
The waveTiling package

Kristof De Beuf

October 1, 2012

Contents

1 Introduction 1

2 Read in and prepare data for analysis 1

3 Wavelet-based transcriptome analysis 2
3.1 Standard analysis flow . 2
3.2 Plot function . 7
3.3 Accessor functions . 9

1 Introduction

In this waveTiling package vignette the package’s main functionalities to conduct a tiling array trancriptome
analysis are illustrated. The package contains an implementation of the basic wavelet-based functional model
introduced in [1], and its extensions towards more complex designs described in [3]. The leaf development
data set [2] contains genome-wide expression data measured for six developmental time points (day 8 to day
13) on the plant species Arabidopsis thaliana. The experiment was conducted with AGRONOMICS1 tiling
arrays [4] and contains three biological replicates per time point.

2 Read in and prepare data for analysis

First we have to load the waveTiling package and the waveTilingData package. The latter contains an
TilingFeatureSet (leafdev) from the oligoClasses package [5] with the expression values for the leaf develop-
ment experiment. Make sure to also load the pd.atdschip.tiling package which contains the tiling array info
to map the probe locations on the array to the exact genomic positions. The pd.atdschip.tiling package was
created by using the pdInfoBuilder package [6], which should also be used to build similar packages for other
array designs.

> library(waveTiling)

> library(waveTilingData)

> library(pd.atdschip.tiling)

> data(leafdev)

We first change the class to WaveTilingFeatureSet , which is used as input for the wavelet-based tran-
scriptome analysis, and add the phenotypic data for this experiment.

> leafdev <- as(leafdev,"WaveTilingFeatureSet")

> leafdev <- addPheno(leafdev,noGroups=6,

+ groupNames=c("day8","day9","day10","day11","day12","day13"),

1

+ replics=rep(3,6))

> leafdev

WaveTilingFeatureSet (storageMode: lockedEnvironment)

assayData: 6553600 features, 18 samples

element names: exprs

protocolData

rowNames: caquinof_20091023_S100_v4.CEL

caquinof_20091023_S101_v4.CEL ...

caquinof_20091023_S117_v4.CEL (18 total)

varLabels: exprs dates

varMetadata: labelDescription channel

phenoData

rowNames: day8.1 day8.2 ... day13.3 (18 total)

varLabels: group replicate

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: pd.atdschip.tiling

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 2151288 57.5 7626154 203.7 9348188 249.7

Vcells 2207777 16.9 156270202 1192.3 156440983 1193.6

Before starting the transcriptome analysis, the probes that map to several genomic locations (either PM
or MM, or forward and reverse strand) are filtered using filterOverlap. This function can also be used if
the probes have to be remapped to another version of the genome sequence as the version used for the array
design. For instance, the probes on the AGRONOMICS1 array are build based on the TAIR 8 genome,
and remapped onto the TAIR 9 sequence. The function needs an argument BSgenomeObject available
from loading the appropriate BSgenome package [7]. The output is an object of class mapFilterProbe.
After filtering and/or remapping, the expression data are background-corrected and quantile-normalized
(bgCorrQn). The mapFilterProbe leafdevMapAndFilterTAIR9 is used to make sure only the filtered probes
are used in the background correction and normalization step.

> library(BSgenome.Athaliana.TAIR.TAIR9)

> # leafdevMapAndFilterTAIR9 <- filterOverlap(leafdev,remap=TRUE,

> # BSgenomeObject=Athaliana,chrId=1:7,

> # strand="both",MM=FALSE)

> data(leafdevMapAndFilterTAIR9)

>

> # leafdevBQ <- bgCorrQn(leafdev,useMapFilter=leafdevMapAndFilterTAIR9)

3 Wavelet-based transcriptome analysis

3.1 Standard analysis flow

The analysis has to be conducted in a chromosome- and strand-wise manner. First, the wavelet-based model
is fitted to the expression data, leading to a WfmFit-class object leafdevFit.

