
The Gviz User Guide

Florian Hahne∗

April 19, 2012

Contents

1 Introduction 1

2 Basic Features 2

3 Plotting parameters 7

4 Track classes 10
4.1 GenomeAxisTrack . 10
4.2 IdeogramTrack . 13
4.3 DataTrack . 14
4.4 AnnotationTrack . 22
4.5 GeneRegionTrack . 27
4.6 BiomartGeneRegionTrack . 29
4.7 DetailsAnnotationTrack . 30
4.8 Creating tracks from UCSC data . 35

5 Composite plots for multiple chromosomes 38

1 Introduction

In order to make sense of genomic data one often aims to plot such data in a genome browser, along with a
variety of genomic annotation features, such as gene or transcript models, CpG island, repeat regions, and so
on. These features may either be extracted from public data bases like ENSEMBL or UCSC, or they may
be generated or curated in house. Many of the currently available genome browsers do a reasonable job in
displaying these features, and there are options to connect to them from within R (e.g., using the rtracklayer
package). However, none of these solutions offer the flexibility of the full R graphics system to display large
numeric data in a multitude of different ways. The Gviz package aims to close this gap by providing a
structured visualization framework to plot any type of data along genomic coordinates. It is loosely based on
the GenomeGraphs package by Steffen Durinck and James Bullard, however the complete class hierarchy as
well as all the plotting methods have been restructured in order to increase performance and flexibility. All
plotting is done using the grid graphics system, and several specialized annotation classes allow to integrate
publicly available genomic annotation data from sources like UCSC or ENSEMBL.

∗fhahne@novartis.com

1

2 Basic Features

The fundamental concept behind the Gviz package is similar to the approach taken by most genome browsers,
in that individual types of genomic features or data are represented by separate tracks. Within the package,
each track constitutes a single object inheriting from class gdObject , and there are constructor functions as
well as a broad range of methods to interact with and to plot these tracks. When combining multiple objects,
the individual tracks will always share the same genomic coordinate system, thus taking the burden of aligning
the plot elements from the user.

It is worth mentioning that tracks in the sense of the Gviz package are only defined for a single chromosome
on a specific genome, at least during the plotting operation. While the package imposes no fixed structure
on the chromosome or on the genome names, it makes sense to stick to a standaradized naming paradigm, in
particular when fetching additional annotation information from online resources. For the remainder of this
vignette, we will make use of the UCSC genome and chromosome identifiers, e.g., the chr7 chromosome on
the mouse mm9 genome.

The different track classes will be described in more detail in the Track classes section further below.
For now, let’s just take a look at a typical Gviz session. We begin our presentation of the available functionality
by loading the package:

> library(Gviz)

The most simple genomic features consists of start and stop coordinates, possibly overlapping each other.
CpG islands or microarray probes are real life examples for this class of features. In the Bioconductor world
those are most often represented as run-length encoded vectors, for instance in the IRanges and GRanges
classes. To seamlessly integrate with other Bioconductor packages, we can use the same data structures to
generate our track objects. A sample set of CpG island coordinates has been saved in the cpgIslands object
and we can use that for our first annotation track object. The constructor function AnnotationTrack is a
convenient helper to create the object.

> library(IRanges)

> data(cpgIslands)

> chr <- "chr7"

> gen <- "mm9"

> atrack <- AnnotationTrack(cpgIslands, chromosome = chr,

+ genome = gen, name = "CpG")

Please note that the AnnotationTrack constructor is fairly flexible and can accomodate many different
types of inputs. For instance, the start and end coordinates of the annotation features could be passed in as
individual arguments start and end, as a data.frame or even as a GRanges object. You may want to consult
its manual page for more information.

With our first track object being created we may now proceed to the plotting. There is a single function
plotTracks that handles all of this. As we will learn in the remainder of this vignette, plotTracks is quite
powerful and has a number of very useful additional arguments. For now we will keep things very simple and
just plot the single CpG islands annotation track.

> plotTracks(atrack)

C
pG

2

As you can see, the resulting graph is not particularly spectacular. There is a title region showing the
track’s name on a gray background on the left side of the plot and a data region showing the seven individual
CpG islands on the right. This structure is similar for all the available track objects classes and it somewhat
mimicks the layout of the popular UCSC Genome Browser. If you are not happy with the default settings,
the Gviz package offers a multitude of options to fine-tune the track appearance, which will be shown in the
Plotting Parameters section.

Appart from the relative distance of the Cpg islands, this visualization does not tell us much. One obvious
next step would be to indicate the genomic coordinates we are currently looking at to provide some reference.
For this purpose, the Gviz package offers the GenomeAxisTrack class. Object from the class can be created
using the constructor function of the same name.

> gtrack <- GenomeAxisTrack()

Since a GenomeAxisTrack object is always relative to the other tracks that are plotted, there is little need
for additional arguments. Essentially, the object just tells the plotTracks function to add a genomic axis to
the plot. Nonetheless, it represent a separate annotation track just as the CpG island track does. We can
pass this additional track on to plotTracks in the form of a list.

> plotTracks(list(gtrack, atrack))

26.45 mb

26.5 mb

26.55 mb

C
pG

You may have realized that the genomic axis does not take up half of the available vertical plotting space,
but only uses the space necessary to fit the axis and labels. Also the title region for this track is empty.
The Gviz package tries to find reasonable defaults for all the parameters controlling the look and feel of a
plot so that apealing visualizations can be created without much tinkering. However, all features on the plot
including the relative track sizes can also be adjusted manually.

As mentioned before in the beginning of this vignette, a track is defined for a particular chromosome
on a particular genome. We can include this information in our plot by means of a chromosome ideogram.
An ideogram is a simplified visual representation of a chromosome, with the different chromosomal bands
indicated by color, and the centromer (if present) indicated by the shape. The necessary information to
produce this visualization is stored in online data repositories, for instance at UCSC. The Gviz package offers
very convenient connections to some of these repositories, and the IdeogramTrack constructor function is one
example for such a connection. With just the information about a valid UCSC genome and chromosome, we
can directly fetch the chromosome ideogram information and construct a dedicated track object that can be
visualized by plotTracks. Please not that you will need a working internet connection for this to work, and
that fetching data from UCSC can take quite a long time, depending on the server load. The Gviz package
tries to cache as much data as possible to reduce the bandwidth.

> itrack <- IdeogramTrack(genome = gen, chromosome = chr)

Similar to the previous examples, we stick the additional track object into a list in order to plot it.

> plotTracks(list(itrack, gtrack, atrack))

3

Chromosome 7

26.45 mb

26.5 mb

26.55 mb

C
pG

Ideogram tracks are the one exception in all of Gviz ’s track objects in that they are not really displayed
in the same coordinate system like all the other tracks. Instead, the current genomic location is indicated on
the chromosome by a red box (or a red line if the width is too small to fit a box). So far we have only looked
at very basic annotation features and how to give a point of reference to our plots. Naturally, we also want to
be able to handle more complex genomic features, such as gene models. One potential use case would be to
utilize gene model information from an existing local source. Alternatively, we could dowload such data from
one of the available online resources like UCSC or ENSEBML, and there are constructor functions to handle
these tasks. For this example we are going to load gene model data from a stored Rclassdata.frame. The
track class of choice here is a GeneRegionTrack object, which can be constructed via the constructor function
of the same name. Similar to the AnnotationTrack constructor there are multiple possible ways to pass in the
data.

> data(geneModels)

> grtrack <- GeneRegionTrack(geneModels, genome = gen,

+ chromosome = chr, name = "Gene Model")

> plotTracks(list(itrack, gtrack, atrack, grtrack))

Chromosome 7

26.45 mb

26.5 mb

26.55 mb

26.6 mb

G
en

e
M

od
el

So far the plotted genomic range has been determined by the input tracks. Unless told otherwise, the
package will always display the region from the leftmost item to the rightmost item in any of the tracks. Of
course such a static view on a chromosomal region is of rather limited use. We often want to zoom in or out
on a particular plotting region to see more details or to get a broader overview. To that end, plotTracks
supports the from and to arguments that let us choose an arbitrary genomic range to plot.

> plotTracks(list(itrack, gtrack, atrack, grtrack),

+ from = 2.5e+07, to = 2.8e+07)

4

Chromosome 7

25.5 mb

26 mb

26.5 mb

27 mb

27.5 mb

C
pG

G
en

e
M

od
el

You may have noticed that the layout of the gene model track has changed depending on the zoom level.
This is a feature of the Gviz package, which automatically tries to find the optimal visualization settings to
make best use of the available space. At the same time, when features on a track are too close together to be
plotted as separate items with the current device resolution, the package will try to reasonably merge them
in order to avoid overplotting.

So far we have replicated the features of a whole bunch of other genome browser tools out there. The real
power of the package comes with a rather general track type, the DataTrack . DataTrack object are essentially
run-length encoded numeric vectors or matrices, and we can use them to add all sorts of numeric data to our
genomic coordinate plots. There are a whole bunch of different visualization options for these tracks, from
dot plots to histograms to box-and-whisker plots. The individual rows in a numeric matrix are considered to
be different data groups or samples, and the columns are the raster intervals in the genomic coordinates. Of
course, the data points do not have to be evenly spaced; each column is associated to a particular genomic
location. For demonstration purposes we can create a simple DataTrack object from randomly sampled data.

