
Analyzing RNA-seq data for differential exon usage
with the DEXSeq package

Alejandro Reyes, Simon Anders, Wolfgang Huber

2012-03-08

Contents

1 The Pasilla dataset 2

2 Normalisation and dispersion estimation 3

3 Testing for differential exon usage 5

4 Additional technical or experimental variables 6

5 Visualization 8

6 Parallelization 10

7 Making a routinary differential exon usage analysis 11

8 Creating ExonCountSet objects 11
8.1 From files produced by HTSeq . 11
8.2 From elementary R data structures . 13

9 Gene count table 13

10 Session Information 14

Abstract

RNA-seq is a powerful tool for transcriptome analysis. It enables the discovery of novel
transcript splice sites and isoforms, and there is interest in the quantitative comparison of
exon usage between different conditions. For the analysis of differential expression between
conditions, appropriate modeling of the experimental and biological variability is important
to have control over type I error, and such capabilities are offered, for instance, by the
packages edgeR [3] and DESeq [1]. In this package, we provide a method to systematically
detect differential exon usage using RNA-seq that takes into account this variability. We
use as input the number of reads mapping to each of the exons of a genome. The method is
demonstrated on the data from the package pasilla.

1

1 The Pasilla dataset

We will use the pasillaExons dataset from the pasilla package. pasillaExons is an object of
class ExonCountSet. Brooks et al. [2] investigated the effect of siRNA knock-down of Pasilla,
whose protein is known to bind to mRNA in the spliceosome, and which is thought to be involved
in the regulation of splicing, on the transcriptome of fly S2-DRSC cells. Pasilla is the Drosophila
melanogaster ortholog of mammalian NOVA1 and NOVA2. The dataset, which is provided by
NCBI Gene Expression Omnibus (GEO) under the accession number GSE185081, contains 3
biological replicates of the knockdown as well as 4 biological replicates of the untreated control.

In the pasilla package, we chose a subset of genes in order to speed up the computations
shown in this vignette. We start by loading the DEXSeq package and the example data.

> library("DEXSeq")

> data("pasillaExons", package = "pasilla")

If you have not yet installed the pasilla package, you can do so with

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("pasilla")

The design accessor function shows the available sample annotations.

> design(pasillaExons)

condition type

treated1fb treated single-read

treated2fb treated paired-end

treated3fb treated paired-end

untreated1fb untreated single-read

untreated2fb untreated single-read

untreated3fb untreated paired-end

untreated4fb untreated paired-end

We also print the first 6 lines of selected columns of the feature data annotation:

> head(fData(pasillaExons)[, c(1, 2, 9:12)])

geneID exonID chr start end strand

FBgn0000256:E001 FBgn0000256 E001 chr2L 3872658 3872947 -

FBgn0000256:E002 FBgn0000256 E002 chr2L 3873019 3873322 -

FBgn0000256:E003 FBgn0000256 E003 chr2L 3873385 3874395 -

FBgn0000256:E004 FBgn0000256 E004 chr2L 3874450 3875302 -

FBgn0000256:E005 FBgn0000256 E005 chr2L 3878895 3879067 -

FBgn0000256:E006 FBgn0000256 E006 chr2L 3879652 3880038 -

There are 46 genes in the dataset, of these, there is one with 36 exons, and for instance, three
with 16 exons:

> table(table(geneIDs(pasillaExons)))

1http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508

2

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508

0 1 2 3 4 5 6 7 8 9 10 11 12

14424 2 3 3 2 4 2 3 3 3 2 3 2

15 16 17 19 22 23 24 25 36

1 3 2 1 1 3 1 1 1

In Section 8, we explain how you can create analogous data objects from your own data.

2 Normalisation and dispersion estimation

Different samples might be sequenced with different depths. In order to adjust for such coverage
biases, we introduce size factor parameters. DEXSeq uses the same method as DESeq, which is
provided in the function estimateSizeFactors.