> data(leafdevBQ)

> chromosome <- 1

> strand <- "forward"

2

> leafdevFit <- wfm.fit(leafdevBQ,filter.overlap=leafdevMapAndFilterTAIR9,

+ design="time",n.levels=10,

+ chromosome=chromosome,strand=strand,minPos=22000000,

+ maxPos=24000000,var.eps="marg",prior="improper",

+ skiplevels=1,save.obs="plot",trace=TRUE)

> leafdevFit

Fitted object from wavelet based functional model - Time Design

Wavelet filter used: haar

Number of wavelet decomposition levels: 10

Number of probes used for estimation: 52224

Genome Info :

Chromosome: 1

Strand: forward

Minimum probe position: 22000000

Maximum probe position: 23988867

If the redundant probes have been filtered using filterOverlap the resulting mapFilterProbe class object
should be given as an argument filter.overlap, to ensure that the expression values are properly linked
to the genomic information such as chromosome and strand. In this analysis we use a time-course design
(design). The number of levels in the wavelet decomposition is 10 (n.levels). We use marginal maximum
likelihood to estimate the residual variances (var.eps) and put an improper prior (prior) on the effect
functions (see [1]).

Next, the WfmFit-class object leafdevFit is used as input for the inference function wfm.inference.
This function outputs the WfmInf -class object leafdevInf from which transcriptionally active regions of
interest, given a chosen threshold value, can be extracted.

> delta <- log(1.2,2)

> leafdevInfCompare <- wfm.inference(leafdevFit,

+ contrasts="compare",delta=c("median",delta))

> leafdevInfCompare

Inference object from wavelet based functional model - Pairwise Comparison

Genome Info :

Chromosome: 1

Strand: forward

Minimum probe position: 22000000

Maximum probe position: 23988867

The contrasts argument is used to indicate the type of inference analysis one wants to conduct, e.g.
compare to detect differentially expressed regions between the different time points. By default, transcrip-
tionally active regions based on the mean expression over all arrays are also given in the output. With the
delta the threshold value to use in the statistical tests can be set. It is a vector with as first element the
threshold for the overall mean trancript discovery. This is taken to be the median of the expression values
over all arrays in this case. The second element is the threshold for the differential expression analysis. This
threshold is equal for each pairwise comparison if the length of delta is 2. If one wants to use different
thresholds the length of delta must be r+1 with r the number of pairwise comparisons, where each element
is associated with an individual threshold value.

Much information is stored in the WfmFit-class and WfmInf -class objects. Primarily, we are interested
in the genomic regions that are significantly transcriptionally affected according to the research question of
interest.

3

> sigGenomeRegionsCompare <- getGenomicRegions(leafdevInfCompare)

> sigGenomeRegionsCompare[[2]]

IRanges of length 23

start end width

[1] 22448608 22448704 97

[2] 22700160 22700256 97

[3] 22804928 22805024 97

[4] 22824704 22824800 97

[5] 22825792 22825888 97

[6] 22826112 22826208 97

[7] 22976320 22976416 97

[8] 23083456 23083584 129

[9] 23085824 23085920 97

...

[15] 23233504 23233664 161

[16] 23234144 23234240 97

[17] 23252448 23252608 161

[18] 23253376 23253472 97

[19] 23334464 23334560 97

[20] 23457312 23457408 97

[21] 23457824 23457920 97

[22] 23619042 23619138 97

[23] 23953826 23953986 161

> length(sigGenomeRegionsCompare)

[1] 16

The getGenomicRegions accessor outputs a list of IRanges objects [8] denoting the start and end
position of each significant region. The first element in the list always gives the significant regions for
the mean expression over all arrays (transcript discovery). Elements 2 to 16 in sigGenomeRegions give the
differentially expressed regions between any pair of contrasts between different time points. The order is
always 2-1, 3-1, 3-2, 4-1,... Hence, sigGenomeRegions[[2]] gives the differentially expressed regions between
time point 2 and time point 1.

