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1 Summary

The analysis of microbiological communities brings many challenges: the integration of many different types
of data with methods from ecology, genetics, phylogenetics, network analysis, visualization and testing. The
data itself may originate from widely different sources, such as the microbiomes of humans, soils, surface
and ocean waters, wastewater treatment plants, industrial facilities, and so on; and as a result, these varied
sample types may have very different forms and scales of related data that is extremely dependent upon the
experiment and its question(s). The phyloseq package is a tool to import, store, analyze, and graphically
display complex phylogenetic sequencing data that has already been clustered into Operational Taxonomic
Units (OTUs), especially when there is associated sample data, phylogenetic tree, and/or taxonomic assign-
ment of the OTUs. This package leverages many of the tools available in R for ecology and phylogenetic
analysis (vegan, ade4, ape, picante), while also using advanced/flexible graphic systems (ggplot2) to easily
produce publication-quality graphics of complex phylogenetic data. phyloseq uses a specialized system of S4
classes to store all related phylogenetic sequencing data as single experiment-level object, making it easier to
share data and reproduce analyses. In general, phyloseq seeks to facilitate the use of R for efficient interactive
and reproducible analysis of OTU-clustered high-throughput phylogenetic sequencing data.

2 About this vignette

A separate vignette is included within the phyloseq-package that describes the basics of importing pre-
clustered phylogenetic sequencing data, data filtering, as well as some transformations and some additional
details about the package and installation. A quick way to load it is:

> vignette("phyloseq_basics")

By contrast, this vignette is intended to provide functional examples of the analysis tools and wrappers
included in phyloseq. All necessary code for performing the analysis and producing graphics will be included
with its description, and the focus will be on the use of example data that is included and documented within
the phyloseq-package.

Let’s start by loading the phyloseq-package:

> library("phyloseq")

> library("ggplot2")

And because we will show examples of custom modifications to ggplot2 plots, we also loaded ggplot2

as well.

3 Data

To facilitate testing and exploration of tools in phyloseq, this package includes example data from published
studies. Many of the examples in this vignette use either the GlobalPatterns or enterotype datasets as
source data. The GlobalPatterns data was described in an article in PNAS in 2011 [1], and compares the
microbial communities of 25 environmental samples and three known “mock communities” — a total of 9
sample types — at a depth averaging 3.1 million reads per sample. The enterotype dataset was described
in a 2011 article in Nature [2], which compares the faecal microbial communities from 22 subjects using
complete shotgun DNA sequencing. The authors further compare these microbial communities with the
faecal communities of subjects from other studies, for a total of 280 faecal samples / subjects, and 553
genera. Sourcing data from different studies invariable leads to gaps in the data for certain variables, and
this is easily handled by R’s core NA features.

Because this data is included in the package, the examples can easily be run on your own computer using
the code shown in this vignette. The data is loaded into memory using the data command. Let’s start by
loading the GlobalPatterns data.
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> data(GlobalPatterns)

Later on we will use an additional categorical designation — human versus non-human associated sam-
ples — that was not in the original dataset. Now is a good time to add it as an explicit variable of the
sample_data, and because we don’t want to type long words over and over, we’ll choose a shorter name for
this modified version of GlobalPatterns, call it GP, and also remove a handful of taxa that are not present
in any of the samples included in this dataset (probably an artifact):

> # prune OTUs that are not present in at least one sample

> GP <- prune_species(taxa_sums(GlobalPatterns) > 0, GlobalPatterns)

> # Define a human-associated versus non-human categorical variable:

> human <- get_variable(GP, "SampleType") %in% c("Feces", "Mock", "Skin", "Tongue")

> # Add new human variable to sample data:

> sample_data(GP)$human <- factor(human)

4 Simple exploratory graphics

4.1 Easy Richness Estimates

We can easily create a complex graphic that compares the richness estimates of samples from different
environment types in the GlobalPatterns dataset, using the plot_richness function. Note that it is
important to use raw (untrimmed) OTU-clustered data when performing richness estimates, as they are
highly dependent on the number of singletons in a sample.

> (p <- plot_richness(GP, "human", "SampleType"))
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4.2 Exploratory tree plots

phyloseq also contains a method for easily plotting an annotated phylogenetic tree with information regarding
the sample in which a particular taxa was observed, and optionally the number of individuals that were
observed.

For the sake of creating a readable tree, let’s subset the data to just the Chlamydiae phylum, which
consists of obligate intracellular pathogens and is present in only a subset of environments in this dataset.

