easy.glmnet: Functions to Simplify the Use of 'glmnet' for Machine Learning

Provides several functions to simplify using the 'glmnet' package: converting data frames into matrices ready for 'glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) <doi:10.1038/s41537-022-00309-w>, Palau et al. (2023) <doi:10.1016/j.rpsm.2023.01.001>, Salazar de Pablo et al. (2025) <doi:10.1038/s41380-025-03244-1>.

Version: 1.1
Imports: doParallel, foreach, glmnet, parallel, survival
Suggests: pROC
Published: 2026-02-08
DOI: 10.32614/CRAN.package.easy.glmnet
Author: Joaquim Radua ORCID iD [aut, cre]
Maintainer: Joaquim Radua <quimradua at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: NEWS
CRAN checks: easy.glmnet results

Documentation:

Reference manual: easy.glmnet.html , easy.glmnet.pdf

Downloads:

Package source: easy.glmnet_1.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): easy.glmnet_1.1.tgz, r-oldrel (arm64): easy.glmnet_1.1.tgz, r-release (x86_64): easy.glmnet_1.1.tgz, r-oldrel (x86_64): easy.glmnet_1.1.tgz
Old sources: easy.glmnet archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=easy.glmnet to link to this page.