> set.seed(255)

> lim <- c(26463500, 26495000)

> coords <- sort(c(lim[1], sample(seq(from = lim[1],

+ to = lim[2]), 99), lim[2]))

> dat <- runif(100, min = -10, max = 10)

> dtrack <- DataTrack(data = dat, start = coords[-length(coords)],

+ end = coords[-1], chromosome = chr, genome = gen,

+ name = "Uniform")

> plotTracks(list(itrack, gtrack, atrack, grtrack,

+ dtrack), from = lim[1], to = lim[2])

5

Chromosome 7

26.47 mb

26.48 mb

26.49 mb

C
pG

G
en

e
M

od
el

−5

0

5

U
ni

fo
rm

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

The first thing to notice is that the title panel to the right of the plot now contains a y-axis indicating the
range of the data track. The default plotting type for numeric vectors is a simple dot plot. This is by far not
the only visualization option, and in a sense it is waisting quite a lot of information because the run-length
encoded ranges are not immediately apparent. We can change the plot type by supplying the type argument
to plotTracks. A complete description of the available plotting options is given in section Track classes,
and a more detailed treatment of the so-called ’display parameters’ that control the look and feel of a track
is given in the Plotting Parameters section.

> plotTracks(list(itrack, gtrack, atrack, grtrack,

+ dtrack), from = lim[1], to = lim[2], type = "histogram")

6

Chromosome 7

26.47 mb

26.48 mb

26.49 mb

C
pG

G
en

e
M

od
el

−5

0

5

U
ni

fo
rm

As we can see, the data values in the numeric vector are indeed matched to the genomic coordinates of the
DataTrack object. Such a visualization can be particularly helpful when displaying for instance the coverage
of NGS reads along a chromosome, or to show the measurement values of mapped probes from a micro array
experiment. This concludes our first introduction into the Gviz package. The remainder of this vignette will
deal in much more depth with the different concepts and the various track classes and plotting options.

3 Plotting parameters

Although not implicitely told, we have already made use of the plotting parameter facilities in the Gviz
package, or, as we will call them from now on, the ’display parameters’. Display parameters are properties
of individual track objects (i.e., of any object inheriting from the base GdObject class). They can either
be set during object instantiation as additional arguments to the constructor functions or, for existing track
objects, using the displayPars replacement method. In the former case, all named arguments that can not
be matched to any of the constructor’s formal arguments are considered to be display paramters, regardless
of their type or whether they are defined for a particular track class or not. The following code example
rebuilds our GeneRegionTrack object with a bunch of display parameters set and demonstrates the use of the
displayPars accessor and replacement methods.

> grtrack <- GeneRegionTrack(geneModels, genome = gen,

+ chromosome = chr, name = "Gene Model", showId = TRUE,

+ background.title = "brown")

> head(displayPars(grtrack))

$fill

[1] "orange"

$geneSymbols

[1] TRUE

7

$showExonId

[1] FALSE

$collapseTranscripts

[1] FALSE

$shape

[1] "smallArrow" "box"

$col

[1] "transparent"

> displayPars(grtrack) <- list(background.panel = "#FFFEDB")

> head(displayPars(grtrack))

$fill

[1] "orange"

$geneSymbols

[1] TRUE

$showExonId

[1] FALSE

$collapseTranscripts

[1] FALSE

$shape

[1] "smallArrow" "box"

$col

[1] "transparent"

> plotTracks(list(itrack, gtrack, atrack, grtrack),

+ from = lim[1], to = lim[2])

8

Chromosome 7

26.47 mb

26.48 mb

26.49 mb

C
pG

G
en

e
M

od
el

Tgfb1

B9d2 Tgfb1

Tgfb1

For our gene model track we have now added the gene symbols of the different transcripts to the plot and
changed the background color of both the title and the data panel. There is a third option to set display
parameters for a single plotting operation (rather than the permanent setting in the track object) by passing
in additional arguments to the plotTracks function. We have already made use of this feature in the previous
data plotting type example. It is worth mentioning that all display parameters that are passed along with
the plotTracks function apply to all track objects in the plot. For some track objects a particular display
parameter may not make any sense, and in that case it is simply ignored. Also, the settings only apply for
one single plotting operations and will not be retained in the plotted track objects. They do however get
precedence over the object-internal parameters. The following line of code exemplifies this behaviour.

> plotTracks(list(itrack, gtrack, atrack, grtrack),

+ from = lim[1] - 1000, to = lim[2], background.panel = "#FFFEDB",

+ background.title = "darkblue")

Chromosome 7

26.47 mb

26.48 mb

26.49 mb

C
pG

G
en

e
M

od
el

Tgfb1

B9d2 Tgfb1

Tgfb1

In order to make full use of the flexible parameter system we need to know which display parameters control
which aspect of which track class. The obvious source for this information are the man pages of the respective
track classes, which list all available parameters and a short description of their effect and default values in the
Display Parameters section. Alternatively, we can use the availableDisplayPars function, which prints

9

out the available parameters for a class in a list-like structure. The single argument to the function is either
a class name of a track object class, or the object itself, in which case its class is automatically detected.

> dp <- availableDisplayPars(grtrack)

> tail(dp)

The following display parameters are available for 'GeneRegionTrack' objects:

(see ? GeneRegionTrack for details on their usage)

min.width (inherited from class 'GdObject'): 1

rotation (inherited from class 'AnnotationTrack'): 0

shape: smallArrow box

showAxis (inherited from class 'GdObject'): TRUE

showExonId: FALSE

showFeatureId (inherited from class 'AnnotationTrack'): FALSE

showId (inherited from class 'AnnotationTrack'): FALSE

showOverplotting (inherited from class 'AnnotationTrack'): FALSE

showTitle (inherited from class 'GdObject'): TRUE

size (inherited from class 'GdObject'): 1

v (inherited from class 'GdObject'): -1

As we can see, display parameters can be inherited from parent classes. For the regular user this is not
important at all, however it nicely exemplifies the structure of the class hierarchy in the Gviz package.

4 Track classes

In this section we will highlight all of the available annotation track classes in the Gviz package. For the
complete reference of all the nuts and bolts, including all the avaialable methods, please see the respective
class man pages. We will try to keep this vignette up to date, but in cases of discrepancies between here and
the man pages you should assume the latter to be correct.

4.1 GenomeAxisTrack

GenomeAxisTrack objects can be used to add some reference to the currently displayed genomic location
to a Gviz plot. In its most basic form it is really just a horizontal axis with genomic coordinate tickmarks.
Using the GenomeAxisTrack constructor function is the recommended way to instantiate objects from the
class. There is no need to know in advance about a particular genomic location when constructing the object.
Instead, the displayed coordinates will be determined from the context, e.g., from the from and to arguments
of the plotTracks function, or, when plotted together with other track objects, from their genomic locations.

> axisTrack <- GenomeAxisTrack()

> plotTracks(axisTrack, from = 1e+06, to = 9e+06)

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

As an optional feature one can highlight particular regions on the axis, for instance to indicated stretches
of N nucleotides or gaps in genomic alignments. Such regions have to be supplied to the optional range
argument of the constructor function as either an IRanges or an IRanges object.

10

> axisTrack <- GenomeAxisTrack(range = IRanges(start = c(2e+06,

+ 4e+06), end = c(3e+06, 7e+06)))

> plotTracks(axisTrack, from = 1e+06, to = 9e+06)

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

Display parameters for GenomeAxisTrack objects

There are a whole bunch of display parameters to alter the appearance of GenomeAxisTrack plots. For
instance, one could add directional indicators to the axis using the add53 and add35 parameters.

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, add53 = TRUE,

+ add35 = TRUE)

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb
5' 3'
3' 5'

Sometimes the resolution of the tick marks is not sufficient, in which case the littleTicks argument can be
used to have a more fine-grained axis annotation.

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, add53 = TRUE,

+ add35 = TRUE, littleTicks = TRUE)

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

1.4

1.6

1.8 2.2

2.4

2.6

2.8 3.2

3.4

3.6

3.8 4.2

4.4

4.6

4.8 5.2

5.4

5.6

5.8 6.2

6.4

6.6

6.8 7.2

7.4

7.6

7.8 8.2

8.4

8.6

5' 3'
3' 5'

The Gviz package tries to come up with reasonable defaults for the axis annotation. In our previous
example, the genomic coordinates are indicated in megabases. We can control this via the exponent parameter,
which takes an integer value greater then zero. The location of the tick marks are displayed as a fraction of
10exponent.

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, exponent = 4)

200 104

300 104

400 104

500 104

600 104

700 104

800 104

Another useful parameter, labelPos controls the arrangement of the tick marks. It takes one of the values
alternating, revAlternating, above or below. For instance we could aline all tick marks underneath the
axis.

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, labelPos = "below")

2 mb 3 mb 4 mb 5 mb 6 mb 7 mb 8 mb

Sometimes a full-blown axis is just too much, and all we really need in the plot is a small scale indicator.
We can change the appearance of the GenomeAxisTrack object to such a limited representation by setting the
scale parameter. Typically, this will be a numeric value between 0 and 1, which is interpreted as the fraction
of the plotting region used for the scale. The plotting method will apply some rounding to come up with
reasonable and human-readable values. For even more control we can pass in a value larger than 0, which is
considered to be an absolute range length. In this case, the user is responsible for the scale to actually fit in
the current plotting range.

11

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, scale = 0.5)

4 mb

We still have control over the placement of the label via the labelPos, parameter, which now takes the
values above, below and beside.

> plotTracks(axisTrack, from = 1e+06, to = 9e+06, scale = 0.5,

+ labelPos = "below")

4 mb

For a complete listing of all the available display parameters please see the table below or the man page
of the GenomeAxisTrack class by typing in ?GenomeAxisTrack on the R command line.

