TFs into the
model in a similar way as it models miRNA expression.
TFexpr contains an excerpt of EColiOxygen, containing the mRNA expression for all 160 TFs in
EColiNetwork. The row names of the expression matrix were converted to the corresponding TF
identifiers in EColiNetwork.

> head(exprs(TFexpr))

GSM18261 GSM18262 GSM18263 GSM18286 GSM18287 GSM18288 GSM18289

acrR 8.277473 8.309069 8.504610 7.857166 7.686808 8.111077 7.915678

ada 9.277946 9.540328 9.186303 9.578132 9.646316 9.444881 9.384217

adiY 6.330554 6.555999 6.686157 10.801038 10.986309 8.788498 8.612713

agaR 10.854649 10.726303 10.782988 10.936007 11.041171 11.200971 11.130323

allR 11.324718 11.193124 11.389784 11.102606 11.274170 11.273160 10.936546

allS 8.520564 8.764251 8.693574 8.806117 8.806997 8.705715 8.272239

Differential expression of these TFs can be assessed by subsetting our previous limmamRNA

object. birta then automatically extracts differentially expressed TFs from the matrix using
lfc.mRNA and fdr.mRNA as log fold change and p-value cutoff respectively. The expression of
these selected TFs is then used in the model. Activities of non-differentially expressed TFs are
modeled with the default model.

> limmaTF = limmamRNA

> limmaTF$pvalue.tab = limmaTF$pvalue.tab[limmaTF$pvalue.tab$ID %in% fData(TFexpr)$Entrez, ]

> limmaTF$lm.fit$s2.post = limmaTF$lm.fit$s2.post[limmaTF$pvalue.tab$ID]

> limmaTF$pvalue.tab$ID = fData(TFexpr)$symbol[match(limmaTF$pvalue.tab$ID, fData(TFexpr)$Entrez)]

> names(limmaTF$lm.fit$s2.post) = limmaTF$pvalue.tab$ID

> ecoli_TFexpr = birta(EColiOxygen, nrep=c(0, 0, 3, 4),

+ genesets=EColiNetwork, TFexpr=TFexpr, limmamRNA=limmamRNA, limmaTF=limmaTF, model="all-plug-in", niter=50000,

+ nburnin=10000, sample.weights=FALSE, condition.specific.inference=FALSE, run.pretest=TRUE)

If the TF expression is considered - like for miRNAs - the TF is assumed to be active under
the condition, where it is higher expressed. Therefore, it is possible to make a condition specific
prediction for the activity of these TFs. For TFs, which are not differentially expressed, the
prediction refers again to a switch in activity between both conditions.

> sort(ecoli_TFexpr$TFActivitySwitch[ecoli_TFexpr$TFActivitySwitch > 0.9])

arsR dcuR gadW slyA

1 1 1 1

3 Conclusion

birta integrates miRNA and mRNA data in a statistical framework (namely a Bayesian Network)
to make inference on TF and miRNA activities in a condition specific way. It is a step towards
the important goal to unravel causal mechanisms of gene expression changes under specific exper-
imental or natural conditions.
This vignette was generated using the following package versions:

� R version 2.15.1 (2012-06-22), i386-pc-mingw32
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� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: Biobase 2.18.0, BiocGenerics 0.4.0, MASS 7.3-21, birta 1.2.0, limma 3.14.0

� Loaded via a namespace (and not attached): tools 2.15.1
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