> pasillaExons <- estimateSizeFactors(pasillaExons)

> sizeFactors(pasillaExons)

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb

1.336 0.800 0.922 0.991 1.568 0.838

untreated4fb

0.830

Then, to test for differential expression, we need to estimate the variance of the data. This
is needed in order to be able to distinguish between normal technical and biological variation
(noise) from real effects on exon expression due to the different conditions. The information
on the size of the noise is drawn from the biological replicates in the dataset. However, as
typical for RNA-seq experiments, the number of replicates is too small to estimate variance or
dispersion parameters individually exon by exon. Instead, variance information is shared across
exons and genes, in an intensity dependent manner. Computationally, this is done through Cox-
Reid likelihood estimation (our method follows that of the package edgeR [3]). These steps are
implemented in the function estimateExonDispersionsForModelFrame. To create a data frame that
encodes the model for a gene, with columns sample, exon, condition, sizeFactors and count,
the function modelFrameForGene is used. The function estimateExonDispersionsForModelFrame

inputs this data frame to make the CR dispersion estimates.

> head(modelFrameForGene(pasillaExons, "FBgn0010909"))

sample exon sizeFactor condition type dispersion count

1 treated1fb E001 1.34 treated single-read NA 1997

2 treated1fb E002 1.34 treated single-read NA 122

3 treated1fb E003 1.34 treated single-read NA 276

4 treated1fb E004 1.34 treated single-read NA 420

5 treated1fb E005 1.34 treated single-read NA 416

6 treated1fb E006 1.34 treated single-read NA 486

> estimateExonDispersionsForModelFrame(modelFrameForGene(pasillaExons,

+ "FBgn0010909"))

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010

0.32652 0.09079 0.02758 0.07444 0.08765 0.08195 0.00156 0.00364 0.02798 0.04268

E011 E012 E013 E014 E015 E016 E017 E018 E019 E020

3

0.11323 0.00882 0.00904 4.07423 0.03954 0.01035 0.04317 0.01299 0.34028 0.01689

E021 E022 E023

0.78090 0.15943 0.13956

The function estimateDispersions provides an interface that makes a call to estimateExonDisper-

sionsForModelFrame for each of the exons that will be tested. Before starting estimating the CR
dispersion estimates, estimateDispersions will first define the ”testable” exons, meaning those
exons that its total sum of counts over all the samples is higher than the parameter minCount,
those genes that its number of exons is not higher than maxExon and those genes that have
more than one ”testable” exon. The result from estimateDispersions is stored in the column
dispBeforeSharing of the feature data.

> pasillaExons <- estimateDispersions(pasillaExons)

Then the function fitDispersionFunction its called, in which a dispersion-mean relation
α(µ) = α0 + α1/µ is fitted to the individual CR dispersion values (dispersions before sharing),
the coefficients are stored in the slot dispFitCoefs and finally, for each exon, the maximum
betweem the dispersion before sharing and the fitted dispersion value is taken as the exon’s final
dispersion value and stored in the dispersion slot. Please take into consideration that this fit
could be difficult to do in cases where the dispersion estimates are to big, this sometimes tends
to break this function. In this special cases please do not hesitate to contact the developers.

> pasillaExons <- fitDispersionFunction(pasillaExons)

> head(fData(pasillaExons)$dispBeforeSharing)

[1] 0.00930 0.00826 0.01669 0.01912 0.07736 NA

> pasillaExons@dispFitCoefs

(Intercept) I(1/means[good])

0.0428 2.1160

> head(fData(pasillaExons)$dispFitted)

[1] 0.0790 0.0632 0.0492 0.0511 0.0777 2.7273

> head(fData(pasillaExons)$dispersion)

[1] 0.0790 0.0632 0.0492 0.0511 0.0777 2.7273

To make a fit diagnostic, each individual exon dispersion is plotted vs its mean expression
value. The function we just fitted is plotted in the panel and it is passing through the data
points. This gives a good diagnostic of the fit. Figure 1

> meanvalues <- rowMeans(counts(pasillaExons))

> plot(meanvalues, fData(pasillaExons)$dispBeforeSharing, log = "xy",

+ main = "mean vs CR dispersion")

> x <- 0.01:max(meanvalues)

> y <- pasillaExons@dispFitCoefs[1] + pasillaExons@dispFitCoefs[2]/x

> lines(x, y, col = "red")

In Section 4, we will see how to incorporate further experimental or technical variables into
the dispersion estimation.