Display Parameter Description

add35 Logical scalar. Add 3’ to 5’ direction indicators.
add53 Logical scalar. Add 5’ to 3’ direction indicators.

cex Numeric scalar. The overall font expansion factor for the axis annotation
text.

cex.id Numeric scalar. The text size for the optional range annotation.
col Character scalar. The color for the axis lines and tickmarks.

col.id Character scalar. The text color for the optional range annotation.
col.range Character scalar. The border color for highlighted regions on the axis.

distFromAxis Numeric scalar. Control the distance of the axis annotation from the tick
marks.

exponent Numeric scalar. The exponent for the axis coordinates, e.g., 3 means mb,
6 means gb, etc. The default is to automatically determine the optimal
exponent.

fill.range Character scalar. The fill color for highlighted regions on the axis.
fontcolor Character scalar. The font color for the axis annotation text.
fontface Character scalar. The font face for the axis annotation text.

fontfamily Character scalar. The font family for the axis annotation text.
fontsize Numeric scalar. Font size for the axis annotation text in points.

labelPos Character vector, one in ”alternating”, ”revAlternating”, ”above” or ”below”.
The vertical positioning of the axis labels. If scale is not NULL, the possible
values are ”above”, ”below” and ”beside”.

littleTicks Logical scalar. Add more fine-grained tick marks.
lwd Numeric scalar. The line width for the axis elementes.

scale Numeric scalar. If not NULL a small scale is drawn instead of the full axis,
if the value is between 0 and 1 it is interpreted as a fraction of the current
plotting region, otherwise as an absolute length value in genomic coordinates.

showId Logical scalar. Show the optional range highlighting annotation.

12

4.2 IdeogramTrack

While a genomic axis provides helpful points of reference to a plot, it is sometimes important to show the
currently displayed region in the broader context of a chromosme. Are we looking at distal regions, or
somewhere close to the centromer? And how much of the complete chromosome is covered in our plot. To
that end the Gviz package defines the IdeogramTrack class, which is an idealized representation of a single
chromosome. When plotted, these track objects will always show the whole chromosome, regardless of the
selected genomic region. However, this selection is indicated by a box. The chromosomal data necessary to
draw the ideogram is not part of the Gviz package itself, but it is rather downloaded from an online source
(UCSC). Thus it is important to use both chromosome and genome names that are recognizable in the UCSC
data base. You might want to consult their webpage (http://genome.ucsc.edu/) or use the ucscGenomes

function in the rtracklayer package for a listing of available genomes.
Assuming the chromosome data are available online, a simple call to the IdeogramTrack constructor

function including the desired genome and chromosome name are enough to instantiate the object. Since the
connection to UCSC can be slow, the package tries to cache data that has already been downloaded for the
duration of the R session. If needed, the user can manually clear the cache by calling the clearSessionCache

function.

> ideoTrack <- IdeogramTrack(genome = "hg19", chromosome = "chrX")

> plotTracks(ideoTrack, from = 8.5e+07, to = 1.29e+08)

Chromosome X

Display parameters for IdeogramTrack objects

For a complete listing of all the available display parameters please see the table below or the man page of
the IdeogramTrack class by typing in ?IdeogramTrack on the R command line.

Display Parameter Description

bevel Numeric scalar, between 0 and 1. The level of smoothness for the two ends
of the ideogram.

cex Numeric scalar. The overall font expansion factor for the chromosome name
text.

col Character scalar. The border color used for the highlighting of the currently
displayed genomic region.

fill Character scalar. The fill color used for the highlighting of the currently
displayed genomic region.

fontcolor Character scalar. The font color for the chromosome name text.
fontface Character scalar. The font face for the chromosome name text.

fontfamily Character scalar. The font family for the chromosome name text.
fontsize Numeric scalar. The font size for the chromosome name text.

lty Character or integer scalar. The line type used for the highlighting of the
currently displayed genomic region.

lwd Numeric scalar. The line width used for the highlighting of the currently
displayed genomic region.

showId Logical scalar. Indicate the chromosome name next to the ideogram.

13

http://genome.ucsc.edu/

4.3 DataTrack

Probably the most powerfull of all the track classes in the Gviz package are DataTracks. Essentially they
constitute run-length encoded numeric vectors or matrices, meaning that one or several numeric values are
associated to a particular genomic coordinate range. These ranges may even be overlapping, for instance
when looking at results from a running window operation. There can be multiple samples in a single data
set, in which case the ranges are associated to the columns of a numeric matrix rather than a numeric vector,
and the plotting method provides tools to incoorporate sample group information. Thus the starting point
for creating DataTrack objects will always be a set of ranges, either in the form of an IRanges or GRanges
object, or individually as start and end coordinates or widths. The second ingredient is a numeric vector of
the same length as the number of ranges, or a numeric matrix with the same number of columns. We can
pass this information, along with the genome and the chromosome identifiers, to the DataTrack constructor
function to instantiate an object. We will load our sample data from an GRanges object that comes as part
of the Gviz package.

> data(twoGroups)

> dTrack <- DataTrack(twoGroups, data = t(as.data.frame(elementMetadata(twoGroups))),

+ genome = "hg19", chromosome = "chrX", name = "uniform")

> plotTracks(dTrack)

−20

−10

0

10

20

un
ifo

rm

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

The default visualization for our very simplistic sample DataTrack is a rather unispiring dot plot. The
track comes with a scale to indicate the range of the numeric values on the y-axis, appart from that it looks
very much like the previous examples. A whole battery of display parameters is to our disposal to control the
track’s look and feel. The most important one is the type parameter. It determines the type of plot to use
and takes one or several of the following values:

Value Type

p dot plot
l lines plot

b dot and lines plot
a lines plot ov average (i.e., mean) values
s stair steps (horizontal first)
S stair steps (vertical first)
g add grid lines
r add linear regression line
h histogram lines

smooth add loess curve
histogram histogram (bar width equal to range with)
mountain ’mountain-type’ plot relative to a baseline

boxplot box and whisker plot
gradient false color image of the summarized values
heatmap false color image of the individual values

14

Displayed below are the same sample data as before but plotted with the different type settings:

−20

−10

0

10

20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20

−10

0

10

20

l

−20

−10

0

10

20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20

−10

0

10

20

a

−20

−10

0

10

20

s

−20

−10

0

10

20

S
−20

−10

0

10

20

g

−20

−10

0

10

20

r

−20

−10

0

10

20

h

−20

−10

0

10

20

sm
oo

th

−10

−5

0

5

10

hi
st

og
ra

m

−20

−10

0

10

20

m
ou

nt
ai

n

−20

−10

0

10

20

bo
xp

lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad

ie
nt

he
at

m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate data. The a type for instance averages the values at each genomic location before plotting the
derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

15

−20

−10

0

10

20

un
ifo

rm

●
● ● ● ● ● ● ●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Data Grouping

An additional layer of flexibility is added by making use of Gviz ’s grouping functionality. The individual
samples (i.e., rows in the data matrix) can be grouped together using a factor variable, and, if reasonable,
this grouping is reflected in the layout of the respective track types. For instance our example data could
be derived from two different sample groups with three replicates each, and we could easily integrate this
information into our plot.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"))

−20

−10

0

10

20

un
ifo

rm

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

For the dot plot representation the individual group levels are indicated by color coding. For the a type,
the averages are now computed for each group separately and also indicated by two lines with similar color
coding. Grouping is not supported for all plotting types, for example the mountain type already uses color
coding to convey a different message and for the gradient type the data are already collapsed to a single
variable. The following gives an overview over some of the other groupable DataTrack types. Please note
that there are many more display parameters that control the layout of both grouped and of ungrouped
DataTracks. You may want to check the class’ help page for details.

16

−20
−10

0
10
20

a

−20
−10

0
10
20

s

−20
−10

0
10
20

sm
oo

th

−20
−10

0
10
20

hi
st

og
ra

m

−20
−10

0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

he
at

m
ap

Data transformations

The Gviz package offers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

+ width = 15, chromosome = "chrX", genome = "hg19",

+ name = "sinus", data = sin(seq(pi, 5 * pi, len = 500)) *

+ runif(500, 0.5, 1.5))

> plotTracks(dTrack.big, type = "hist")

−1

−0.5

0

0.5

1

si
nu

s

Since the available resolution on our screen is limited we can no longer distinguish between individual
coordinate ranges. The Gviz package tries to avoid overplotting by collapsing overlapping ranges (assuming
the collapseTracks is set to TRUE). However, it is often desirable to summarize the data, for instance by
binning values into a fixed number of windows and subsequent calculation of a summary statistic. This can be

17

archived by a combination of the window and aggregation display parameters. The former can be an integer
value greater than zero giving the number of evenly-sized bins to aggregate the data in. The latter is supposed
to be a user-supplied function that accepts a numeric vector as a single input parameter and returns a single
aggregated numerical value. For simplicity, the most obvious aggregation functions can be selected by passing
in a character scalar rather than a function. Possible values are mean, median, extreme, sum, min and max.
The default is to compute the mean value of all the binned data points.

> plotTracks(dTrack.big, type = "hist", window = 50)

−1

−0.5

0

0.5

1

si
nu

s

Instead of binning the data in fixed width bins one can also use the window parameter to perform more
elaborate running window operations. For this to happen the parameter value has to be smaller than zero,
and the addtional display parameter windowSize can be used to control the size of the running window. This
operation does not change the number of coordinate ranges on the plot, but instead the original value at a
particular position is replaced by the respective sliding window value at the same position. A common use
case for sliding windows on genomic ranges is to introduce a certain degree of smoothing to the data.