> GP.chl <- subset_species(GP, Phylum=="Chlamydiae")

And now we will create the tree graphic form this subset of GlobalPatterns, shading by the“SampleType”
variable, which indicates the environment category from which the microbiome samples originated. The
following command also takes the option of labeling the number of individuals observed in each sample (if
at all) of each taxa. The symbols are slightly enlarged as the number of individuals increases.
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> p + geom_boxplot(data=p$data, aes(x=human, y=value, color=NULL), alpha=0.1)
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Figure 1: Estimates of the species richness of samples in the “Global Patterns” dataset.
Each panel shows a different type of “estimate”. S.obs, observed richness; S.chao1,
Chao1 estimate; S.ACE, an ACE estimate. Individual color-shaded points and brack-
ets represent the richness estimate and the theoretical standard error range associated
with that estimate, respectively. The colors group the sample-sources into “types”.
Within each panel, the samples are further organized into human-associated (TRUE) or
not (FALSE), and a boxplot is overlayed on top of this for the two groups, illustrating that
these human-associated samples are less rich than the environmental samples (although
the type of environment appears to matter a great deal as well).
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> plot_tree(GP.chl, color="SampleType", shape="Family", label.tips="Genus", size="abundance")
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Figure 2: Phylogenetic tree representation of the Chlamydiae species in
the microbiome samples of the “Global Patterns” dataset [1].
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4.3 Exploratory bar plots

In the following example we use the included “enterotype” dataset [2].

> data(enterotype)

We start with a simple rank-abundance barplot, using the cumulative fractional abundance of each OTU in
the dataset. In the enterotype dataset, the available published data are simplified as sample-wise fractional
occurrences, rather than counts of individuals1, and OTUs are clustered/labeled at the genus level, but no
other taxonomic assignment is available. For the barplot in Figure 3, we further normalize by the total
number of samples (280).

> par(mar = c(10, 4, 4, 2) + 0.1) # make more room on bottom margin

> N <- 30

> barplot(sort(taxa_sums(enterotype), TRUE)[1:N]/nsamples(enterotype), las=2)
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Figure 3: An example exploratory barplot using base R graphics and
the taxa_sums and nsamples functions.

Note that this first barplot is clipped at the 30th OTU. This was chosen because ntaxa(enterotype)

= 553 OTUs would not be legible on the plot. As you can see, the relative abundances have decreased
dramatically by the 10th-ranked OTU.

So what are these OTUs? In the enterotype dataset, only a single taxonomic rank type is present:

> rank_names(enterotype)

[1] "Genus"

This means the OTUs in this dataset have been grouped at the level of genera, and no other taxonomic
grouping/transformation is possible without additional information (like might be present in a phylogenetic
tree, or with further taxonomic classification analysis).

We need to know which taxonomic rank classifiers, if any, we have available to specify in the second
barplot function in this example, plot_taxa_bar(). We have already observed how quickly the abundance

1Unfortunate, as this means we lose information about the total number of reads and associated confidences, ability to do
more sophisticated richness estimates, etc. For example, knowing that we observed 1 sequence read of a species out of 100 total
reads means something very different from observing 10,000 reads out of 1,000,000 total.
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decreases with rank, so wo we will subset the enterotype dataset to the most abundant N taxa in order to
make the barplot legible on this page.

> TopNOTUs <- names(sort(taxa_sums(enterotype), TRUE)[1:10])

> ent10 <- prune_species(TopNOTUs, enterotype)

> print(ent10)

phyloseq-class experiment-level object

OTU Table: [10 taxa and 280 samples]

taxa are rows

Sample Data: [280 samples by 9 sample variables]:

Taxonomy Table: [10 taxa by 1 taxonomic ranks]:

Note also that there are 280 samples in this dataset, and so a remaining challenge is to consolidate these
samples into meaningful groups. A good place to look is the available sample variables, which in most cases
will carry more “meaning” than the sample names alone.

> sample_variables(ent10)

[1] "Enterotype" "Sample_ID" "SeqTech" "SampleID"

[5] "Project" "Nationality" "Gender" "Age"

[9] "ClinicalStatus"

The parameters to plot_taxa_bar in the following code-chunk were chosen after various trials. We sug-
gest that you also try different parameter settings while you’re exploring different features of the data. In
addition to the variables names of sample_data, the plot_taxa_bar() function recognizes a special param-
eter name "TaxaGroup", which is not (should not be) a sample variable name in sample_data(enterotype),
but instead indicates that the particular graphic parameter should group values by the taxanomic rank spec-
ified in the taxavec argument. In this example we have also elected to separate the samples by “facets”
(separate, adjacent sub-plots) according to the enterotype to which they have been assigned. Within each
enterotype facet, the samples are further separated by sequencing technology, and the genera is indicated by
fill color. Multiple samples having the same enterotype designation and sequencing technology are plotted
side-by-side as separate bars.