4

● ●
●●

●

●
●

●
●

●
●
●●

●
●●● ●●

●
●

●

●

●
● ●

●
●

●

●
●●

●

● ●●
●

● ●
●

●
●

●●

●

●● ● ●●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●
●●

●

●

●
●

●
●● ●

●
●

● ●
●

●●

●

●
●

●
●

●

●

●

● ●

●●●

●
●

●

●
● ●

●
●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●

●●

●

●

●
●

● ●

● ●●
●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●
● ●

●●●
●

●

●
●

●

●

●●

●
●

●

●
●●●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●
●

●
●

●
● ●

●
●

●●

●

●

●
●

●
●

● ●●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●●

●
●● ●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●●

●●

●
●

●

●

●

● ●
● ●● ●

●
●

●●

●

●

●●
●

●
●

●
●

●

● ●

●●
●●●

●

●
●●

●

●

●

●

●
●● ●

● ●
●

●

●

●

●

●● ●
●

●

●

●●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●● ●●●

●
●

●
●●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

1e−01 1e+01 1e+03

1e
−

10
1e

−
07

1e
−

04
1e

−
01

1e
+

02

mean vs CR dispersion

meanvalues

fD
at

a(
pa

si
lla

E
xo

ns
)$

di
sp

B
ef

or
eS

ha
rin

g

Figure 1: Fit diagnostics plot.

3 Testing for differential exon usage

Having the dispersion estimates and the size factors, we can now test for differential exon usage.
For each gene, we fit a generalized linear model with the formula

sample + exon + condition * I(exon == exonID)

and compare it to the smaller model (the null model)

sample + exon + condition.

and the deviances of both fits are compared using a χ2-distribution. The actual test (which
already includes a call to modelFrameForGene) is performed by the function testGeneForDEU:

> testGeneForDEU(pasillaExons, "FBgn0010909")

deviance df pvalue

E001 2.06e-03 1 9.64e-01

E002 3.34e-01 1 5.63e-01

E003 9.90e-01 1 3.20e-01

E004 8.03e-01 1 3.70e-01

E005 5.50e+00 1 1.90e-02

E006 3.63e+00 1 5.66e-02

E007 2.90e-01 1 5.90e-01

E008 1.53e-01 1 6.96e-01

E009 4.40e-01 1 5.07e-01

E010 6.53e+01 1 6.66e-16

E011 3.72e-02 1 8.47e-01

5

E012 3.13e-01 1 5.76e-01

E013 1.49e+00 1 2.22e-01

E014 1.83e-04 1 9.89e-01

E015 3.70e-01 1 5.43e-01

E016 3.54e-01 1 5.52e-01

E017 6.80e-01 1 4.09e-01

E018 5.01e-01 1 4.79e-01

E019 3.81e-04 1 9.84e-01

E020 7.23e-01 1 3.95e-01

E021 1.09e-03 1 9.74e-01

E022 1.17e-01 1 7.33e-01

E023 6.30e-01 1 4.27e-01

We see that there is one exon, E010, with a very small p value, while for all other exons, the p
values are unremarkable.

A convenient interface which calls testGeneForDEU for all genes and fills the pvalue and pad-

just columns of the featureData slots of the ExonCountSet object with the results is provided
by the function testForDEU.

> pasillaExons <- testForDEU(pasillaExons)

The function DEUresultTable provides a summary table of the results.

> pasillaExons <- estimatelog2FoldChanges(pasillaExons)

> res1 <- DEUresultTable(pasillaExons)

> table(res1$padjust < 0.1)

FALSE TRUE

373 7

> plot(res1$meanBase, res1[, "log2fold(untreated/treated)"], log = "x",

+ col = ifelse(res1$padjust < 0.1, "red", "black"), ylim = c(-4,

+ 4), main = "pasilla MvsA")

4 Additional technical or experimental variables

In the previous section we performed the analysis of differential exon usage ignoring the infor-
mation regarding the library type of the samples. In this case we introduce a technical variable,
but the user can introduce an additional experimental variable as well.