> plotTracks(dTrack.big, type = "hist", window = -1,

+ windowSize = 2500)

−0.05

0

0.05

si
nu

s

In addition to transforming the data on the x-axis we can also apply arbitrary transformation functions
on the y-axis. One obvious use-case would be to log-transform the data prior to plotting. The framework
is flexible enough however to allow arbitrary transformation operations. The mechanism works by providing
a function as the transformation display parameter, which takes as input a numeric vector and returns a
transformed numeric vector of the same length. The following code for instance truncates the plotted data to
values greater than zero.

> plotTracks(dTrack.big, type = "l", transformation = function(x) {

+ x[x < 0] <- 0

+ x

+ })

18

0

0.5

1

si
nu

s

Display parameters for DataTrack objects

For a complete listing of all the available display parameters please see the table below or the man page of
the DataTrack class by typing in ?DataTrack on the R command line.

Display Parameter Description

aggregation Function or character scalar. Used to aggregate values in windows or for
collapsing overlapping items. The function has to accept a numeric vector
as a single input parameter and has to return a numeric scalar with the
aggregated value. Alternatively, one of the predefined options mean, median
sum, min, max or extreme can be supplied as a character scalar. Defaults to
mean.

alpha Numeric scalar between 0 and 1. The opacity of the plotting elements, if
supported by the device.

amount Numeric scalar. Amount of jittering in xy-type plots. See panel.xyplot for
details.

baseline Numeric scalar. Y-axis position of an optional baseline. This parameter
has a special meaning for mountain-type plots, see the ’Details’ section in
DataTrack for more information.

box.ratio Numeric scalar. Parameter controlling the boxplot appearance. See
panel.bwplot for details.

box.width Numeric scalar. Parameter controlling the boxplot appearance. See
panel.bwplot for details.

cex Numeric scalar. The default pixel size for plotting symbols.
cex.legend Numeric scalar. The size factor for the legend text.

coef Numeric scalar. Parameter controlling the boxplot appearance. See
panel.bwplot for details.

col Character vector. The base colors to use for all plot types. Unless groups

are specified, only the first color in the vector is usually taken.
col Character or integer scalar. The color used for all line and symbol elements,

unless there is a more specific control defined elsewhere.
col.baseline Character scalar. Color for the optional baseline, defaults to the setting of

col.
col.grid Integer scalar. The line color for grid elements.

col.histogram Character scalar. Line color in histogram-type plots.
col.line Character or integer scalar. The color used for line elements. Defaults to

the setting of col.
col.mountain Character scalar. Line color in mountain-type plots, defaults to the setting

of col.

19

col.symbol Character or integer scalar. The color used for symbol elements. Defaults
to the setting of col.

collapse Logical scalar. Collapse overlapping ranges and aggregate the underlying
data.

degree Numeric scalar. Parameter controlling the loess calculation for smooth and
mountain-type plots. See panel.loess for details.

do.out Logical scalar. Parameter controlling the boxplot appearance. See
panel.bwplot for details.

evaluation Numeric scalar. Parameter controlling the loess calculation for smooth and
mountain-type plots. See panel.loess for details.

factor Numeric scalar. Factor to control amount of jittering in xy-type plots. See
panel.xyplot for details.

family Character scalar. Parameter controlling the loess calculation for smooth and
mountain-type plots. See panel.loess for details.

fill Character scalar. The fill color for area elements, unless there is a more
specific control defined elsewhere.

fill.histogram Character scalar. Fill color in histogram-type plots, defaults to the setting
of fill.

fill.mountain Character vector of length 2. Fill color in mountain-type plots.
fontcolor.legend Integer or character scalar. The font color for the legend text.
fontface.legend Integer or character scalar. The font face for the legend text.

fontfamily.legend Integer or character scalar. The font family for the legend text.
fontsize.legend Numeric scalar. The pixel size for the legend text.

gradient Character vector. The base colors for the ’gradient’ plotting type.
groups Vector coercable to a factor. Optional sample grouping. See ’Details’ section

in DataTrack for further information.
h Integer scalar. Parameter controlling the number of vertical grid lines, see

panel.grid for details.
jitter.x Logical scalar. Toggle on jittering on the x axis in xy-type plots. See

panel.xyplot for details.
jitter.y Logical scalar. Toggle off jittering on the y axis in xy-type plots. See

panel.xyplot for details.
legend Boolean triggering the addition of a legend to the track to indicate groups.

This only has an effect if at least two groups are presen.
levels.fos Numeric scalar. Parameter controlling the boxplot appearance. See

panel.bwplot for details.
lineheight.legend Numeric scalar. The line height for the legend text.

lty Character or integer scalar. The type for all line elements, unless there is a
more specific control defined elsewhere.

lty.baseline Character or numeric scalar. Line type of the optional baseline, defaults to
the setting of lty.

lty.grid Integer scalar. The line type for grid elements. Defaults to the setting of
lty.

lty.mountain Character or numeric scalar. Line type in mountain-type plots, defaults to
the setting of lty.

lwd Integer scalar. The line width for all line elements, unless there is a more
specific control defined elsewhere.

20

lwd.baseline Numeric scalar. Line width of the optional baseline, defaults to the setting
of lwd.

lwd.grid Integer scalar. The line width for grid elements. Defaults to the setting of
lwd.

lwd.mountain Numeric scalar. Line width in mountain-type plots, defaults to the setting
of lwd.

min.distance Numeric scalar. The mimimum distance in pixel below which to collapse
ranges.

na.rm Boolean controlling whether to discard all NA values when plotting or to
keep empty spaces for NAs

ncolor Integer scalar. The number of colors for the ’gradient’ plotting type
notch Logical scalar. Parameter controlling the boxplot appearance. See

panel.bwplot for details.
notch.frac Numeric scalar. Parameter controlling the boxplot appearance. See

panel.bwplot for details.
pch Integer scalar. The type of glyph used for plotting symbols.

separator Numeric scalar. Number of pixels used to separate individual samples in
heatmap-type plots.

span Numeric scalar. Parameter controlling the loess calculation for smooth and
mountain-type plots. See panel.loess for details.

stackedBars Logical scalar. When there are several data groups, draw the histogram-type
plots as stacked barplots or grouped side by side.

stats Function. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

transformation Function. Applied to the data matrix prior to plotting or when calling the
score method. The function should accept exactly one input argument and
its return value needs to be a numeric vector which can be coerced back into
a data matrix of identical dimensionality as the input data.

type Character vector. The plot type, one or several in c("p","l", "b", "a",

"s", "g", "r", "S", "smooth", "histogram", "mountain", "h",

"boxplot", "gradient", "heatmap"). See ’Details’ section in DataTrack
for more information on the individual plotting types.

v Integer scalar. Parameter controlling the number of vertical grid lines, see
panel.grid for details.

varwidth Logical scalar. Parameter controlling the boxplot appearance. See
panel.bwplot for details.

window Numeric or character scalar. Aggregate the rows values of the data matrix
to window equally sized slices on the data range using the method defined in
aggregation. If negative, apply a running window of size windowSize using
the same aggregation method. Alternatively, the special value auto causes
the function to determine the optimal window size to avoid overplotting.

windowSize Numeric scalar. The size of the running window when the value of window

is negative.
ylim Numeric vector of length 2. The range of the y-axis scale.

21

4.4 AnnotationTrack

AnnotationTrack objects are the multi-purpose tracks in the Gviz package. Essentially they consist of one or
several genomic ranges that can be grouped into composite annotation elements if needed. In principle this
would be enough to represent everything from CpG islands to complex gene models, however for the latter the
packge defines the specialized GeneRegionTrack class, which will be highlighted in a separate section. Most
of the features discussed here will also apply to GeneRegionTrack objects, though. As a matter of fact, the
GeneRegionTrack class inherits directly from class AnnotationTrack .

AnnotationTrack objects are easily instantiated using the constructor function of the same name. The
necessary building blocks are the range coordinates, a chromosome and a genome identifier. Again we try
to be flexible in the way this information can be passed to the function, either in the form of separate
function arguments, as IRanges or GRanges objects. Optionally, we can pass in the strand information for
the annotation features and some useful identifiers. For the full details on the constructor function and the
accepted arguments see ?AnnotationTrack.

> aTrack <- AnnotationTrack(start = c(10, 40, 120),

+ width = 15, chromosome = "chrX", strand = c("+",

+ "*", "-"), id = c("Huey", "Dewey", "Louie"),

+ genome = "hg19", name = "foo")

> plotTracks(aTrack)

fo
o

The ranges are plotted as simple boxes if no strand information is available, or as arrows to indicate their
direction. We can change the range item shapes by setting the shape display parameter. It can also be helpful
to add the names for the individual features to the plot. This can be archived by setting the showFeatureId
parameter to TRUE

> plotTracks(aTrack, shape = "box", showFeatureId = TRUE)

fo
o Huey Dewey Louie

> plotTracks(aTrack, shape = "ellipse", showFeatureId = TRUE,

+ fontcolor = "darkblue")

fo
o Huey Dewey Louie

In this very simplistic example each annotation feature consisted of a single range. In real life the genomic
annotation features that we encounter often consists of several sub-units. We can create such composite
AnnotationTrack objects by providing a grouping factor to the constructor. It needs to be of similar length
as the total number of atomic features in the track, i.e, the number of genomic ranges that are passed to
the constructor. The levels of the this factor will be used as internal identifiers for the individual composite
feature groups, and we can toggle on their printing by setting showId to TRUE.