If information on the annotation of the studied organism is available, we can extract both significantly
affected genes with getSigGenes, and the non-annotated regions with getNonAnnotatedRegions. Both
functions output a list of GRanges objects [9]. The annotation info can be obtained from ab appropriate
object of class TranscriptDb representing an annotation database generated from BioMart. For the current
data we make use of the TxDb.Athaliana.BioMart.plantsmart12 package [10].

> library(TxDb.Athaliana.BioMart.plantsmart12)

> sigGenesCompare <- getSigGenes(fit=leafdevFit,inf=leafdevInfCompare,

+ biomartObj=TxDb.Athaliana.BioMart.plantsmart12)

> head(sigGenesCompare[[2]])

GRanges with 6 ranges and 6 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] 1 [22447848, 22449526] - | 14091 AT1G60970.1

[2] 1 [22699715, 22701169] + | 27751 AT1G61520.3

[3] 1 [22700010, 22701383] + | 27752 AT1G61520.1

4

[4] 1 [22700073, 22701383] + | 27753 AT1G61520.2

[5] 1 [22804613, 22806318] - | 13168 AT1G61750.1

[6] 1 [22824440, 22826774] + | 36248 AT1G61800.1

regNo percOverGene percOverReg totPercOverGene

<integer> <numeric> <numeric> <numeric>

[1] 1 5.777248 100 5.777248

[2] 2 6.666667 100 6.666667

[3] 2 7.059680 100 7.059680

[4] 2 7.398932 100 7.398932

[5] 3 5.685815 100 5.685815

[6] 4 4.154176 100 12.462527

seqlengths:

3 4 1 5 2 Pt Mt

NA NA NA NA NA NA NA

> nonAnnoCompare <- getNonAnnotatedRegions(fit=leafdevFit,inf=leafdevInfCompare,

+ biomartObj=TxDb.Athaliana.BioMart.plantsmart12)

> head(nonAnnoCompare[[2]])

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 [22001344, 22001440] +

[2] 1 [22004577, 22004801] +

[3] 1 [22007872, 22008192] +

[4] 1 [22009696, 22009920] +

[5] 1 [22010016, 22010432] +

[6] 1 [22012864, 22013216] +

seqlengths:

1

NA

Using the same WfmFit-object leafdevFit, we can run the analysis to analyze transcriptional time effects
(leafDevInfTimeEffect) and have a look at time-wise trancriptionally active regions (leafdevInfMeans).

> leafdevInfTimeEffect <- wfm.inference(leafdevFit,contrasts="effects",

+ delta=c("median",2,0.2,0.2,0.2,0.2))

> leafdevInfMeans <- wfm.inference(leafdevFit,contrasts="means",

+ delta=4,minRunPos=30,minRunProbe=-1)

Besides the available standard design analyses given by the design argument in the wfm.fit function and
the contrasts argument in the wfm.inference, it is also possible to provide custom design and contrast
matrices in the waveTiling package. This custom design is illustrated based on the polynomial contrast
matrix used in a time-course analysis.

> custDes <- matrix(0,nrow=18,ncol=6)

> orderedFactor <- factor(1:6,ordered=TRUE)

> desPoly <- lm(rnorm(6)~orderedFactor,x=TRUE)$x

> custDes[,1] <- 1

> custDes[,2:6] <- apply(desPoly[,2:6],2,rep,getReplics(leafdevBQ))

> custDes

5

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[2,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[3,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[4,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

[5,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

[6,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

[7,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[8,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[9,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[10,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[11,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[12,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[13,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[14,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[15,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[16,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

[17,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

[18,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

> leafdevFitCustom <- wfm.fit(leafdevBQ,filter.overlap=leafdevMapAndFilterTAIR9,

+ design="custom",design.matrix=custDes,n.levels=10,

+ chromosome=chromosome,strand=strand,minPos=22000000,

+ maxPos=24000000,var.eps="marg",prior="improper",

+ skiplevels=1,save.obs="plot",trace=TRUE)