Figure 4 summarizes quantitatively the increased abundances of Bacteroides and Prevotella in the En-
terotypes 1 and 2, respectively. Interestingly, a large relative abundance of Blautia was observed for En-
terotype 3, but only from 454-pyrosequencing data sets, not the Illumina or Sanger datasets. This suggests
the increased Blautia might actually be an artifact. Similarly, Prevotella appears to be one of the most
abundant genera in the Illumina-sequenced samples among Enterotype 3, but this is not reproduced in the
454-pyrosequencing or Sanger sequencing data.
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> plot_taxa_bar(ent10, "Genus", x="SeqTech", fill="TaxaGroup") + facet_wrap(~Enterotype)
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Figure 4: An example exploratory barplot using the plot_taxa_bar() function. In this case we have faceted the
samples according to their assigned Enterotype. The small subset of samples in the dataset that do not have an
assigned Enterotype are shown in the NA panel. Within each Enterotype facet, the samples are further separated by
sequencing technology, and each genera is shaded a different color. Multiple samples from the same Enterotype and
sequencing technology are plotted side-by-side as separate bars (dodged).
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5 Exploratory analysis and graphics

5.1 Exploratory Heat Map

As the number of taxa in a dataset gets very large, the ability to effectively display all of the elements of the
data becomes compromised, and a heatmap representation is no exception. It can also be time-consuming to
render. To address both these issues, we show an example in which we have subsetted the Global Patterns
dataset to a manageable portion, in this case, the Crenarchaeota phylum.

> data("GlobalPatterns")

> gpac <- subset_species(GlobalPatterns, Phylum=="Crenarchaeota")

> (p <- plot_heatmap(gpac, "NMDS", "bray", "SampleType", "Family"))

Note that it is possible to order the sample/species indices by any of the ordination methods supported
in the ordinate function; and also that the color scheme can be modified with additional arguments. For
additional details and examples, try the function-level documentation in the phyloseq-package itself, or the
wiki-page showing detailed code/plot examples for heat maps at:

https://github.com/joey711/phyloseq/wiki/plot_heatmap.
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Figure 5: Heat map representation of the Crenarchaeota phylum
abundance pattern across different sample types in the Global Patterns
dataset.
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5.2 Microbiome Network Representation

Continuing with the enterotype dataset, here are some examples for creating a custom network represen-
tation of the relationship between microbiome samples in an experiment. This relies heavily on the igraph

and ggplot2 packages to create a network display of the “connectedness” of samples according to some user-
provided ecological similarity. By default, points represent microbiom samples, and are determined using an
algorithm that optimizes the clarity of the display of network “edges”, but the spatial position of points does
not imply any continuous similarity information like would be the case in an ordination. In this example,
the default dissimilarity index was used (Jaccard, co-occurrence), with a maximum distance of 0.3 required
to create an edge. Any function that can operate on phyloseq-objects and return a sample-wise distance can
be provided as the dist.fun argument, or a character string of the name of the distance function already
supported in phyloseq. Other distances may result in very different clustering, and this is a choice that should
be understood and not taken too lightly, although there is little harm in trying many different distances.

Interestingly, at this level of analysis and parameter-settings the two major sub-graphs appear to be best
explained by the sequencing technology and not the subject enterotype (Figure 6), suggesting that the choice
of sequencing technology has a major effect on the microbial community one can observe. This seems to
differ somewhat with the inferences described in the “enterotype” article [2]. However, there could be some
confounding or hidden variables that might also explain this phenomenon, and the well-known differences
in the sequence totals between the technologies may also be an important factor. Furthermore, since this is
clearly an experimental artifact (and they were including data from multiple studies that were not orginally
planned for this purpose), it may be that the enterotype observation can also be shown in a network analysis
of this data after removing the effect of sequencing technology and related sequencing effort. Such an effort
would be interesting to show here, but is not yet included.
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> data(enterotype)

> ig <- make_network(enterotype, max.dist=0.3)

> plot_network(ig, enterotype, color="SeqTech", shape="Enterotype", line_weight=0.4, label=NULL)
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Figure 6: Network representation of the relationship between micro-
biome samples in the “Enterotype” dataset [2].
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5.3 Ordination Methods