> aTrack.groups <- AnnotationTrack(start = c(50, 180,

+ 260, 460, 860, 1240), width = c(15, 20, 40, 100,

22

+ 200, 20), chromosome = "chrX", strand = rep(c("+",

+ "*", "-"), c(1, 3, 2)), group = rep(c("Huey",

+ "Dewey", "Louie"), c(1, 3, 2)), genome = "hg19",

+ name = "foo")

> plotTracks(aTrack.groups, showId = TRUE)

fo
o Dewey Huey Louie

Arranging items on the plotting canvas is relatively straight forward as long as there are no overlaps
between invidiual regions or groups of regions. A logical solution to this problem is to stack overlapping items
in separate horizontal lines, thus extending the height of the track to accomodate all of them. This involves
some optimization, and the Gviz package automatically tries to come up with the most compact arrangement.
Let’s exemplify this feature with a slightly modified AnnotationTrack object.

> aTrack.stacked <- AnnotationTrack(start = c(50, 180,

+ 260, 800, 600, 1240), width = c(15, 20, 40, 100,

+ 500, 20), chromosome = "chrX", strand = "*",

+ group = rep(c("Huey", "Dewey", "Louie"), c(1,

+ 3, 2)), genome = "hg19", name = "foo")

> plotTracks(aTrack.stacked, showId = TRUE)

fo
o Dewey Huey

Louie

We now have our three annotation feature groups distributed over two horizontal lines. One can control
the stacking of overlapping items using the stacking display parameter. Currently the three values squish,
dense and hide are supported. Horizontal stacking is enabled via the squish option, which also is the default.
dense forces overlapping items to be joined in one meta-item and hide all together disables the plotting of
AnnotationTrack items. Please note that adding identifiers to the plot only works for the squish option.

> plotTracks(aTrack.stacked, stacking = "dense")

fo
o

In addition to annotation groups there is also the notion of a feature type in the Gviz package. Feature
types are simply different types of annotation regions (e.g., mRNA transcripts, miRNAs, rRNAs, etc.) that
are indicated by different colors. There is no limit on the number of different features, however each element
in a grouped annotation item needs to be of the same feature type. We can query and set features using the
feature and feature<- methods.

> feature(aTrack.stacked)

[1] "unknown" "unknown" "unknown" "unknown" "unknown" "unknown"

> feature(aTrack.stacked)[1:4] <- c("foo", "bar", "bar",

+ "bar")

23

Unless we tell the Gviz package how to deal with the respective feature types they will all be treated
similar, i.e., they will be plotted using the default color as defined by the fill display paramter. To define
colors for individual feature types we simply have to add them as additional display parameters, where the
parameter name matches to the feature type and its value is supposed to be a valid R color qualifier. Of
course this implies that we can only use type names that are not already taken by other display parameters
defined in the package.

> plotTracks(aTrack.stacked, showId = TRUE, foo = "darkred",

+ bar = "darkgreen")

fo
o Dewey Huey

Louie

Stacking of annotation items to avoid overplotting only works as long as there is enough real estate on
the plotting canvas to separate all items, i.e., we need all items to be at least a single pixel wide to correctly
display them. This limitation is automatically enforced by the Gviz package, however it implies that unless
neighbouring items are more than one pixel appart we can not distinguish between them and will inevitably
introduce a certain amount of overplotting. This means that on a common screen device we can only look at
a very limited genomic region of a few kb in full resolution. Given that an average chromosome is in the order
of a few gb, we still need a reasonable way to deal with the overplotting problem despite the item stacking
functionality. As default, the Gviz package will merge all overlapping items into one unified meta-item and only
plot that (see ’Collapse’ section below for details). In order to indicate the amount of overplotting that was
introduced by this process we can use the showOverplotting display parameter. It uses a color scale (based
on the orginal colors defined for the track), with lighter colors indicating areas of low or no overplotting,
and more saturated colors indicating areas of high overplotting density. We exemplify this feature on an
AnnotationTrack object that represents a good portion of a real human chromosome.

> data("denseAnnTrack")

> plotTracks(denseAnnTrack, showOverplotting = TRUE)

Collapsing

All track types that inherit from class AnnotationTrack support the collapsing of overlapping track items,
either because they have initially been defined as overlapping coordinates, or because the current device
resolution does not allow to sufficiently separate them. For instance, two elements of a feature group may be
separated by 100 base pairs on the genomic scale, however when plotted to the screen, those 100 base pairs
translate to a distance of less than one pixel. In this case we can no longer show the items as two separate
entitites. One solution to this problem would be to allow for arbitrary overplotting, in which case the last
one of the overlapping items that is drawn on the device wins. This is not optimal in many ways, and it also
poses a significant burden on the graphical engine because a lot of stuff has to be drawn which no one will
ever see.

To this end the Gviz package provides an infrastructure to reasonably collapse overlappig items, thereby
adjusting the information content that can be shown to the available device resolution. By default this feature
is turned on, and the user does not have to worry too much about it. However, one should be aware of the

24

consequences this may have on a given visualization. If you absolutely do not want collapsing to take place,
you may completely turn it off by setting the display parameter collapse to FALSE. Please note that by
doing this the showOverplotting parameter will also stop working. If you opt in, there is some considerable
amount of detailed control to fine tune the collapsing to your needs.

Lets start with a small example track for which element collapsing has been turned off and no adjustments
to the ranges have been made. We plot both the item identifiers and the group identifiers to exemplify what
is going on.

> data(collapseTrack)

> plotTracks(ctrack, extend.left = 1800)

a b c d ef g

h ij

k l

group 1

group 2 group 3

group 4

The first thing to notice is that the for item d we do see the item identifier but not the range itself. This
is due to the fact that the with of the item is smaller than a single pixel, and hence the graphics system can
not display it. There are also the two items e and f which seem to overlay each other completely, and another
two items which appear to be one joined item (k and l). Again, this is a resolution issue as their relative
distance is smaller than a single pixel, so all we see is a single range and some ugly overplotted identifiers.
We can control the first issue by setting the minimum pixel width of a plotted item to be one pixel using the
min.width display parameter.

> plotTracks(ctrack, extend.left = 1800, min.width = 1)

a b c d ef g

h ij

k l

group 1

group 2 group 3

group 4

Now the item d has a plotable size and can be drawn to the device. The overplotted items are still rather
anoying, but the only way to get rid of those is to turn item collapsing back on.

> plotTracks(ctrack, extend.left = 1800, min.width = 1,

+ collapse = TRUE)

a b c d g

h ij

2 merged
features

2 merged
features

group 1

group 2 group 3

group 4

Now all items that could not be separated by at least one pixel have been merged into a single meta-item,
and the software has taken care of the identifiers for you, too. The merging operation is aware of the grouping
information, so no two groups where joint together. Sometimes a single pixel width or a single pixel distance
is not enough to get a good visualization. In these cases one could decide to enforce even larger vakues. We
can do this not only for the minimum width, but also for the minimum distance by setting the min.distance

parameter.

> plotTracks(ctrack, extend.left = 1800, min.width = 3,

+ min.distance = 5, collapse = TRUE)

25

a d g

h ij

2 merged
features

2 merged
features

2 merged
features

group 1

group 2 group 3

group 4

This time also the two items b and c have been merged, and all ranges are now at least 3 pixels wide.
Depending on the density of items on the plot even this reduction can be insufficient. Because we did not
merge complete groups we might still end up with quite a lot of stacks to accomodate all the information. To
this end the display parameter mergeGroups can be used to disable absolute group separation. Rather than
blindly merging all groups (as it is done when stacking=’dense’) however, the software will only join those
overlapping group ranges for which all items are already merged into a single meta item.

> plotTracks(ctrack, extend.left = 1800, min.width = 3,

+ min.distance = 5, collapse = TRUE, mergeGroups = TRUE)

a d g

h i

2 merged
features

2 merged
features

3 merged
features2 merged groups

group 1

group 2

Display parameters for AnnotationTrack objects

For a complete listing of all the available display parameters please see the table below or the man page of
the AnnotationTrack class by typing in ?AnnotationTrack on the R command line.

Display Parameter Description

alpha Numeric scalar between 0 and 1. The opacity of the plotting elements, if
supported by the device.

cex Numeric scalar. The font expansion factor for item identifiers.
cex.group Numeric scalar. The font expansion factor for the group-level annotation.

col Character or integer scalar. The border color for all track items.
fill Character or integer scalar. The fill color for untyped items. This is also

used to connect grouped items. See grouping for details.
fontcolor Character or integer scalar. The font color for item identifiers.

fontcolor.group Character or integer scalar. The font color for the group-level annotation.
fontface Integer scalar. The font face for item identifiers.

fontface.group Numeric scalar. The font face for the group-level annotation.
fontfamily Character scalar. The font family for item identifiers.

fontfamily.group Character scalar. The font family for the group-level annotation.
fontsize Numeric scalar. The font size for item identifiers.

fontsize.group Numeric scalar. The font size for the group-level annotation.
lex Numeric scalar. The line expansion factor for all track items. This is also

used to connect grouped items. See grouping for details.
lineheight Numeric scalar. The font line height for item identifiers.

lty Character or integer scalar. The line type for all track items. This is also
used to connect grouped items. See grouping for details.

lwd Integer scalar. The line width for all track items. This is also used to connect
grouped items. See grouping for details.

mergeGroups Logical scalar. Merge fully overlapping groups if collapse==TRUE.