> design(pasillaExons)

condition type

treated1fb treated single-read

treated2fb treated paired-end

treated3fb treated paired-end

untreated1fb untreated single-read

untreated2fb untreated single-read

untreated3fb untreated paired-end

untreated4fb untreated paired-end

6

●
●

●●●
●

●

●

●

●

●●

●●
●●●

●

●

●
●

●

●

●

●
●

●● ●
●●

●
●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

● ●
●

●

●

●●
● ●

●
●

●
●

● ●● ● ●

●

●● ●●● ●

●
●
●

●●
● ●

● ●●

● ●

●
●●

●

● ●

●

● ● ●
● ●● ●

●
●

●

●●
●

●
●

●

●
● ● ●●

●

●
●

●

●●●●
●●

●●●●
● ●●● ●●●

●
●

●

●

●●
●

●

●● ●
●

●●

●

●●
●●

●

●

●

●●

●

●

●

● ●●
●

●●
●

●●

●

●

●

●

●
●

●
●●●

●●
● ●

●

●●
●● ●

● ●

●
●

●

●

●

●●
● ●

●

●

●●●
●

●●
●

●
●●

●
● ●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

● ●

●

●
●

●●
●

●
●

●

●

●

●
●●

● ●●●
●

●

●
●●

● ●
●●● ●●

●
●

●
●●●

●

●●
●● ●

●

●

●

●
● ●

● ●●● ●

●

●
●

●
●

● ●
●●● ● ●
●

●
●

●●
●

●
●

●

●

●

●●
●● ●● ● ●● ●

● ●

●

● ●
●●

●
●

●

●
●

●●
●

●

●

● ●
●

● ●

●

●●
● ●

●●
●●

●

●

●

● ●
●

●
●● ● ●

●
●

●●
●

● ●
●●

●

●
●

●

● ●●

1e−01 1e+01 1e+03

−
4

−
2

0
2

4

pasilla MvsA

res1$meanBase

re
s1

[,
"lo

g2
fo

ld
(u

nt
re

at
ed

/tr
ea

te
d)

"]

Figure 2: Mean expression vs log2 fold change plot, significant hits are colored in red.

In this section, we show how to take the factor type into account in the analysis. The objective
of this is to avoid detecting the changes being introduced by this additional variable and not
necessarily by the variable of interest, in this case condition. First, we need to provide the
function estimateDispersions with a formula that makes it aware of the additional factor (besides
condition, which it considers by default).

> formuladispersion <- count ~ sample + (condition + type) * exon

> pasillaExons <- estimateDispersions(pasillaExons, formula = formuladispersion)

> pasillaExons <- fitDispersionFunction(pasillaExons)

Second, for the testing, we will also change the two formulas to take into account the library
type.

> formula0 <- count ~ sample + type * exon + condition

> formula1 <- count ~ sample + type * exon + condition * I(exon ==

+ exonID)

> pasillaExons <- testForDEU(pasillaExons, formula0 = formula0,

+ formula1 = formula1)

> res2 <- DEUresultTable(pasillaExons)

> table(res2$padjust < 0.1)

FALSE TRUE

372 8

> table(res1$padjust < 0.1, res2$padjust < 0.1)

7

●●●●●●●

●

●

●

●

●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●
●

●
●

●●●

●

●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●
●
●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●
●
●
●●
●

1e−06 1e−04 1e−02 1e+00

1e
−

06
1e

−
04

1e
−

02
1e

+
00

bottom(res1$padjust)

bo
tto

m
(r

es
2$

pa
dj

us
t)

Figure 3: Comparison of differential exon usage p values from analysis with (y-axis, res2) and
without (x-axis, res1) consideration of batch (library type) effects.

FALSE TRUE

FALSE 372 1

TRUE 0 7

> bottom = function(x) pmax(x, 1e-06)

> plot(bottom(res1$padjust), bottom(res2$padjust), log = "xy")

> abline(a = 0, b = 1, col = "red")

> abline(v = 0.1, col = "blue")

> abline(h = 0.1, col = "green")

See Figure 3.

5 Visualization

DEXSeq has a function to visualize the results of testForDEU.

> plotDEXSeq(pasillaExons, "FBgn0010909", cex.axis = 1.2, cex = 1.3,

+ lwd = 2, legend = TRUE)

The result is shown in Figure 4. This plot shows the fitted expression values of each of the
exons. Optionally, one can also visualize the transcript models (Figure 5), which might be useful
for putting differential exon usage results into the context of isoform regulation.

> plotDEXSeq(pasillaExons, "FBgn0010909", displayTranscripts = TRUE,

+ cex.axis = 1.2, cex = 1.3, lwd = 2, legend = TRUE)

8

10

100

1000

200

300

500

F
itt

ed
 e

xp
re

ss
io

n

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − treated untreated

Figure 4: The plot represents the expression estimates from a call to testForDEU. Shown in red
is the exon that showed significant differential exon usage.