Ordination methods can be a useful tool for exploring complex phylogenetic sequencing data, particularly
when the hypothesized structure of the data is poorly defined (or there isn’t a hypothesis). The phyloseq
package provides some useful tools for performing ordinations and plotting their results, via the ordinate()

and plot_ordination() functions, respectively. Although there are many options and methods supported,
a first-step will probably look something like the following:

> my.physeq <- import("Biom", BIOMfilename="myBiomFile.biom")

> my.ord <- ordinate(my.physeq)

> plot_ordination(my.physeq, my.ord, color="myFavoriteVarible")

It is probably a good idea to read the documentation for these two functions, as they also provide links
to related functions and additional examples you can try immediately on your own machine.

> help(import)

> help(ordinate)

> help(distance)

> help(plot_ordination)

5.3.1 Principal Coordinates Analysis (PCoA)

We take as our first example, a reproduction of Figure 5 from the “Global Patterns” article [1]. The authors
show a 3-dimensional representation of the first three axes of a Principal Coordinates Analysis (PCoA2)
performed on the unweighted-UniFrac distance (see section 5.4.2) using all of the available sequences (their
approach included both 5’ and 3’ sequences). According to the authors, “the first axis [appears to be asso-
ciated with a] host associated/free living [classification],” and similarly the third axis with “saline/nonsaline
environment[s].”

The following reproduces the unweighted UniFrac distance calculation on the full dataset. Note that this
calculation can take a long time because of the large number of OTUs. Parallelization is recommended for
large datasets, typically if they are as large as GlobalPatterns, or larger. For details on parallelization, see
the details section and examples in the UniFrac() documentation, and also the page dedicated to the topic
on the phyloseq-wiki:

https://github.com/joey711/phyloseq/wiki/Fast-Parallel-UniFrac

> data(GlobalPatterns)

> GPUF <- UniFrac(GlobalPatterns)

> GloPa.pcoa <- pcoa(GPUF)

Before we look at the results, let’s first investigate how much of the total distance structure we will
capture in the first few axes. We can do this graphically with a “scree plot”, an ordered barplot of the
relative fraction of the total eigenvalues associated with each axis (Fig. 7).

2This is also sometimes referred to as “Multi-Dimensional Scaling”, or “MDS”
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> barplot(GloPa.pcoa$values$Relative_eig)
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Figure 7: Scree plot of the PCoA used to create Figure 5 from the
“Global Patterns” article [1]. The first three axes represent 43% of the
total variation in the distances. Interestingly, the fourth axis represents
another 9%, and so may warrant exploration as well. A scree plot is an
important tool for any ordination method, as the relative importance
of axes can vary widely from one dataset to another.
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Next, we will reproduce Figure 5 from the “Global Patterns” article [1], but separating the three axes
into 2 plots using plot_ordination() (Fig. 8).

> (p12 <- plot_ordination(GlobalPatterns, GloPa.pcoa, "samples", color="SampleType") +

+ geom_line() + geom_point(size=5) + scale_colour_hue(legend = FALSE) )

> (p13 <- plot_ordination(GlobalPatterns, GloPa.pcoa, "samples", axes=c(1, 3),

+ color="SampleType") + geom_line() + geom_point(size=5) )
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Figure 8: A reproduction in phyloseq / R of the main panel of Figure 5 from the “Global Patterns”
article [1], on two plots. The horizontal axis represents the first axis in the PCoA ordination, while the
top and bottom vertical axes represent the second and third axes, respectively. Different points represent
different samples within the dataset, and are shaded according to the environment category to which they
belong. The color scheme is the default used by ggplot.

5.3.2 non-metric Multi-Dimensional Scaling (NMDS)

We repeat the previous example, but instead using non-metric multidimensional scaling (NMDS - metaMDS())
limited to just two dimensions. This approach limits the amount of residual distance “not shown” in the
first two (or three) axes, but forefeits some mathematical properties and does not always converge within
the specified number of axes.

> # (Re)load UniFrac distance matrix and GlobalPatterns data

> data(GlobalPatterns)

> load("Unweighted_UniFrac.RData") # reloads GPUF variable

> GP.NMDS <- metaMDS(GPUF, k=2) # perform NMDS, set to 2 axes

Run 0 stress 0.1432785

Run 1 stress 0.1432788

... procrustes: rmse 0.0006324558 max resid 0.00176241

*** Solution reached
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Figure 9: An example exploratory ordination using non-metric multidi-
mensional scaling (NMDS) on the unweighted UniFrac distance between
samples of the “Global Patterns” dataset. Sample points are shaded by
environment type, and connected by a line if they belong to the same
type. Compare with Figure 5 from the “Global Patterns” article [1].