26

min.width Numeric scalar. The minimum range width in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing

for details.
rotation Numeric scalar. The degree of text rotation for item identifiers.

shape Character scalar. The shape in which to display the track items. Currently
only box, arrow, ellipse, and smallArrow are implemented.

showFeatureId Logical scalar. Control whether to plot the individual track item identifiers.
showId Logical scalar. Control whether to annotate individual groups.

showOverplotting Logical scalar. Use a color gradient to show the amount of overplotting for
collapsed items. This implies that collapse==TRUE

4.5 GeneRegionTrack

GeneRegionTrack objects are in principle very similar to AnnotationTrack objects. The only difference is that
they are a little more gene/transcript centric, both in terms of plotting layout and user interaction, and that
they define a global start and end position. The constructor function of the same same is a convenient tool to
instantiate the object from a variety of different sources. In a nutshell we need to pass start and end positions
(or the width) of each annotation feature in the track and also supply the exon, transcript and gene identifiers
for each item which will be used to create the transcript groupings. For more details about the available
options see the class’s manual page (?GeneRegionTrack). There are a number of accessor methods that make
it easy to query and replace for instance exon, transcript or gene assignments. There is also some support
for gene aliases or gene symbols which are often times more useful than cryptic data base gene identifiers.
The following code that re-uses the GeneRegionTrack object from the first section exemplifies some of these
features.

> data(geneModels)

> grtrack <- GeneRegionTrack(geneModels, genome = gen,

+ chromosome = chr, name = "foo")

> head(gene(grtrack))

> head(transcript(grtrack))

> head(exon(grtrack))

> head(symbol(grtrack))

> plotTracks(grtrack, showId = TRUE)

fo
o

Axl
Tgfb1

Ccdc97

Cyp2s1

Hnrnpul1

Bckdha

Tmem91

Exosc5

Axl

AC119211.1

Cyp2s1

Hnrnpul1
B9d2

Tmem91
Tmem91 Axl

Ccdc97

Tmem91
Ccdc97

Ccdc97

Axl

Axl

Ccdc97

Ccdc97

Axl Axl
2310039L15Rik

Ccdc97

Axl

Tmem91

Tmem91

Cyp2s1
Ccdc97

Ccdc97

Cyp2s1

Axl AC119211.2 Tgfb1
Tgfb1

> plotTracks(grtrack, showId = TRUE, geneSymbols = FALSE)

27

fo
o

ENSMUSG00000002602

ENSMUSG00000002603

ENSMUSG00000002608

ENSMUSG00000040703

ENSMUSG00000040725
ENSMUSG00000060376

ENSMUSG00000061702

ENSMUSG00000061286

ENSMUSG00000002602
ENSMUSG00000076445

ENSMUSG00000040703

ENSMUSG00000040725

ENSMUSG00000063439

ENSMUSG00000061702
ENSMUSG00000061702

ENSMUSG00000002602

ENSMUSG00000002608

ENSMUSG00000061702

ENSMUSG00000002608

ENSMUSG00000002608

ENSMUSG00000002602
ENSMUSG00000002602

ENSMUSG00000002608

ENSMUSG00000002608

ENSMUSG00000002602

ENSMUSG00000002602

ENSMUSG00000084812

ENSMUSG00000002608

ENSMUSG00000002602

ENSMUSG00000061702

ENSMUSG00000061702

ENSMUSG00000040703 ENSMUSG00000002608

ENSMUSG00000002608

ENSMUSG00000040703

ENSMUSG00000002602

ENSMUSG00000090467

ENSMUSG00000002603
ENSMUSG00000002603

Display parameters for GeneRegionTrack objects

For a complete listing of all the available display parameters please see the table below or the man page of
the GeneRegionTrack class by typing in ?GeneRegionTrack on the R command line.

Display Parameter Description

alpha Numeric scalar between 0 and 1. The opacity of the plotting elements, if
supported by the device.

cex Numeric scalar. The font expansion factor for item identifiers.
cex.group Numeric scalar. The font expansion factor for the group-level annotation.

col Character or integer scalar. The border color for all track items.
collapseTranscripts Logical scalar. Merge all transcripts of the same gene into one single gene

model. Essentially, this will only keep the start location of the first exon and
the end location of the last exon from all transcripts of a gene.

fill Character or integer scalar. The fill color for untyped items. This is also
used to connect grouped items. See grouping for details.

fontcolor Character or integer scalar. The font color for item identifiers.
fontcolor.group Character or integer scalar. The font color for the group-level annotation.

fontface Integer scalar. The font face for item identifiers.
fontface.group Numeric scalar. The font face for the group-level annotation.

fontfamily Character scalar. The font family for item identifiers.
fontfamily.group Character scalar. The font family for the group-level annotation.

fontsize Numeric scalar. The font size for item identifiers.
fontsize.group Numeric scalar. The font size for the group-level annotation.
geneSymbols Logical scalar. Use human-readable gene symbols or gene IDs for the tran-

script annotation.
lex Numeric scalar. The line expansion factor for all track items. This is also

used to connect grouped items. See grouping for details.
lineheight Numeric scalar. The font line height for item identifiers.

lty Character or integer scalar. The line type for all track items. This is also
used to connect grouped items. See grouping for details.

lwd Integer scalar. The line width for all track items. This is also used to connect
grouped items. See grouping for details.

28

min.width Numeric scalar. The minimum range width in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing

for details.
rotation Numeric scalar. The degree of text rotation for item identifiers.

shape Character scalar. The shape in which to display the track items. Currently
only box, arrow, ellipse, and smallArrow are implemented.

showExonId Logical scalar. Control whether to plot the individual exon identifiers.
showId Logical scalar. Control whether to annotate individual groups.

showOverplotting Logical scalar. Use a color gradient to show the amount of overplotting for
collapsed items. This implies that collapse==TRUE

4.6 BiomartGeneRegionTrack

It is often very useful to quickly download gene annotation information from an online repositry rather than
having to construct it each time from scratch. To this end, the Gviz package defines the BiomartGeneRe-
gionTrack class, which directly extends GeneRegionTrack but provides a direct interface to the ENSEMBL
Biomart service (yet another interface to the UCSC data base content is highlighted in the next section).
Rather than providing all the bits and pieces for the full gene model, we just enter a genome, chromosome
and a start and end position on this chromosome, and the constructor function BiomartGeneRegionTrack

will automatically contact ENSEMBL, fetch the necessary information and build the gene model on the fly.
Please note that you will need an internet connection for this to work, and that contacting Biomart can take
a significant amount of time depending on usage and network traffic, and that the results are almost never
going to be returned instantaniously.

> biomTrack <- BiomartGeneRegionTrack(genome = "hg19",

+ chromosome = chr, start = 2e+07, end = 2.1e+07,

+ name = "ENSEMBL")

> plotTracks(biomTrack)

E
N

S
E

M
B

L

Display parameters for BiomartGeneRegionTrack objects

For a complete listing of all the available display parameters please see the table above in the previous
GeneRegionTrack section or the man page of the BiomartGeneRegionTrack class by typing in ?Biomart-

GeneRegionTrack on the R command line.
One additional benefit when fetching the data through Biomart is that we also receive some information

about the annotation feature types, which is automatically used for the color coding of the track. The following
table shows the available feature types.

Display Parameter Description Color

C segment Character or integer scalar. Fill color for annotation objects
of type ’C segment’.

burlywood4

D segment Character or integer scalar. Fill color for annotation objects
of type ’C segment’.

lightblue

29

J segment Character or integer scalar. Fill color for annotation objects
of type ’C segment’.

dodgerblue2

Mt rRNA Character or integer scalar. Fill color for annotation objects
of type ’Mt rRNA’.

yellow

Mt tRNA Character or integer scalar. Fill color for annotation objects
of type ’Mt tRNA’.

darkgoldenrod

Mt tRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’Mt tRNA pseudogene’.

darkgoldenrod1

V segment Character or integer scalar. Fill color for annotation objects
of type ’V segment’.

aquamarine

miRNA Character or integer scalar. Fill color for annotation objects
of type ’L segment’.

cornflowerblue

miRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’miRNA pseudogene’.

cornsilk

misc RNA Character or integer scalar. Fill color for annotation objects
of type ’misc RNA’.

cornsilk3

misc RNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’misc RNA pseudogene’.

cornsilk4

protein coding Character or integer scalar. Fill color for annotation objects
of type ’protein coding’.

gold4

pseudogene Character or integer scalar. Fill color for annotation objects
of type ’pseudogene’.

brown1

rRNA Character or integer scalar. Fill color for annotation objects
of type ’rRNA’.

darkolivegreen1

rRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’rRNA pseudogene’.

darkolivegreen

retrotransposed Character or integer scalar. Fill color for annotation objects
of type ’retrotransposed’.

blueviolet

scRNA Character or integer scalar. Fill color for annotation objects
of type ’scRNA’.

darkorange

scRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’scRNA pseudogene’.

darkorange2

snRNA Character or integer scalar. Fill color for annotation objects
of type ’snRNA’.

coral

snRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’snRNA pseudogene’.

coral3

snoRNA Character or integer scalar. Fill color for annotation objects
of type ’snoRNA’.

cyan

snoRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’snoRNA pseudogene’.

cyan2

tRNA pseudogene Character or integer scalar. Fill color for annotation objects
of type ’tRNA pseudogene’.

antiquewhite3

4.7 DetailsAnnotationTrack

It is sometimes desirable to add more detailed information to particular ranges in an Gviz plot for which the
notion of genomic coordinates no longer makes sense. For instance, the ranges in an AnnotationTrack may
represent probe locations on a genome, and for each of these probes a number of measurements from multiple

30

samples and from different sample groups are available. To this end, the DetailsAnnotationTrack provides a
flexible interface to further annotate genomic regions with arbitrary additional information. This is archived
by splitting the AnnotationTrack plotting region into two horizontal sections: the lower section containing the
range data in genomic coordinates, and the upper one containing the additional data for each of the displayed
ranges in verticaly tiled panels of equal size. The connection between a range item and its details panel is
indicated by connecting lines.