> noGroups <- getNoGroups(leafdevBQ)

> myContrastMat <- matrix(0,nrow=noGroups*(noGroups-1)/2,ncol=noGroups)

> hlp1 <- rep(2:noGroups,1:(noGroups-1))

> hlp2 <- unlist(sapply(1:(noGroups-1),function(x) seq(1:x)))

> for (i in 1:nrow(myContrastMat))

+ {

+ myContrastMat[i,hlp1[i]] <- 1

+ myContrastMat[i,hlp2[i]] <- -1

+ }

> myContrastMat

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -1 1 0 0 0 0

[2,] -1 0 1 0 0 0

[3,] 0 -1 1 0 0 0

[4,] -1 0 0 1 0 0

[5,] 0 -1 0 1 0 0

[6,] 0 0 -1 1 0 0

[7,] -1 0 0 0 1 0

[8,] 0 -1 0 0 1 0

[9,] 0 0 -1 0 1 0

[10,] 0 0 0 -1 1 0

[11,] -1 0 0 0 0 1

[12,] 0 -1 0 0 0 1

[13,] 0 0 -1 0 0 1

[14,] 0 0 0 -1 0 1

[15,] 0 0 0 0 -1 1

6

> leafdevInfCustom <- wfm.inference(leafdevFitCustom,contrast.matrix=myContrastMat,

+ delta=c("median",log(1.2,2)))

3.2 Plot function

Plots can be made very easily using the plotWfm function which needs both the WfmFit- and WfmInf -
class objects as input. It also needs an appropriate annotation file. The plot function makes use of the
implementations in the GenomeGraphs-package [11].

> trs <- transcripts(TxDb.Athaliana.BioMart.plantsmart12)

> sel <- trs[elementMetadata(trs)$tx_name %in% "AT1G62500.1",]

> start <- start(ranges(sel))-2000

> end <- end(ranges(sel))+2000

> plotWfm(fit=leafdevFit,inf=leafdevInfCompare,

+ biomartObj=TxDb.Athaliana.BioMart.plantsmart12,

+ minPos=start,maxPos=end,two.strand=TRUE,

+ plotData=TRUE,plotMean=FALSE,tracks=c(1,2,6,10,11))

D
at

a
F

R
G

r2
−

G
r1

G
r3

−
G

r1
G

r4
−

G
r3

G
r5

−
G

r4
G

r6
−

G
r1

●

●
●

●
●

●
●

●

●

●

●
●
●● ●

● ● ●
●
●

●
●●

●●
●●

●

●
●●

●

●●
●

●
●

●

●

●

●●●
●

●

●●
●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ● ●

●

●●●
●●

●
●
●
●●

●
●
●

●

●
●

●
●●

●
●●●

●●●●

●
●

●

●●
●
●
●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●●
●●

●

●

●

●
●
●●

●

●

●

●
●
●

●

●

●
●

●

●●●

●
●

●

●

●
●●

●

●●
●
●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●
●

●
●
●

●

●
●

●

●●●●●
●

●
●●

●●●

●

●●●
●

●

●
●
●
●
●

●

●

●
●

●●

●
●●

●
●
●

●

●

●
●

●●
●

●

●
●

●

●

● ● ●●

●

●●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●●

●●●

●

●

●
●

●

●

●
●

●●●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

● ●●
●●

●

●● ●

●●●
●

●

●●
●●

●●●●

●

●●

●●
●
●

●
●
●

●
●●●

●

●●

●

●
●●

●

●

●●●●

●
●●

●

●

●

●

●
●

●

●

●●

●

● ●
●●

●

●

●
●
●●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●
●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●
●

