
HOW TO use MCRestimate

Markus Ruschhaupt

March 31, 2012

Estimation the misclassification error

Every classification task starts with data. Here we choose the well known ALL/AML
data set from T.Golub [1] available in the package golubEsets. Furthermore, we specify
the name of the phenodata column that should be used for the classification.

> library(MCRestimate)

> library(randomForest)

> library(golubEsets)

> data(Golub_Train)

> class.colum <- "ALL.AML"

Cross-validation is an appropriate instrument to estimate the misclassification rate
of an algorithm that should be used for classification. Often a variable selection or
aggregation is applied to the data set before the main classification procedure is started.
But these steps must also be part of the cross-validation. In our example we want to
perform a variable selection and only take the genes with the highest variance across
all samples. Because we don’t know exactly how many genes we want to have, we
give two possible values (250 and 1000). The described methods is implemented in the
functions g.red.highest.var. Further preprocessing functions are part of the package
MCRestimate and also new functions can be implemented.

> Preprocessingfunctions <- c("varSel.highest.var")

> list.of.poss.parameter <- list(var.numbers=c(250,1000))

To use MCRestimate with a classification procedure a wrapper for this method must be
available. The package MCRestimate includes wrapper for the following classification
functions.

RF.wrap wrapper for random forest (based on the package randomForest)

PAM.wrap wrapper for PAM (based on the package pamr)

1

PLR.wrap wrapper for the penalised logistic regression (based on the package MCRes-
timate)

SVM.wrap wrapper for support vector machines (based on the package e1071)

GPLS.wrap wrapper for generalised partial least squares (based on the package gpls)

It is easy to write a wrapper for a new classification method. Here we want to use
random forest for our classification task.

> class.function <- "RF.wrap"

Parameter to optimize: Most classification and preprocessing methods have pa-
rameters that must be chosen and/or optimized. In our example we choose two possible
number of clusters for our preprocessing method. In each cross-validation step MCRes-

timate will choose the value that have the lowest misclassification error on the training
set. This will be estimated through a second (inner) cross-validation with the function
tune available in the package e1071 .

Parameter for the plot of the results (see man page for details): We want
to have the sample names as labels in the resulting plot. Samples is the name of the
phenoData column the sample names are stored in.

> plot.label <- "Samples"

The Cross-validation parameter (see man page for details): For time reasons
here we choose very small values. Normally the values for cross.outer and cross.inner
should be at least 5.

> cross.outer <- 2

> cross.repeat <- 3

> cross.inner <- 2

Now we have specified all parameter and can run the function

> RF.estimate <- MCRestimate(Golub_Train,

+ class.colum,

+ classification.fun="RF.wrap",

+ thePreprocessingMethods=Preprocessingfunctions,

+ poss.parameters=list.of.poss.parameter,

+ cross.outer=cross.outer,

+ cross.inner=cross.inner,

+ cross.repeat=cross.repeat,

+ plot.label=plot.label)

The result is an element of class MCRestimate

2

> class(RF.estimate)

[1] "MCRestimate"

For each group we see how many samples have been misclassified most of the time. We
can also visualize the result. The plot shows for each sample the number of times it has
been classified correctly.

> plot(RF.estimate,rownames.from.object=TRUE, main="Random Forest")

Random Forest

Sample ID

F
re

qu
en

cy
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 34 35 36 37 38 28 29 30 31 32 33

0.0

0.2

0.4

0.6

0.8

1.0

New data

We have estimated the misclassification rate of our complete algorithm. Because this
seems to be a quit good result, we want to use this algorithm to classify new data. The
function ClassifierBuild is used to build a classifier that can be used for new data.

3

> RF.classifier <- ClassifierBuild (Golub_Train,

+ class.colum,

+ classification.fun="RF.wrap",

+ thePreprocessingMethods=Preprocessingfunctions,

+ poss.parameters=list.of.poss.parameter,

+ cross.inner=cross.inner)

The result of the function is a list with various arguments.

> names(RF.classifier)

[1] "classifier.for.matrix"

[2] "classifier.for.exprSet"

[3] "classes"

[4] "parameter"

[5] "thePreprocessingMethods"

[6] "class.method"

[7] "cross.inner"

[8] "information"

The most important elements of this list are classifier.for.matrix and classifier.for.exprSet .
These can now be used to classify new data. The first one can be used if the new data
is given by a matrix and the second will be used if the new data is given by a exprSet .
Here we want to classify the data from the exprSet golubTest, that is also part of the
package golubEsets.

> data(Golub_Test)

> RF.classifier$classifier.for.exprSet(Golub_Test)

39 40 42 47 48 49 41 43 44 45 46 70

ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL

71 72 68 69 67 55 56 59 52 53 51 50

ALL ALL ALL ALL ALL ALL ALL ALL AML AML AML AML

54 57 58 60 61 65 66 63 64 62

ALL AML AML ALL ALL AML ALL AML AML AML

Levels: ALL AML

This work was supported by NGFN (Nationales Genomforschungsnetz).

References

[1] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H,
Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classifi-
cation of cancer: class discovery and class prediction by gene expression monitoring
Science 286(5439): 531-7 (1999).

4