> (p <- plot_ordination(GlobalPatterns, GP.NMDS, "samples", color="SampleType") +

+ geom_line() + geom_point(size=5) )

Figure 9 nicely shows the relative dissimilarities between microbial communities from different habitats.
However, it fails to indicate what was different between the communities. For an ordination method that
provides information on the taxa that explain differences between samples (or groups of samples), we use
Correspondence Analysis (Section 5.3.3).
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5.3.3 Correspondence Analysis (CA)

In the following section we will show continue our exploration of the “GlobalPatterns” dataset using various
features of an ordination method called Correspondence Analysis. We give special emphasis to exploratory
interpretations using the biplot, because it provides additional information that is not available from PCoA
or NMDS.

Let’s start by performing a Correspondence Analysis and investigating the scree plot (Figure 10). Both
interestingly and challengingly, the scree plot suggests that the GlobalPatterns abundance data is quite
high-dimensional, with the first two CA axes accounting for not quite 17% of the total (chi-square) variability.
Note the absence of a steep decline in eigenvalue fraction as axis number increases. Each additional axis
represents only marginally less variability than the previous. It is often more convenient if the first two (or
three) axes account for most of the variability.

First, let’s severely subset the number of species for the sake of run-time.3

> data(GlobalPatterns)

> # Take a subset of the GP dataset, top 200 species

> topsp <- names(sort(taxa_sums(GlobalPatterns), TRUE)[1:200])

> GP <- prune_species(topsp, GlobalPatterns)

> # Subset further to top 5 phyla, among the top 200 OTUs.

> top5ph <- sort(tapply(taxa_sums(GP), tax_table(GP)[, "Phylum"], sum), decreasing=TRUE)[1:5]

> GP <- subset_species(GP, Phylum %in% names(top5ph))

> # Re-add human variable to sample data:

> sample_data(GP)$human <- factor(human)

Now perform the correspondence analysis.

> # Now perform a unconstrained correspondence analysis

> gpca <- ordinate(GP, "CCA")

> barplot(gpca$CA$eig/sum(gpca$CA$eig), las=2)
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Figure 10: The correspondence analysis (CA) scree plot of the “Global
Patterns” dataset [1].

Now let’s investigate how the samples behave on the first few CA axes.

> (p12 <- plot_ordination(GP, gpca, "samples", color="SampleType") +

+ geom_line() + geom_point(size=5) )

3This is for illustration purposes only, do not repeat unless you are very sure you have a good reason for doing this.
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> (p34 <- plot_ordination(GP, gpca, "samples", axes=c(3, 4), color="SampleType") +

+ geom_line() + geom_point(size=5) )
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Figure 11: First 4 axes of Correspondence Analysis (CA) of the “Global Patterns” dataset [1].

A clear feature of these plots is that the feces and mock communities cluster tightly together, far away
from all other samples on the first axis (CA1) in Fig. 11a. The skin and tongue samples separate similarly, but
on the second axis. Taken together, it appears that the first two axes are best explained by the separation of
human-associated “environments” from the other non-human environments in the dataset, with a secondary
separation of tongue and skin samples from feces.

We will now investigate further this top-level structure of the data, using an additional feature of cor-
respondence analysis that allows us to compare the relative contributions of individual taxa on the same
graphical space: the “biplot”. However, because we just displayed the position of samples in the ordina-
tion and there are often many thousands of OTUs, we will focus on creating an interpretable plot of the
OTUs. For creating graphics that combine the two plots, try the “biplot” or “split” option for type in
plot_ordination().

> p1 <- plot_ordination(GP, gpca, "species", color="Phylum")

> (p1 <- ggplot(p1$data, p1$mapping) + geom_point(size=5, alpha=0.5) +

+ facet_wrap(~Phylum) + scale_colour_hue(legend = FALSE) )

Let’s try drawing Fig 12 again, only this time summarizing the species points as a 2D density estimate,
without any individual points.

