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1 Introduction

In genetics association studies, investigators are interested in testing the association
between disease and DSL (disease susceptibility locus) in a case-control study. However,
DSL is usually unknown. Hence what one can do is to test the association between
disease and DSL indirectly by testing the association between disease and a marker.
The power of the association between disease and DSL depends on the power of the
association between disease and the marker, and on the LD (linkage disequilibrium)
between disease and the marker.

Assume that both DSL and the marker are biallelic and assume additive model.
Given the MAFs (minor allele frequencies) for both DSL and the marker, relative risks,
r2 or D′ between DSL and marker, the numbers of cases and controls, and the significant
level for hypothesis testing, the tools in the GeneticsDesign package can calculate the
power for the association test that disease is associated with DSL in a case-control
study. This information can help investigator to determine appropriate sample sizes in
experiment design stage.

2 Examples

To call the functions in the R package GeneticsDesign, we first need to load it into R:

> library(GeneticsDesign)

The following is a sample code to get a table of power for different combinations of
high risk allele frequency Pr(A) and genotype relative risk RR(Aa|aa).
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> set1<-seq(from=0.1, to=0.5, by=0.1)

> set2<-c(1.25, 1.5, 1.75, 2.0)

> len1<-length(set1)

> len2<-length(set2)

> mat<-matrix(0, nrow=len1, ncol=len2)

> rownames(mat)<-paste("MAF=", set1, sep="")

> colnames(mat)<-paste("RRAA=", set2, sep="")

> for(i in 1:len1)

+ { a<-set1[i]

+ for(j in 1:len2)

+ { b<-set2[j]

+ res<-GPC.default(pA=a,pD=0.1,RRAa=(1+b)/2, RRAA=b, Dprime=1,pB=a, quiet=T)

+ mat[i,j]<-res$power

+ }

+ }

> print(round(mat,3))

RRAA=1.25 RRAA=1.5 RRAA=1.75 RRAA=2

MAF=0.1 0.145 0.400 0.690 0.884

MAF=0.2 0.214 0.594 0.877 0.977

MAF=0.3 0.259 0.682 0.926 0.989

MAF=0.4 0.280 0.711 0.936 0.990

MAF=0.5 0.282 0.702 0.925 0.986

A Technical Details

Suppose that A is the minor allele for the disease locus; a is the common allele for the
disease locus; B is the minor allele for the marker locus; and b is the common allele for
the marker locus. We use D to denote the disease status “diseased” and use D̄ to denote
the disease status “not diseased”.

Given the minor allele frequencies Pr(A) and Pr(B) and Linkage disequilibrium (LD)
measure D′, we can get haplotype frequencies Pr(AB), Pr(Ab), Pr(aB), and Pr(ab):

Pr(AB) = Pr(A)Pr(B) + D

Pr(aB) = Pr(a)Pr(B)−D

Pr(Ab) = Pr(A)Pr(b)−D

Pr(ab) = Pr(a)Pr(b) + D,

where
D = D′dmax
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and

dmax =

{
min [Pr(A)Pr(b), P r(a)Pr(B)] , if D > 0,
max [−Pr(A)Pr(B),−Pr(a)Pr(b)] , if D < 0.

That is,
D = Pr(AB)− Pr(A)Pr(B).

Note that D > 0 means Pr(AB) > Pr(A)Pr(B), i.e., the probability of occuring the
haplotype AB is higher than the probability that the haplotype AB occurs merely by
chance. D < 0 means Pr(AB) < Pr(A)Pr(B), i.e., the probability of occuring the
haplotype AB is smaller than the probability that the haplotype AB occurs merely by
chance. In other words, given the same sample size, we can observe haplotype AB more
often when D > 0 than when D < 0. Hence the power of association test that marker
is associated with disease is larger when D > 0 than when D < 0. Hence, we assume
that D > 0.

D can also be rewritten as

D = Pr(B|A)Pr(A)− Pr(A)Pr(B) = [Pr(B|A)− Pr(B)]Pr(A).

Hence D > 0 is equivalent to Pr(B|A) > Pr(A) which indicates positive association
between minor allele A in disease locus and minor allele B in marker locus.

The relative risks are

RR(AA|aa) =
Pr(D|AA)

Pr(D|aa)

RR(Aa|aa) =
Pr(D|Aa)

Pr(D|aa)

The disease prevalence Pr(D) can be rewritten as

Pr(D) = Pr(D|AA)Pr(AA) + Pr(D|Aa)Pr(Aa) + Pr(D|aa)Pr(aa).