The content of the individual details panels has to be filled in by a user-defined plotting function that
uses grid (or lattice) plotting commands. This function has to accept a number of mandatory parameters,
notably the start, end, strand, chromosome and identifier information for the genomic range, as well as an
integer counter indicating the index of the currently plotted details tile. This information can be used to
fetch abtritray details, e.g. from a list, and environement or even from a GRanges object which will then be
processed and visualized within the plotting function. This may sound rather abstract, and for more details
please refer to the class’ help page. For now we just want to demonstrate the functionality in a simple little
example. We begin by defining a GRanges object containing 4 genomic locations. In our example those are
considered to be probe locations from a methylation array.

> library(GenomicRanges)

> probes <- GRanges(seqnames = "chr7", ranges = IRanges(start = c(2e+06,

+ 2070000, 2100000, 2160000), end = c(2050000,

+ 2130000, 2150000, 2170000)), strand = c("-",

+ "+", "-", "-"))

For each of these probes we have methylation measurements from a large number of different samples
in a numeric matrix, and within the samples there are two treatment groups. The aim is to compare the
distribution of measurement values between these two groups at each probe locus.

> methylation <- matrix(c(rgamma(400, 1)), ncol = 100,

+ dimnames = list(paste("probe", 1:4, sep = ""),

+ NULL))

> methylation[, 51:100] <- methylation[, 51:100] +

+ 0:3

> sgroups <- rep(c("grp1", "grp2"), each = 50)

Of course we could use a DataTrack with the box-plot representation for this task, however we do have
strand-specific data here and some of the probes can be overlapping, so all this information would be lost. We
are also interested in the particular shape of the data distribution, so a density plot representation is what
we really need. Luckily, the lattice package gives us a nice densityplot function that supports grouping, so
all that’s left to do now is to write a little wrapper that handles the extraction of the relevant data from the
matrix. This is easily archieved by using the range identifiers, which conveniently map to the row names of
the data matrix.

> library(lattice)

> details <- function(identifier, ...) {

+ d <- data.frame(signal = methylation[identifier,

+], group = sgroups)

+ print(densityplot(~signal, group = group, data = d,

+ main = list(label = identifier, cex = 0.7),

+ scales = list(draw = FALSE, x = list(draw = TRUE)),

+ ylab = "", xlab = "",), newpage = FALSE,

31

+ prefix = "plot")

+ }

Finaly, it is as simple as calling the AnnotationTrack constructor, passing along the wrapper function and
calling plotTracks.

> deTrack <- AnnotationTrack(range = probes, genome = "hg19",

+ chromosome = 7, id = rownames(methylation), name = "probe details",

+ stacking = "squish", fun = details)

> plotTracks(deTrack)

pr
ob

e
de

ta
ils

probe1

0 2 4 6 8

● ●●● ●●●●●●● ●● ●●● ●●● ●●●●●● ●●● ●●● ●● ●● ●●●●●●● ●● ●● ●●●●●●● ● ●●●●●●●●●● ●● ●●●●● ●●● ●● ●● ●●● ●● ●●●●● ●●● ●●● ●● ●●●●

probe2

0 2 4 6

● ●●●● ●●●● ●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●● ●●● ●●●● ● ●● ●● ●● ●●●●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●●

probe3

0 2 4 6

● ● ●●●●● ●●●●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●●●● ●●●●●● ●●●●● ●●● ●● ● ●●●● ●●●●●● ●●●● ● ●●●●●●●● ●●●●● ●●●●●●● ●●●● ●●●●● ●● ●● ●

probe4

0 2 4 6 8

●●●●● ●● ●● ●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●● ●●● ●●●● ●● ●● ● ●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●

● ● ● ●

● ●

●

●

It should be noted here that in our little example we rely on the methylation data matrix and the grouping
vector to be present in the working environment. This is not necessarily the cleanest solution and one should
consider storing additional data in an evironment, passing it along using the detailFunArgs parameter, or
making it part of the details function in form of a closure. The class’ help page provides further instructions.

Another use case for the DetailsAnnotationTrack class is to deal with the problem of very different feature
sizes within a single track. For instance, we may be looking at a rather large genomic region containing one
big transcript with many widely spaced exons and a bunch of smaller, more compact transcripts. In this case
it would be helpful to provide a zoomed in version of those smaller transcripts. In order to achieve this we
can make use of the class’ groupDetails display parameter, which applies the detail plotting function over
each range group rather than over individual range items. First we define a function that selects those groups
with a plotted size smaller than 10 pixels. We make use of the unexported function .pxResolution here to
come up with the mapping between pixel coordinates and genomic coordinates.

32

> selFun <- function(identifier, start, end, track,

+ GdObject, ...) {

+ gcount <- table(group(GdObject))

+ pxRange <- Gviz:::.pxResolution(min.width = 20,

+ coord = "x")

+ return((end - start) < pxRange && gcount[identifier] ==

+ 1)

+ }

The actual detail plotting function is fairly trivial. In the details viewport we simply call plotTracks
function on the subset of items from each group that has been selected before without plotting the track
titles, and also add a scale indicator for some reference. It is worth mentioning however that we need to
extract the ranges of the zoomed in track items from the unmodified track object (the Gdobject.original

argument in the details function) because the object that is plotted in the lower panel contains only the
collapsed ranges.

> detFun <- function(identifier, GdObject.original,

+ ...) {

+ plotTracks(list(GenomeAxisTrack(scale = 0.3,

+ labelPos = "below", size = 0.2, cex = 0.7),

+ GdObject.original[group(GdObject.original) ==

+ identifier]), add = TRUE, showTitle = FALSE)

+ }

Finally, we load some sample data, turn it into a DetailsAnnotationTrack object and plot it.

> data(geneDetails)

> deTrack2 <- AnnotationTrack(range = geneDetails,

+ chromosome = chr, genome = gen, fun = detFun,

+ selectFun = selFun, groupDetails = TRUE, details.size = 0.3,

+ detailsConnector.cex = 0.5, detailsConnector.lty = "dotted",

+ shape = c("smallArrow", "arrow"), showId = TRUE)

> plotTracks(deTrack2, extend.left = 90000)

A
nn

ot
at

io
nT

ra
ck

3 kb
transcript 2

1 kb
transcript 3

4 kb
transcript 4

transcript 1

transcript 2

transcript 3

transcript 4

● ● ●

●

●

●

Display parameters for DetailsAnnotationTrack objects

In addtion to the display parameters for the AnnotationTrack class, some additional parameters can be
used to control the look and feel of the details sections. For a complete listing of all the available display

33

parameters please see the tables below and the one above in the AnnotationTrack section or the man page of
the DetailsAnnotationTrack class by typing in ?DetailsAnnotationTrack on the R command line.

> plotTracks(deTrack, details.size = 0.75, detailsConnector.pch = NA,

+ detailsConnector.col = "darkred", detailsBorder.fill = "#FFE3BF",

+ detailsBorder.col = "darkred", shape = "box",

+ detailsConnector.lty = "dotted")

pr
ob

e
de

ta
ils

probe1

0 2 4 6 8

● ●●● ●●●●●●● ●● ●●● ●●● ●●●●●● ●●● ●●● ●● ●● ●●●●●●● ●● ●● ●●●●●●● ● ●●●●●●●●●● ●● ●●●●● ●●● ●● ●● ●●● ●● ●●●●● ●●● ●●● ●● ●●●●

probe2

0 2 4 6

● ●●●● ●●●● ●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●● ●●● ●●●● ● ●● ●● ●● ●●●●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●●

probe3

0 2 4 6

● ● ●●●●● ●●●●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●●●● ●●●●●● ●●●●● ●●● ●● ● ●●●● ●●●●●● ●●●● ● ●●●●●●●● ●●●●● ●●●●●●● ●●●● ●●●●● ●● ●● ●

probe4

0 2 4 6 8

●●●●● ●● ●● ●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●● ●●● ●●●● ●● ●● ● ●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●

Display Parameter Description

details.minWidth Numeric scalar. The minium width in pixels for a details panel, if less space
is available no details are plotted.

details.ratio Numeric scalar. By default, the plotting method tries to fill all available
space of the details panel tiles. Depending on the dimensions of your plot
and the number of tiles this may lead to fairly stretched plots. Restricting
the ration of width over height can help to fine tune for somewhat more
sane graphics in these cases. Essentially this adds some white space in be-
tween individual tiles to force the desired ratio. Together with the size and
details.size arguments, which control the vertical extension of the whole
track and of the details section, this allows for some fairly generic resizing
of the tiles.

details.size Numeric scalar. The fraction of vertical space of the track used for the details
section.

detailsBorder.col Character or integer scalar. Line color of the border.
detailsBorder.fill Character or integer scalar. Background color of the border.
detailsBorder.lty Character or integer scalar. Line type of the border around each details

panel.
detailsBorder.lwd Integer scalar. Line width of the border.

detailsConnector.cex Numeric scalar. Relative size of the connector’s end points.
detailsConnector.col Character or integer scalar. Color of the line connecting the Annotstion-

Track item with its details panel.
detailsConnector.lty Character or integer scalar. Type of connecting line.

detailsConnector.lwd Integer scalar. Line width of the connector.
detailsConnector.pch Integer scalar. Type of the connector’s ends.

34

detailsFunArgs List.Additional arguments that get passed on the the details plotting func-
tion.

groupDetails Logial scalar. Plot details for feature groups rather than for individual fea-
tures.