> (p3 <- ggplot(p1$data, p1$mapping) + geom_density2d() +

+ facet_wrap(~Phylum) + scale_colour_hue(legend = FALSE) )

Figs 12 and 13 reveal some useful patterns and interesting outliers, but what if we want a complete
summary of how each phylum is represented along each axis? The following code is a way to show this using
boxplots, while still avoiding the occlusion problem (points layered on top of each other), and also conveying
some useful information about the pattern of taxa that contribute to the separation of human-associated
samples from the other sample types. It re-uses the data that was stored in the ggplot2 plot object created in
the previous figure, p, and creates a new boxlot graphical summary of the positions of each phylum (Fig 14).
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Figure 12: Species plot of the “Global Patterns” correspondence analy-
sis first two axes, with each phylum on a different panel (“facet”). Only
the most abundant 5 phyla among the most abundant 200 taxa (cumu-
lative, all samples) are included. Arbitrary reduction, for computational
efficiency of example.
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Figure 13: Redrawn Fig. 12, which is severely overplotted, as a 2-
dimensional species-density topographic map, faceted in the same way.
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> library("reshape")

> # Melt the species-data.frame, DF, to facet each CA axis separately

> mdf <- melt(p1$data[, c("CA1", "CA2", "Phylum", "Family", "Genus")],

+ id=c("Phylum", "Family", "Genus") )

> # Select some special outliers for labelling

> LF <- subset(mdf, variable=="CA2" & value < -1.0)

> # build plot: boxplot summaries of each CA-axis, with labels

> p <- ggplot(mdf, aes(Phylum, value, color=Phylum)) + geom_boxplot() +

+ facet_wrap(~variable, 2) + scale_colour_hue(legend = FALSE) +

+ theme_bw() + theme( axis.text.x = element_text(angle = -90, hjust = 0) )

> # Add the text label layer, and render ggplot graphic

> (p <- p + geom_text(aes(Phylum, value+0.1, color=Phylum, label=Family),

+ data=LF, vjust=0, size=2) )
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Figure 14: Boxplot of taxa (species in this case) of the“Global Patterns”
CA first two axes, shaded/separated by phylum. Through this approach
it is much easier to see particular species that cluster unusually relative
to the rest of their phylum, for example the Bacteroidetes species (Pre-
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toward the Tongue/Skin samples.
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One way to relate some of the high-level patterns we observed from correspondence analysis is to visualize
the relative abundances of the relevant phylogenetic groups, to see if this does in fact support / explain the
human/environment microbiome differences. Here is an example using the plot_taxa_bar function described
earlier in Section 4.3.

> (p <- plot_taxa_bar(GP, "Phylum", NULL, threshold=0.9, "human", "SampleType",

+ facet_formula= TaxaGroup ~ .) )
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Figure 15: Phylum-level comparison of relative abundance of taxa in
samples that are from human microbiomes (or not).

In Fig 15 we’ve used the threshold parameter to omit all but phyla accounting for the top 90% of
phyla in any one sample. Some patterns emerging from this display appear to be: (1) Cyanobacteria, Acti-
nobacteria appear under-represented in human samples; (2) conversely, Firmicutes appear over-represented
in human samples; (3) Acidobacteria, Verrucomicrobia appear over-represented in the fecal samples; (4) the
only Crenarchaeota were observed in the Mock sample, which is not really a community but a simulated
community used as a control. These are not hugely surprising based on previous biological observations from
the field, but it is hopefully useful code that can be applied on other datasets that you might have.

22



5.3.4 Double Principle Coordinate Analysis (DPCoA)

Here is a quick example illustrating the use of Double Principal Coordinate Analysis (DPCoA [3]), using the
using the DPCoA() function in phyloseq, as well as the “biplot” option for plot_ordination(). For a descrip-
tion that includes an applied example using the “enterotype” dataset and comparison with UniFrac/PCoA,
see Fukuyama et al [4].

> GP.dpcoa <- DPCoA(GP)

> # GP.dpcoa <- ordinate(GP, "DPCoA") # Alternative; ordinate() function

> pdpcoa <- plot_ordination(GP, GP.dpcoa, type="biplot",

+ color="SampleType", shape="Phylum")

> shape.fac <- pdpcoa$data[, deparse(pdpcoa$mapping$shape)]

> man.shapes <- c(19, 21:25)

> names(man.shapes) <- c("samples", levels(shape.fac)[levels(shape.fac)!="samples"])

> p2dpcoa <- pdpcoa + scale_shape_manual(values=man.shapes)
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Figure 16: A biplot representation of a Double Principal Coordinate
Analysis (DPCoA), on a simplified version of the “Global Patterns”
dataset with only the most abundant 200 OTUs included.
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5.4 Distance Methods