●●
● ●

●

●
●

●●
●

●
●
●

●

●
●●●

●●
●●

●

●

●
●
●
●
●

●

●
●
●●

●

●

●

●

●

●
●

●

●
●
●●

●●

●

●

●

●●

●

●●●
●
● ●●

●

●

●
●●

●●
●
●

●

●
●
●

●
●
●●

●●
●●

●●

●

●

●

●●

●

●

●●

●●

●

●●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●
●

●
●

●●

●●

●

●
●
●●●●

●

●

●
●
●
●

●● ●
●●●●

●●
●
●

●●●●
●●

●
●
●●●●●

●●●●●
●

●
●●

●

●●
●
●

●

●●●●●●

●

●

●

●●
●●●

●
●
●

●

●

●
●●

●●●●
●●

●

●

●●

●
●

●
●

●

●

●
●

●

●●●

●●
●

●●●●
●●●●

●
●●

●
●●●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●
●

●
●
●

●

●●●●

●

●

●

●●●●

●
●
●
●●

●●●
●
●●

●

●

●

●

●
●
●
●

●●
●
●

●●

●
●

●

●●●●
●

●

●

●2
4
6
8

10
12

23131000 23132000 23133000 23134000 231350005' 3'3' 5'

−5

0

5

−5

0

5

−5

0

5

−5

0

5

−5

0

5

AT1G62500.1

AT1G62490.1

> start <- start(ranges(sel))-4000

> end <- end(ranges(sel))+4000

7

> plotWfm(fit=leafdevFit,inf=leafdevInfTimeEffect,

+ biomartObj=TxDb.Athaliana.BioMart.plantsmart12,

+ minPos=start,maxPos=end,two.strand=TRUE,

+ plotData=TRUE,plotMean=FALSE,tracks=1)

D
at

a
F

R
Li

ne
ar

●
●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●

●

●
●●●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●
●
●

●

●

●●

●
●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●

●●
●

●●

●

●

●
●

●

●

●●

●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●
●

●

●

●

●●●

●

●
●

●

●

●●
●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●

●●
●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●●●

●●

●

●

●●●
●

●●

●

●

●
●
●
●
●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●●●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●
●
●

●
●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●

●
●

2

4

6

8

10

12

23129000
23130000

23131000
23132000

23133000
23134000

23135000
23136000

231370005' 3'
3' 5'

−1.5

−1

−0.5

0

AT1G62480.1 AT1G62500.1

AT1G62490.1 AT1G62510.1

> plotWfm(fit=leafdevFit,inf=leafdevInfMeans,

+ biomartObj=TxDb.Athaliana.BioMart.plantsmart12,

+ minPos=start,maxPos=end,two.strand=TRUE,

+ plotData=TRUE,plotMean=FALSE,tracks=1:6)