Other useful options are to look at the count values from the individual samples, rather than
at the model effect estimates. For this display, it is useful to normalize the counts by the size
factors (Figure 6).

> plotDEXSeq(pasillaExons, "FBgn0010909", expression = FALSE, norCounts = TRUE,

+ cex.axis = 1.2, cex = 1.3, lwd = 2, legend = TRUE)

Additionally, one can also visualize the fitted splicing, same as in Figure 4, but taking away
the overall expression value of the gene.

> plotDEXSeq(pasillaExons, "FBgn0010909", cex.axis = 1.2, cex = 1.3,

+ lwd = 2, legend = TRUE, expression = FALSE, splicing = TRUE)

To generate an easily browsable, detailed overview over all analysis results, the package
provides an HTML report generator, implemented in the function DEXSeqHTML. This function
uses the package hwriter to create a result table with links to plots for the significant results,
allowing a more detailed exploration of the results. To see an example, visit http://www.embl.
de/~reyes/DEXSeqReport/testForDEU.html. The report shown there was generated using the
code:

> DEXSeqHTML(pasillaExons, FDR = 0.1, color = c("#FF000080", "#0000FF80"))

9

http://www.embl.de/~reyes/DEXSeqReport/testForDEU.html
http://www.embl.de/~reyes/DEXSeqReport/testForDEU.html

10

100

1000

200

300

500

F
itt

ed
 e

xp
re

ss
io

n

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − treated untreated

Figure 5: As in Figure 4, but including the annotated transcript models.

6 Parallelization

DEXSeq analysis can be computationally heavy with large datasets due to the number of it-
erations and glm’s that are fitted, especially with datasets with a big number of samples, or
organisms containing genes with a large number of exons. There are some steps of the anal-
ysis that require the whole dataset, but the two parts that are most time consuming can be
parallelized (functions estimateDispersions and testForDEU) by changing the parameter nCores
in the functions. Internally, this functions will subset the ExonCountSet object into smaller
objects to distribute them to different cores. Please note that only the Cox-Reid calculation of
the dispersion can be parallelized, the mean-variance dependent fit is done with all the dataset.
The nCores parameter depends on the multicore package, but the user can do the subsetting
manually in order to parallelized with other packages, e.g. Rmpi.

> data("pasillaExons", package = "pasilla")

> library(multicore)

> pasillaExons <- estimateSizeFactors(pasillaExons)

> pasillaExons <- estimateDispersions(pasillaExons, nCores = 3,

+ quiet = TRUE)

> pasillaExons <- fitDispersionFunction(pasillaExons)

> pasillaExons <- testForDEU(pasillaExons, nCores = 3)

10

10

100

1000

200

300

500

1500

N
or

m
al

iz
ed

 c
ou

nt
s

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − treated untreated

Figure 6: As in Figure 4, with normalized count values of each exon in each of the samples.

7 Making a routinary differential exon usage analysis

In the previous sections, we passed through each of the steps to make an analysis for differential
exon usage using DEXSeq. However, this is a very fragmented work flow, in case that the user
wants to perform a routinary analysis (e.g. same analysis on different ExonCountSet objects) in
which all the parameters are already known, the function makeCompleteDEUAnalysis can be useful.
All the analysis we did before could be done by a single function call.

> data("pasillaExons", package = "pasilla")

> pasillaExons <- makeCompleteDEUAnalysis(pasillaExons, formulaDispersion = formuladispersion,

+ formula0 = formula0, formula1 = formula1, nCores = 1)

8 Creating ExonCountSet objects

8.1 From files produced by HTSeq

In this section, we describe how to create an ExonCountSet from an alignment of the RNA-seq
reads to the genome, in SAM format, and a file describing gene and transcript models in GTF
format.

The first steps of this workflow involve two scripts for the Python library HTSeq. These scripts
are provided as part of the R package DEXSeq. The first script, dexseq_prepare_annotation.py,
parses an annotation file in GTF format to define non-overlapping exonic parts: for instance,
consider a gene whose transcripts contain either of two exons whose genomic regions overlap. In

11

10

100

1000

200

300

500

F
itt

ed
 s

pl
ic

in
g

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − treated untreated

Figure 7: The plot represents the splicing estimates, as in Figure 4, but taking away the overall
gene expression.

such a case, the script defines three exonic regions: two for the non-overlapping parts of each
of the two exons, and a third one for the overlapping part. The script produces as output a
new file in GTF format. The second script, dexseq_count.py, reads the GTF file produced by
dexseq_prepare_annotation.py and an alignment in SAM format and counts the number of
reads falling in each of the defined exonic parts.