5.4.1 distance(): Central Distance Function

Many comparisons of microbiome samples, including the graphical model (Section 5.2) and the PCoA analysis
(Section 5.3.1), require a calculation for the relative dissimilarity of one microbial community to another, or
“distance”. The phyloseq-package provides a general “wrapper” function for calculating ecological distance
matrices between the samples in an experiment.

distance() currently supports 43 method options, as well as user-provided arbitrary methods via an
interface to vegan’s designdist() function. Currrently only sample-wise distances are supported (the type

argument), but eventually species-wise (OTU-wise) distances will be supported as well. In addition to
supporting any of the method options to the three main distance functions of the vegan-package [5] —
including the 14 distances of the vegdist() function and all 24 ecological distances reviewed in Koleff et al.
2003 [6] coded by betadiver — distance() will eventually support many of the distance methods in the
ade4-package [7], and others. It also supports the Fast UniFrac distance function (Section 5.4.2) included
in phyloseq as native R code, and a wrapper for retreiving the sample-distances from Double Principal
Coordinate Analysis (DPCoA).

The function takes a phyloseq-class object and an argument indicating the distance type; and it returns
a dist-class distance matrix.

> data(esophagus)

> distance(esophagus) # Unweighted UniFrac

B C

C 0.5175550

D 0.5182284 0.5422394

> distance(esophagus, weighted=TRUE) # weighted UniFrac

B C

C 0.2035424

D 0.2603371 0.2477016

> distance(esophagus, "jaccard") # vegdist jaccard

B C

C 0.5776398

D 0.6645570 0.7427056

> distance(esophagus, "g") # betadiver method option "g"

B C

C 0.6136364

D 0.6250000 0.6078431

> distance("help")

Available arguments to methods:

$UniFrac

[1] "unifrac"

$DPCoA

[1] "dpcoa"
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$JSD

[1] "jsd"

$vegdist

[1] "manhattan" "euclidean" "canberra" "bray" "kulczynski"

[6] "jaccard" "gower" "altGower" "morisita" "horn"

[11] "mountford" "raup" "binomial" "chao" "cao"

$betadiver

[1] "w" "-1" "c" "wb" "r" "I" "e" "t" "me" "j" "sor" "m"

[13] "-2" "co" "cc" "g" "-3" "l" "19" "hk" "rlb" "sim" "gl" "z"

$dist

[1] "maximum" "binary" "minkowski"

$designdist

[1] "ANY"

Please be exact, partial-matching not supported.

Can alternatively provide a custom distance.

See:

help("distance")

NULL

5.4.2 UniFrac and weighted UniFrac

UniFrac is a recently-defined [8] and popular distance metric to summarize the difference between pairs
of ecological communities. All UniFrac variants use a phylogenetic tree of the relationship among taxa as
central information to calculating the distance between two samples/communities. An unweighted UniFrac
distance matrix only considers the presence/absence of taxa, while weighted UniFrac accounts for the relative
abundance of taxa as well as their phylogenetic distance. Prior to phyloseq, a non-parallelized, non-Fast
implementation of the unweighted UniFrac was available in R packages (picante::unifrac [9]). In the
phyloseq package we provide optionally-parallelized implementations of Fast UniFrac [10] (both weighted
and unweighted, with plans for additional UniFrac variants), all of which return a sample-wise distance
matrix from any phyloseq-class object that contains a phylogenetic tree component.

The following is an example calculating the UniFrac distance (both weighted and unweighted) matrix
using the “esophagus” example dataset:

> data(esophagus)

> UniFrac(esophagus, weighted=TRUE)

> # distance(esophagus, weighted=TRUE) # Alternative using the distance() function

> UniFrac(esophagus, weighted=FALSE)

> # distance(esophagus) # Alternative using the distance() function

B C
C 0.204
D 0.260 0.248

B C
C 0.518
D 0.518 0.542

See the wiki-page devoted to details about calculating the UniFrac distances for your experiment. In
particular, some example run-times are provided for comparison, as well as details for initializing a parallel
“back end” to perform the computation with multiple processor cores simultaneously:

https://github.com/joey711/phyloseq/wiki/Fast-Parallel-UniFrac
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5.5 Hierarchical Clustering

Another potentially useful and popular way to visualize/decompose sample-distance matrices is through
hierarchical clustering (e.g. hclust()). In the following example, we reproduce Figure 4 from the “Global
Patterns” article [1], using the unweighted UniFrac distance and the UPGMA method (hclust parameter
method="average"). Try help("hclust") for alternative clustering methods included in standard R.