8

D
at

a
F

R
da

y8
da

y9
da

y1
0

da
y1

1
da

y1
2

da
y1

3

●●●●
●●●

●

●
● ●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●

●
●

●

●

●
●

●

●

●

●●●●
●
●
●
●●●

●
●

●
●

●
●

●

●

●

●
●
●● ●

●● ●
●●

●
●●

●●●●

●

●●●

●

●●
●

●
●
●

●

●

●●
●
●

●
●●

●
●●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●●
●●

●
●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●● ●

●

●●
●

●●
●●

●
●●

●
●
●

●

●
●
●
●●

●
●●●

●●●●
●
●
●

●●
●●●

●

●

●
●●

●

●
●

●
●
● ●●

●●●
●●

●●●●
●

●●
●●

●

●●
●●

●●
●
●●

●

●●●●

●●●

●

●

●

●

●
●
●
●

●
●
●●●

●

●
●●

●

●●
●
●●

●●

●●●

●
●

●

●

● ●●

●

●

●

●●●●
●
●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●
●
●

●
●

●
●

●

●

●
●
●

●

●
●●●

●●●
●

●
●
●
●●

●
●

●

●
●
●

●

●

●
●
●

●●●

●
●
●

●

●
●●

●

●●
●
●
●
●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●●
●

●

●●

●
●

●
●

●
●
●

●

●
●

●

●●●
●●

●
●
●●

●●●

●

●●
●
●

●

●
●
●
●●

●

●
●
●
●●

●
●●

●
●

●
●

●

●

●
●
●●●

●
●
●
●

●●

●

●
●●●

●●

●
●●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●●●●●

●●
●●

●

●

●●●●
●
●●●●

●

●

●

●
●
●

●

●

●

●●
●●●

●

●●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●●●

●

●
●
●

●

●

●
●

●●
●

●

●
●
●

●

●● ●●
●

●●

●
●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●●●●●

●

●●

●

●●●●●●●

●●●

●
●

●
●

●

●

●●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

● ●●
●●

●

●● ●

●●●
●

●

●●
●●

●●●●

●

●●

●●
●
●

●
●●●●●●●

●●

●

●
●●

●

●

●●
●

●
●●

●●

●

●
●
●●●●●

●
●

●●

●

●

●●
●●

●●
●
●●

●
●

●●

●
●

●

●
●●

●

●
●●

●

●●●

●

●
●●●●

●●

●
●●

●●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●●●

●

●
●●

●

●

●

●

●
●
●

●

●●

●

●●
●●

●

●

●
●
●●

●
●

●
●●

●

●

●

●
●

●

●

●

●●

●
●
●

●
●●●

●

●

●
●
●
●●●

●
●

●
●

●

●

●

●

●

●
●
●●

●●●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●●

●

●
●

●●
●●

●

●
●

●●
●

●
●
●

●

●
●●●

●●
●●

●

●

●●●
●
●
●

●
●
●●

●

●

●

●

●
●
●

●

●
●
●●

●

●●

●

●●●
●●

●
●

●

●●●

●

●●

●
●
●●●

●

●●●
●●

●
●

●

●●●

●

●
●

●
●

●

●●

●

●

●
●

●
●●●

●

●
●●

●●●●●

●

●● ●●
●
●

●
●

●

●

●

●

●
●●●

●

●
●●

●

●
●
●●

●

●
●

●

●
●
●

●

●

●●●●●
●●●

●●
●●●

●

●

●

●●

●

●●●
●
● ●●

●

●

●
●●

●●
●
●

●

●
●
●

●
●
●●

●●
●●

●●
●

●

●

●●

●

●

●●
●●

●

●●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●
●
●

●
●
●●

●●

●

●
●
●●●●●

●

●
●
●
●

●● ●
●●

●●

●●
●
●

●●●●●●●
●
●●●●●

●●●●
●
●

●
●●

●

●●●
●

●

●●●

●
●
●●

●

●
●
●●●

●

●
●●

●
●●

●

●●
●
●●●●

●
●●●●●●●●

●
●

●

●

●

●
●
●
●

●●
●

●●
●●●●

●●●

●●●

●

●
●

●
●
●

●
●●

●

●

●

●

●

●

●●●●
●
●●●●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●●●●

●

●

●

●●
●●●

●
●
●

●

●

●
●●

●●●●
●●

●

●

●●

●
●

●
●

●

●

●
●
●

●●●

●●
●

●●●●
●●●●

●
●●

●
●●●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●
●
●

●●
●

●
●●●●

●

●

●

●●●●

●
●
●
●●

●●●
●●●

●

●

●

●
●
●
●
●

●●
●
●
●●

●
●

●

●●
●●

●

●
●
●

●

●

●●
●

●

●●●●

●

●●●●

●●

●
●
●
●
●

●

●

●
●●

●
●

●

●

●
●●●

●
●

●

● ●●
●

●
●

●

●●●
●●●

●
●●2

4
6
8

10
12

2312900023130000231310002313200023133000231340002313500023136000231370005' 3'3' 5'

0
4
8

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

AT1G62480.1 AT1G62500.1

AT1G62490.1 AT1G62510.1

3.3 Accessor functions

There are a number of accessor functions available that are not necessarily needed to run a standard trancrip-
tome analysis, but still can extract useful information from the WfmFit- and WfmInf -class objects. Some of
the more interesting ones are illustrated below. For a complete overview, consult the package’s help pages.