The files that were used in this way to create the pasillaGenes object are provided within
the pasilla package:

> dir(system.file("extdata", package = "pasilla"))

[1] "Dmel.BDGP5.25.62.DEXSeq.chr.gff" "geneIDsinsubset.txt"

[3] "pasilla_gene_counts.tsv" "treated1fb.txt"

[5] "treated2fb.txt" "treated3fb.txt"

[7] "untreated1fb.txt" "untreated2fb.txt"

[9] "untreated3fb.txt" "untreated4fb.txt"

The vignette2 of the package pasilla provides a complete transcript of these steps.
The DEXSeq function read.HTSeqCounts is then able to read the output from these scripts

and returns an ExonCountSet object with the relevant information for differential exon usage
analysis and visualization.

2Data preprocessing and creation of the data objects pasillaGenes and pasillaExons

12

8.2 From elementary R data structures

Users can also provide their own data, contained in elementary R objects, directly to the function
newExonCountSet in order to create an ExonCountSet object. The package GenomicRanges in
junction with the annotation packages available in Bioconductor give alternative options that
allow users to create the objects necessary to make an ExonCountSet object using only R. The
minimum requirements are

1. a per-exon count matrix, with one row for every exon and one column for every sample,

2. a vector, matrix or data frame with information about the samples, and

3. two vectors of gene and exon identifiers that align with the rows of the count matrix.

With such a minimal object, it is possible to perform the analysis for differential exon usage,
but the visualization functions will not be so useful. The necessary information about exons
start and end positions can be given as a data frame to the newExonCountSet function, or can
be added to the ExonCountSet object after its creation via the featureData accessor. For more
information, please see the manual page of newExonCountSet.

> bare <- newExonCountSet(countData = counts(pasillaExons), design = design(pasillaExons),

+ geneIDs = geneIDs(pasillaExons), exonIDs = exonIDs(pasillaExons))

9 Gene count table

The function geneCountTable computes a table of gene counts, which are obtained by summing
the counts from all exons with the same geneID. This might be useful for the detection of
differential expression of genes, where the table can be used as input e. g. for the packages DESeq
or edgeR. This kind of table can also be produced with the package GenomicRanges, e. g. function
summarizeOverlaps.

> head(geneCountTable(pasillaExons))

treated1fb treated2fb treated3fb untreated1fb untreated2fb

FBgn0000256 1482 857 966 1169 2626

FBgn0000578 4386 2301 2827 3541 6381

FBgn0002921 11305 7135 8001 7433 11980

FBgn0003089 8 4 4 6 9

FBgn0010226 129 100 113 106 126

FBgn0010280 2693 1776 2187 2088 3963

untreated3fb untreated4fb

FBgn0000256 1105 1101

FBgn0000578 3139 2725

FBgn0002921 5618 5991

FBgn0003089 4 6

FBgn0010226 60 99

FBgn0010280 2069 1981

References

[1] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11:R106, 2010.

13

[2] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and
B. R. Graveley. Conservation of an RNA regulatory map between Drosophila and mammals.
Genome Research, pages 193–202, 2011.

[3] Mark D. Robinson and Gordon K. Smyth. Moderated statistical tests for assessing differences
in tag abundance. Bioinformatics, 23(21):2881–2887, 2007.

10 Session Information

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] DEXSeq_1.2.1 Biobase_2.16.0 BiocGenerics_0.2.0

loaded via a namespace (and not attached):

[1] RCurl_1.91-1 XML_3.9-4 biomaRt_2.12.0 hwriter_1.3 plyr_1.7.1

[6] statmod_1.4.15 stringr_0.6.1 tools_2.15.1

14

	The Pasilla dataset
	Normalisation and dispersion estimation
	Testing for differential exon usage
	Additional technical or experimental variables
	Visualization
	Parallelization
	Making a routinary differential exon usage analysis
	Creating ExonCountSet objects
	From files produced by HTSeq
	From elementary R data structures

	Gene count table
	Session Information