Dividing both sides by Pr(D|aa), we get

Pr(D)

Pr(D|aa)
=
Pr(D|AA)

Pr(D|aa)
Pr(AA) +

Pr(D|Aa)

Pr(D|aa)
Pr(Aa) +

Pr(D|aa)

Pr(D|aa)
Pr(aa)

= RR(AA|aa) [Pr(A)]2 +RR(Aa|aa)2Pr(A)Pr(a) + [Pr(a)]2 .

Hence

Pr(D|aa) =
Pr(D)

RR(AA|aa) [Pr(A)]2 +RR(Aa|aa)2Pr(A)Pr(a) + [Pr(a)]2

Pr(D|Aa) = RR(Aa|aa)Pr(D|aa)

Pr(D|AA) = RR(AA|aa)Pr(D|aa)
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Once we obtain the penetrances of disease locus (Pr(D|aa), Pr(D|Aa), and Pr(D|AA)),
we can get the sampling probabilities:

Pr(BB|D) =
Pr(D,BB)

Pr(D)

=
Pr(D,BB,AA) + Pr(D,BB,Aa) + Pr(D,BB, aa)

Pr(D)

=
Pr(D|BB,AA)Pr(BB,AA) + Pr(D|BB,Aa)Pr(BB,Aa) + Pr(D|BB, aa)Pr(BB, aa)

Pr(D)

Pr(Bb|D) =
Pr(D,Bb)

Pr(D)

=
Pr(D,Bb,AA) + Pr(D,Bb,Aa) + Pr(D,Bb, aa)

Pr(D)

=
Pr(D|Bb,AA)Pr(Bb,AA) + Pr(D|Bb,Aa)Pr(Bb,Aa) + Pr(D|Bb, aa)Pr(Bb, aa)

Pr(D)

Pr(bb|D) =
Pr(D, bb)

Pr(D)

=
Pr(D, bb, AA) + Pr(D, bb, Aa) + Pr(D, bb, aa)

Pr(D)

=
Pr(D|bb, AA)Pr(bb, AA) + Pr(D|bb, Aa)Pr(bb, Aa) + Pr(D|bb, aa)Pr(bb, aa)

Pr(D)

We assume that

Pr(D|BB,AA) = Pr(D|AA), P r(D|BB,Aa) = Pr(D|Aa), P r(D|BB, aa) = Pr(D|aa).

We also have

Pr(BB,AA) = [Pr(AB)]2

Pr(BB,Aa) = 2Pr(AB)Pr(aB)

Pr(BB, aa) = [Pr(aB)]2

Pr(Bb,AA) = 2Pr(AB)Pr(Ab)

Pr(Bb,Aa) = 2 [Pr(AB) ∗ Pr(ab) + Pr(Ab)Pr(aB)]

Pr(Bb, aa) = 2Pr(aB)Pr(ab)

Pr(bb, AA) = [Pr(Ab)]2

Pr(bb, Aa) = 2Pr(Ab)Pr(ab)

Pr(bb, aa) = [Pr(ab)]2
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Hence

Pr(BB|D) =
Pr(D|BB,AA)Pr(BB,AA) + Pr(D|BB,Aa)Pr(BB,Aa) + Pr(D|BB, aa)Pr(BB, aa)

Pr(D)

=
Pr(D|AA) [Pr(AB)]2 + Pr(D|Aa) [2Pr(AB)Pr(aB)] + Pr(D|aa) [Pr(aB)]2

Pr(D)

Pr(Bb|D) =
Pr(D|Bb,AA)Pr(Bb,AA) + Pr(D|Bb,Aa)Pr(Bb,Aa) + Pr(D|Bb, aa)Pr(Bb, aa)

Pr(D)

=
Pr(D|AA) [2Pr(AB)Pr(Ab)] + Pr(D|Aa) {2 [Pr(AB)Pr(ab) + Pr(Ab)Pr(aB)]}

Pr(D)

+
Pr(D|aa) [2Pr(aB)Pr(ab)]

Pr(D)

Pr(bb|D) =
Pr(D|bb, AA)Pr(bb, AA) + Pr(D|bb, Aa)Pr(bb, Aa) + Pr(D|bb, aa)Pr(bb, aa)

Pr(D)