> getGenomeInfo(leafdevFit)

Genome Info :

Chromosome: 1

Strand: forward

Minimum probe position: 22000000

Maximum probe position: 23988867

> dataOrigSpace <- getDataOrigSpace(leafdevFit)

> dim(dataOrigSpace)

[1] 18 52224

> dataOrigSpace[1:8,1:8]

9

31084 1221 37911 38008 4886 46714 36553

day8.1 3.609509 2.210917 2.035332 3.052743 2.687550 2.814693 2.441430

day8.2 2.690457 2.146153 2.630093 2.758048 3.306454 2.444077 2.561254

day8.3 2.486904 2.240285 1.980014 3.132112 3.926132 2.486904 1.782565

day9.1 1.848369 2.136446 2.320278 2.669716 4.710797 3.007356 1.966924

day9.2 2.015207 3.676953 2.536061 2.916489 2.194234 2.486904 2.486904

day9.3 3.916482 2.280221 1.960119 2.331042 4.875751 3.792536 2.954089

day10.1 2.702066 2.702066 2.600848 3.129100 3.070930 2.957153 2.165519

day10.2 3.504079 3.393904 2.564108 2.857383 2.295185 2.655298 3.393904

50423

day8.1 3.609509

day8.2 2.758048

day8.3 2.430280

day9.1 2.773344

day9.2 2.644008

day9.3 4.570723

day10.1 3.849458

day10.2 3.122948

> dataWaveletSpace <- getDataWaveletSpace(leafdevFit)

> dim(dataWaveletSpace)

[1] 18 52224

> dataWaveletSpace[1:8,1:8]

[,1] [,2] [,3] [,4] [,5]

day8.1 -0.98895385 0.71941870 0.08990375 0.8259564 0.77453314

day8.2 -0.38488166 0.09047845 -0.60979259 0.1391550 -0.04047101

day8.3 -0.17438581 0.81465634 -1.01768780 0.4580037 0.03196901

day9.1 0.20370133 0.24709019 -1.20451459 0.5702250 0.52457438

day9.2 1.17503218 0.26900316 0.20694882 0.1110895 0.78258895

day9.3 -1.15701060 0.26228237 -0.76594871 1.1431329 -0.23621015

day10.1 0.00000000 0.37353024 -0.08045243 1.1907244 1.10961772

day10.2 -0.07790568 0.20737669 0.25463851 -0.1915943 -0.37206866

[,6] [,7] [,8]

day8.1 0.5585598 -0.03129421 0.2240813

day8.2 0.2919523 0.62778205 0.3844214

day8.3 0.2091449 -0.18352604 -0.3584254

day9.1 -0.3094854 0.51377883 0.6471413

day9.2 0.7149518 -0.07017150 -0.3334522

day9.3 -1.4328004 -0.64600315 0.5937056

day10.1 0.5393628 -0.48174894 -0.3953267

day10.2 -0.4680818 1.02225539 0.1828262

> getDesignMatrix(leafdevFit)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[2,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[3,] 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408

[4,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

10

[5,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

[6,] 1 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039

[7,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[8,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[9,] 1 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079

[10,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[11,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[12,] 1 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079

[13,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[14,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[15,] 1 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039

[16,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

[17,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

[18,] 1 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

> probepos <- getProbePosition(leafdevFit)

> length(probepos)

[1] 52224

> head(probepos)

[1] 22000000 22000032 22000065 22000096 22000128 22000160

> effects <- getEff(leafdevInfCompare)

> dim(effects)

[1] 16 52224

> effects[1:8,1:8]

[,1] [,2] [,3] [,4]