> # (Re)load UniFrac distance matrix and GlobalPatterns data

> data(GlobalPatterns)

> load("Unweighted_UniFrac.RData") # reloads GPUF variable

> # Manually define color-shading vector based on sample type.

> colorScale <- rainbow(length(levels(get_variable(GlobalPatterns, "SampleType"))))

> cols <- colorScale[get_variable(GlobalPatterns, "SampleType")]

> GP.tip.labels <- as(get_variable(GlobalPatterns, "SampleType"), "character")

> GP.hclust <- hclust(GPUF, method="average")

Plot the hierarchical clustering results as a dendrogram, after first converting the hclust-class object
to phylo-class tree using the as.phylo() function.

> plot(as.phylo(GP.hclust), show.tip.label=TRUE, tip.color="white")

> tiplabels(GP.tip.labels, col=cols, frame="none", adj=-0.05, cex=0.7)
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Figure 17: An alternative means of summarizing a distance matrix via hierarchi-
cal clustering and plotting as an annotated dendrogram. Compare with Figure 4
from the “Global Patterns” article [1]. Some differences in Figure 17 from the orig-
inal article might be explained by GlobalPatterns in phyloseq being the summed
observations from both primer directions (5’ and 3’), while in the article they show
the results separately. Furthermore, in the article the “mock” community is not
included in the dataset, but an extra fecal sample is included.
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6 Validation

6.1 Multiple Inference Correction

The phyloseq package includes support for significance testing with correction for multiple inference. This is
particularly important when testing for significance of the abundance patterns among thousands of microbes
(OTUs). This is a common question of phylogenetic sequence data, that is, “what is the subset of microbes
that significantly correlate with a scientifically-interesting sample variable”. Although we plan to include
support for other types of multiple-inference corrected tests, this “which taxa?” test is the only directly
supported test at the moment.

Our initial implementation of this support is via an extension to the mt.maxT() and mt.minP functions in
the multtest package [11] (Bioconductor repo). This uses permutation-adjusted p-values in a multiple testing
procedure that provides strong control of the Family-Wise Error Rate (FWER) among the taxa being tested.
The user specifies a sample-variable among the sample_data component, or alternatively provides a sample-
wise vector or factor that classifies the samples into groups. Additional optional parameters can be provided
that specify the type of test (“test=”), the sidedness of the test (“side=”), as well as some additional
technical/computational parameters.

In the following example we test whether a particular genera correlates with the Enterotype classification
of each sample. Note that we have to specify an alternate test, test="f", because the default test (t-test)
can only handle up to 2 classes, and there are three enterotype classes.

> data(enterotype)

> # Filter samples that don't have Enterotype classification.

> x <- subset_samples(enterotype, !is.na(Enterotype))

> # Calculate the multiple-inference-adjusted P-values

> ent.p.table <- mt(x, "Enterotype", test="f")

> print(head(ent.p.table, 10))

genera index teststat rawp adjp plower
Prevotella 207 344.73 0.0001 0.0158 0.0001
Bacteroides 203 85.01 0.0001 0.0158 0.0001
Blautia 187 19.52 0.0001 0.0158 0.0001
Bryantella 503 16.38 0.0001 0.0158 0.0001
Parabacteroides 205 12.89 0.0001 0.0158 0.0001
Alistipes 208 8.71 0.0002 0.0301 0.0158
Bifidobacterium 240 9.29 0.0004 0.0560 0.0430
Holdemania 201 7.64 0.0009 0.1146 0.1031
Dorea 182 7.44 0.0009 0.1146 0.1031
Phascolarctobacterium 513 7.01 0.0014 0.1695 0.1585

Table 1: For computational efficiency this calculation was run separately,
and results embedded here.

Not surprisingly, Prevotella and Bacteroides top the list, since they were major components of the
“Enterotype” classification.

Please also note that we are planning to incorporate other tools from multtest that would allow for other
types of multiple-inference correction procedures, for instance, strong control of the False Discovery Rate
(FDR). These additional options will be made available shortly.
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7 Further Examples

This vignette is limited in size and scope because of constraints on the cumulative-size of packages allowed
in Bioconductor.

7.1 phyloseq Wiki

For further examples presented in html/wiki format, please see:
https://github.com/joey711/phyloseq/wiki/Graphics-Examples

7.2 phyloseq Vignette Gallery

For additional and/or updated vignettes not present in the official Bioconductor release, please see:
https://github.com/joey711/phyloseq/wiki/Vignettes

7.3 phyloseq Feedback

For feature requests, bug reports, and other suggestions and issues, please go to:
https://github.com/joey711/phyloseq/issues
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