=
Pr(D|AA) [Pr(Ab)]2 + Pr(D|Aa) [2Pr(Ab)Pr(ab)] + Pr(D|aa) [Pr(ab)]2

Pr(D)

To calculate the sampling probabilities Pr(BB|D̄), Pr(Bb|D̄), and Pr(bb|D̄), we can
apply Bayesian rules again:

Pr(BB|D̄) =
Pr(D̄|BB)Pr(BB)

Pr(D̄)
=

[1− Pr(D|BB)][Pr(B)]2

1− Pr(D)

Pr(Bb|D̄) =
Pr(D̄|Bb)Pr(Bb)

Pr(D̄)
=

[1− Pr(D|Bb)]2Pr(B)Pr(b)

1− Pr(D)

Pr(bb|D̄) =
Pr(D̄|bb)Pr(bb)

Pr(D̄)
=

[1− Pr(D|bb)][Pr(b)]2

1− Pr(D)

and

Pr(D|BB) =
Pr(BB|D)Pr(D)

Pr(BB)
=
Pr(BB|D)Pr(D)

[Pr(B)]2

Pr(D|Bb) =
Pr(Bb|D)Pr(D)

Pr(Bb)
=
Pr(Bb|D)Pr(D)

[2Pr(B)Pr(b)]

Pr(D|bb) =
Pr(bb|D)Pr(D)

Pr(bb)
=
Pr(bb|D)Pr(D)

[Pr(b)]2
.
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The expected allele frequencies are

Pr(B|D) =
2ncasePr(BB|D) + ncasePr(Bb|D)

2ncase
= Pr(BB|D) + Pr(Bb|D)/2

Pr(b|D) =
2ncasePr(bb|D) + ncasePr(Bb|D)

2ncase
= Pr(bb|D) + Pr(Bb|D)/2

Pr(B|D̄) = Pr(BB|D̄) + Pr(Bb|D̄)/2

Pr(b|D̄) = Pr(bb|D̄) + Pr(Bb|D̄)/2.

The counts for cases

n2c = ncasesPr(BB|D), n1c = ncasesPr(Bb|D), n0c = ncasesPr(bb|D).

The counts for controls

n2n = ncontrolsPr(BB|D̄), n1n = ncontrolsPr(Bb|D̄), n0n = ncontrolsPr(bb|D̄).

Table 1: Counts for cases and controls
marker
genotype cases controls
BB n2c n2n

Bb n1c n1n

bb n0c n0n

total ncases ncontrols

Odds ratios are
OR(BB|bb) =

n2cn0n

n2nn0c

=
Pr(BB|D)Pr(bb|D̄)

Pr(BB|D̄)Pr(bb|D)

OR(Bb|bb) =
n1cn0n

n1nn0c

=
Pr(Bb|D)Pr(bb|D̄)

Pr(Bb|D̄)Pr(bb|D)

Define

U =
3∑
i=1

xi

(
S

N
ri −

R

N
si

)
,
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where
R =n0c + n1c + n2c, S = n0n + n1n + n2n, N = R + S

.x1 =2, x2 = 1, x3 = 0,

r1 =n0c, r2 = n1c, r3 = n2c,

s1 =n0n, s2 = n1n, s3 = n2n.

We have

V = V̂ ar(U) =
RS

N3

N 3∑
i=1

x2ini −

(
3∑
i=1

xini

)2
 .

The Linear Trend Test Statistic1

Z2
T =

(
U√
V

)2

asymptotically follows a χ2
1 distribution under the null hypothesis. Under alternative

hypothesis, Z2
T asymptotically follows a non-central chi-square distribution χ2

1,λT
with

non-centrality parameter

λT = RS

[∑3
i=1 xi(p1i − p0i)

]2∑3
i=1 x

2
i (Rp0i + Sp1i)−

[∑3
i=1 xi(Rp0i + Sp1i

]2
/N

,

where
x1 =2, x2 = 1, x3 = 0,

n1 =n2c + n2n, n2 = n1c + n1n, n3 = n0c + n0n,

p01 =Pr(BB|D), p02 = Pr(Bb|D), p03 = Pr(bb|D),

p11 =Pr(BB|D̄), p12 = Pr(Bb|D̄), p13 = Pr(bb|D̄).

Given significant level α, the power 1− β satisfies:

Pr(Z2
T > c|H0) =α

Pr(Z2
T > c|Ha) =1− β.
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