[1,] 2.7427798252 2.7427798252 2.7427798252 2.7427798252

[2,] -0.0098101730 -0.0098101730 -0.0098101730 -0.0098101730

[3,] -0.0073576298 -0.0073576298 -0.0073576298 -0.0073576298

[4,] 0.0024525433 0.0024525433 0.0024525433 0.0024525433

[5,] -0.0008175144 -0.0008175144 -0.0008175144 -0.0008175144

[6,] 0.0089926586 0.0089926586 0.0089926586 0.0089926586

[7,] 0.0065401153 0.0065401153 0.0065401153 0.0065401153

[8,] 0.0016350288 0.0016350288 0.0016350288 0.0016350288

[,5] [,6] [,7] [,8]

[1,] 2.7427798252 2.7427798252 2.7427798252 2.7427798252

[2,] -0.0098101730 -0.0098101730 -0.0098101730 -0.0098101730

[3,] -0.0073576298 -0.0073576298 -0.0073576298 -0.0073576298

[4,] 0.0024525433 0.0024525433 0.0024525433 0.0024525433

[5,] -0.0008175144 -0.0008175144 -0.0008175144 -0.0008175144

[6,] 0.0089926586 0.0089926586 0.0089926586 0.0089926586

[7,] 0.0065401153 0.0065401153 0.0065401153 0.0065401153

[8,] 0.0016350288 0.0016350288 0.0016350288 0.0016350288

> fdrs <- getFDR(leafdevInfCompare)

> dim(fdrs)

[1] 16 52224

11

> fdrs[1:8,1:8]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.5816449 0.5816449 0.5816449 0.5816449 0.5816449 0.5816449

[2,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[3,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[4,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[5,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[6,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[7,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[8,] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[,7] [,8]

[1,] 0.5816449 0.5816449

[2,] 1.0000000 1.0000000

[3,] 1.0000000 1.0000000

[4,] 1.0000000 1.0000000

[5,] 1.0000000 1.0000000

[6,] 1.0000000 1.0000000

[7,] 1.0000000 1.0000000

[8,] 1.0000000 1.0000000

References

[1] Clement L, De Beuf K, Thas O, Vuylsteke M, Irizarry RA, and Crainiceanu CM (2012). Fast wavelet
based functional models for transcriptome analysis with tiling arrays. Statistical Applications in Genetics
and Molecular Biology, 11, Iss. 1, Article 4.

[2] Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, et al. (2012). Exit from proliferation
during leaf development in arabidopsis thaliana: A not-so-gradual process. Developmental Cell, 22, 64–78.

[3] De Beuf K, Pipelers, P, Andriankaja M, Thas O., Inze D, Crainiceanu CM, and Clement L (2012).
Model-based Analysis of Tiling Array Expression Studies with Flexible Designs (waveTiling). Technical
document.

[4] Rehrauer H, Aquino C, Gruissem W, Henz S, Hilson P, Laubinger S, Naouar N, Patrignani A, Rombauts
S, Shu H, et al. (2010). AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant
Physiology, 152, 487–499.

[5] Carvalho B and Scharpf R. oligoClasses: Classes for high-throughput arrays supported by oligo and
crlmm. [R package version 1.18.0]

[6] Falcon S and Carvalho B with contributions by Vince Carey and Matt Settles and Kristof de Beuf.
pdInfoBuilder: Platform Design Information Package Builder. [R package version 1.20.0]

[7] Pages H. BSgenome: Infrastructure for Biostrings-based genome data packages. [R package version 1.24.0]

[8] Pages H, Aboyoun P, and Lawrence M. IRanges: Infrastructure for manipulating intervals on sequences.
[R package version 1.14.2]

[9] Aboyoun P, Pages H, and Lawrence M. GenomicRanges: Representation and manipulation of genomic
intervals. [R package version 1.8.3]

[10] Carlson M. TxDb.Athaliana.BioMart.plantsmart12: Annotation package for TranscriptDb object(s). [R
package version 2.7.1]

12

[11] Durinck S and Bullard J. GenomeGraphs: Plotting genomic information from Ensembl. [R package
version 1.16.0]

13

	Introduction
	Read in and prepare data for analysis
	Wavelet-based transcriptome analysis
	Standard analysis flow
	Plot function
	Accessor functions