4.8 Creating tracks from UCSC data

The UCSC data bases contain a multitude of genome annotation data for dozents of different organisms.
Some of those data are very simple annotations like CpG island locations or SNP locations. Others are more
complicated gene models, or even numeric annotations like conservation information. In order to provide
a unified interface to all this information, the Gviz package defines a meta-constructor function UcscTrack.
The idea here is that we can express all of the available Ucsc data in one of the package’s track types. We
use the functionality provided in the rtracklayer package to connect to UCSC and to download the relevant
information. As a little illustrative example, let’s reproduce a view from the famous UCSC genome browser
using the Gviz package. As a final result we want to show something similar to Figure 4.8.

Figure 1: A screen shot of a UCSC genome browser view around the FMR1 locus on the mouse chromosome.

To start we first need to know about the available data in the UCSC data base and about their structure.
A good way to do this is to use the table browser on the UCSC web site (http://genome.ucsc.edu/cgi-bin/
hgTables?command=start). Figure ?? shows the table structure for the first gene model track, the known
UCSC genes, in the table browser. We can see that there are multiple fields, some with genomic locations,

35

http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start

other with additional data like labels or identifiers. If we go back to the section about the GeneRegionTrack
class we remember that we need exactly this type of information for the constructor function. So in order
to take the UCSC data and build an object of class GeneRegionTrack we need a way to map them to the
individual constructor arguments. This is exactly what the UcscTrack meta-constructor is supposed to do
for us.

Figure 2: A screen shot of a UCSC table browser view on the UCSC Known Genes track.

It needs to know about the track for which to extract the data (and optionally one or several of the tables
that make up the collective track data, see ?UcscTrack for details), about the genomic range including the
chromosome for which to extract data, about the type of Gviz track that we want to translate this data into,
and about the individual track columns and their counterparts in the respective track class constructor. In
our example, the track is called knownGene, the track type to construct is GeneRegionTrack, and the relevant
columns are exonStarts, exonEnds, name and strand, which we will use as the start and end coordinates
of the ranges and for all the exon, transcript and gene identifiers. Here we make use of the high flexibility
of the GeneRegionTrack constructor in the sense that the exon coordinates actually come in the form of a
comma-separated list, combining all the information for one transcript in one row of the table. The function
is smart enough to detect this and to split the annotation regions accordingly. The full function call to create
the GeneRegionTrack from the UCSC data looks like this:

> from <- 65921878

> to <- 65980988

> knownGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "knownGene", from = from, to = to, trackType = "GeneRegionTrack",

+ rstarts = "exonStarts", rends = "exonEnds", gene = "name",

+ symbol = "name", transcript = "name", strand = "strand",

+ fill = "#8282d2", name = "UCSC Genes")

With a similar approach we can construct the next two gene model tracks based on the xenoRefGene and
ensGene data tables.

> refGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "xenoRefGene", from = from, to = to,

+ trackType = "GeneRegionTrack", rstarts = "exonStarts",

+ rends = "exonEnds", gene = "name", symbol = "name2",

36

+ transcript = "name", strand = "strand", fill = "#8282d2",

+ stacking = "dense", name = "Other RefSeq")

> ensGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "ensGene", from = from, to = to, trackType = "GeneRegionTrack",

+ rstarts = "exonStarts", rends = "exonEnds", gene = "name",

+ symbol = "name2", transcript = "name", strand = "strand",

+ fill = "#960000", name = "Ensembl Genes")

The CpG and SNP tracks are slightly different since a GeneRegionTrack representation would not be
particularly useful. Instead, we can use AnnotationTrack objects as containers. The overall process using the
UcscTrack meta-constructor remains the same.

> cpgIslands <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "cpgIslandExt", from = from, to = to,

+ trackType = "AnnotationTrack", start = "chromStart",

+ end = "chromEnd", id = "name", shape = "box",

+ fill = "#006400", name = "CpG Islands")

> snpLocations <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "snp128", from = from, to = to, trackType = "AnnotationTrack",

+ start = "chromStart", end = "chromEnd", id = "name",

+ feature = "func", strand = "strand", shape = "box",

+ stacking = "dense", fill = "black", name = "SNPs")

Most of UCSC’s DataTrack -like tracks are a little more complex and represent a collection of several sub-
tracks, with data originating from multiple tables. To make sure that we get the correct information we have
to be a little bit more specific here and also define the particular table on the UCSC data base to use.

> conservation <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "Conservation", table = "phyloP30wayPlacental",

+ from = from, to = to, trackType = "DataTrack",

+ start = "start", end = "end", data = "score",

+ type = "hist", window = "auto", col.histogram = "darkblue",

+ fill.histogram = "darkblue", ylim = c(-3.7, 4),

+ name = "Conservation")

> gcContent <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "GC Percent", table = "gc5Base", from = from,

+ to = to, trackType = "DataTrack", start = "start",

+ end = "end", data = "score", type = "hist", window = -1,

+ windowSize = 1500, fill.histogram = "black",

+ col.histogram = "black", ylim = c(30, 70), name = "GC Percent")

To add some reference points we also need a genome axis and an IdeogramTrack of the x chromosome.

> axTrack <- GenomeAxisTrack()

> idxTrack <- IdeogramTrack(genome = "mm9", chromosome = "chrX")

And finally we can plot all of our tracks.

> plotTracks(list(idxTrack, axTrack, knownGenes, refGenes,

+ ensGenes, cpgIslands, gcContent, conservation,

+ snpLocations), from = from, to = to, showTitle = FALSE)

37

Chromosome X

65.93 mb

65.94 mb

65.95 mb

65.96 mb

65.97 mb

30

40

50

60

70

−2

0

2

4

5 Composite plots for multiple chromosomes

As mentioned in the introduction section, a set of Gviz tracks has to share the same chromosome when
plotted, i.e., only a single chromosome can be active during a given plotting operation. Consequently, we can
not directly create plots for multiple chromosomes in a single call to the plotTracks function. However, since
the underlying graphical infrastructure of the Gviz package uses grid graphics, we can build our own composite
plot using multiple consecutive plotTracks calls. All we need to take care of is an adequate layout structure
to plot into, and we also need to tell plotTracks not to clear the graphics device before plotting, which can
be archieved by setting the function’s add argument to FALSE. For details on how to create a layout structure
in the grid graphics system, please see the help page at ? grid.layout).

We start by creating an AnnotationTrack objects and a DataTrack object which both contain data for
several chromosomes.

> chroms <- c("chr1", "chr2", "chr3", "chr4")

> maTrack <- AnnotationTrack(range = GRanges(seqnames = chroms,

+ ranges = IRanges(start = 1, width = c(100, 400,

+ 200, 1000)), strand = c("+", "+", "-", "+")),

+ genome = "mm9", chromosome = "chr1", name = "foo")

> mdTrack <- DataTrack(range = GRanges(seqnames = rep(chroms,

+ c(10, 40, 20, 100)), ranges = IRanges(start = c(seq(1,

38

+ 100, len = 10), seq(1, 400, len = 40), seq(1,

+ 200, len = 20), seq(1, 1000, len = 100)), width = 9),

+ values = runif(170)), data = "values", chromosome = "chr1",

+ genome = "mm9", name = "bar")

Now we also want a genome axis and an IdeogramTrack object to indicate the genomic context.

> mgTrack <- GenomeAxisTrack(scale = 0.5, labelPos = "below")

> chromosome(itrack) <- "chr1"

Finaly, we build a layout in which the plots for each chromosome are placed in a rectangular grid and
repeatedly call plotTracks for each chromosome.

> ncols <- 2

> nrows <- length(chroms)%/%ncols

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(nrows,

+ ncols)))

> for (i in seq_along(chroms)) {

+ pushViewport(viewport(layout.pos.col = ((i -

+ 1)%%ncols) + 1, layout.pos.row = (((i) -

+ 1)%/%ncols) + 1))

+ plotTracks(list(itrack, maTrack, mdTrack, mgTrack),

+ chromosome = chroms[i], add = TRUE)

+ popViewport(1)

+ }

39

Chromosome 1

fo
o

0.2

0.4

0.6

ba
r

●

●

●

●

●

●

●

●

●

●

5 101

Chromosome 2

fo
o

0.2

0.4

0.6

0.8

ba
r

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

2 102

Chromosome 3

fo
o

0.2

0.4

0.6

0.8

ba
r

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

1 102

Chromosome 4

fo
o

0.2

0.4

0.6

0.8

ba
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 102

40

SessionInfo

The following is the session info that generated this vignette:

> sessionInfo()

R version 2.15.0 (2012-03-30)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C

attached base packages:

[1] grid stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] lattice_0.20-6 GenomicRanges_1.8.3 IRanges_1.14.2

[4] BiocGenerics_0.2.0 Gviz_1.0.1 xtable_1.7-0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.18.0 BSgenome_1.24.0

[3] Biobase_2.16.0 Biostrings_2.24.1

[5] DBI_0.2-5 RColorBrewer_1.0-5

[7] RCurl_1.91-1 RSQLite_0.11.1

[9] Rsamtools_1.8.4 XML_3.9-4

[11] biomaRt_2.12.0 bitops_1.0-4.1

[13] rtracklayer_1.16.1 stats4_2.15.0

[15] tools_2.15.0 zlibbioc_1.2.0

41

	Introduction
	Basic Features
	Plotting parameters
	Track classes
	GenomeAxisTrack
	IdeogramTrack
	DataTrack
	AnnotationTrack
	GeneRegionTrack
	BiomartGeneRegionTrack
	DetailsAnnotationTrack
	Creating tracks from UCSC data

	Composite plots for multiple chromosomes

