
Package ‘caugi’
January 22, 2026

Title Causal Graph Interface

Version 1.0.0

Description Create, query, and modify causal graphs. 'caugi' (Causal Graph
Interface) is a causality-first, high performance graph package that
provides a simple interface to build, structure, and examine causal
relationships.

License MIT + file LICENSE

Language en-US

URL https://caugi.org/

BugReports https://github.com/frederikfabriciusbjerre/caugi/issues

Depends R (>= 4.2)

Imports data.table, fastmap, grid, S7, stats, methods

Suggests bnlearn, dagitty, devtools, ggm, graph, gRbase, igraph,
jsonlite, knitr, MASS, Matrix, rextendr, rmarkdown, testthat

VignetteBuilder knitr

Config/rextendr/version 0.4.2

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements Cargo (Rust's package manager), rustc >= 1.80.0, xz

Config/Needs/website rmarkdown

NeedsCompilation yes

Author Frederik Fabricius-Bjerre [aut, cre, cph],
Johan Larsson [aut] (ORCID: <https://orcid.org/0000-0002-4029-5945>),
Michael Sachs [aut] (ORCID: <https://orcid.org/0000-0002-1279-8676>)

Maintainer Frederik Fabricius-Bjerre <frederik@fabriciusbjerre.dk>

Repository CRAN

Date/Publication 2026-01-22 11:00:13 UTC

1

https://caugi.org/
https://github.com/frederikfabriciusbjerre/caugi/issues
https://orcid.org/0000-0002-4029-5945
https://orcid.org/0000-0002-1279-8676

2 Contents

Contents
add-caugi_plot-caugi_plot . 4
adjustment_set . 5
aid . 6
all_adjustment_sets_admg . 7
all_backdoor_sets . 8
ancestors . 9
anteriors . 11
as_adjacency . 12
as_bnlearn . 13
as_caugi . 13
as_dagitty . 16
as_igraph . 17
build . 17
caugi . 18
caugi_default_options . 20
caugi_deserialize . 21
caugi_dot . 22
caugi_export . 23
caugi_graphml . 23
caugi_layout . 24
caugi_layout_bipartite . 26
caugi_layout_fruchterman_reingold . 28
caugi_layout_kamada_kawai . 29
caugi_layout_sugiyama . 30
caugi_layout_tiered . 31
caugi_mermaid . 32
caugi_options . 33
caugi_plot . 34
caugi_serialize . 35
caugi_verbs . 36
children . 37
condition_marginalize . 38
descendants . 39
districts . 40
divide-caugi_plot-caugi_plot . 41
d_separated . 42
edges . 43
edge_types . 44
exogenize . 45
exogenous . 45
export-classes . 46
format-caugi . 47
format-dot . 47
format-graphml . 48
format-mermaid . 48
generate_graph . 48

Contents 3

hd . 49
is_acyclic . 50
is_admg . 51
is_ag . 52
is_caugi . 53
is_cpdag . 54
is_dag . 55
is_empty_caugi . 56
is_mag . 57
is_pdag . 58
is_ug . 59
is_valid_adjustment_admg . 60
is_valid_backdoor . 61
knit_print.caugi_export . 62
latent_project . 63
length . 64
markov_blanket . 65
moralize . 66
mutate_caugi . 66
m_separated . 67
neighbors . 68
nodes . 70
parents . 71
plot . 72
print . 75
read_caugi . 76
read_graphml . 77
register_caugi_edge . 78
registry . 79
same_nodes . 80
shd . 81
simulate_data . 82
skeleton . 83
spouses . 84
subgraph . 85
topological_sort . 86
to_dot . 87
to_graphml . 88
to_mermaid . 89
write_caugi . 90
write_dot . 92
write_graphml . 93
write_mermaid . 94

Index 95

4 add-caugi_plot-caugi_plot

add-caugi_plot-caugi_plot

Compose Plots Horizontally

Description

Arrange two plots side-by-side with configurable spacing. The + and | operators are equivalent and
can be used interchangeably. Compositions can be nested to create complex multi-plot layouts.

Arguments

e1 A caugi_plot object (left plot)

e2 A caugi_plot object (right plot)

Details

The spacing between plots is controlled by the global option caugi_options()$plot$spacing,
which defaults to grid::unit(1, "lines"). Compositions can be nested arbitrarily:

• p1 + p2 - two plots side-by-side

• (p1 + p2) + p3 - three plots in a row

• (p1 + p2) / p3 - two plots on top, one below

Value

A caugi_plot object containing the composed layout

See Also

caugi_options() for configuring spacing and default styles

Other plotting: caugi_layout(), caugi_layout_bipartite(), caugi_layout_fruchterman_reingold(),
caugi_layout_kamada_kawai(), caugi_layout_sugiyama(), caugi_layout_tiered(), caugi_plot(),
divide-caugi_plot-caugi_plot, plot()

Examples

cg1 <- caugi(A %-->% B, B %-->% C)
cg2 <- caugi(X %-->% Y, Y %-->% Z)

p1 <- plot(cg1, main = "Graph 1")
p2 <- plot(cg2, main = "Graph 2")

Horizontal composition
p1 + p2
p1 | p2 # equivalent

Adjust spacing
caugi_options(plot = list(spacing = grid::unit(2, "lines")))

adjustment_set 5

p1 + p2

adjustment_set Compute an adjustment set

Description

Computes an adjustment set for X -> Y in a DAG.

Usage

adjustment_set(
cg,
X = NULL,
Y = NULL,
X_index = NULL,
Y_index = NULL,
type = c("optimal", "parents", "backdoor")

)

Arguments

cg A caugi object.

X, Y Node names.
X_index, Y_index

Optional numeric 1-based indices.

type One of "parents", "backdoor", "optimal". The optimal option computes
the O-set.

Details

Types supported:

• "parents":
⋃
Pa(X) minus X ∪ Y

• "backdoor": Pearl backdoor formula

• "optimal": O-set (only for single x and single y)

Value

A character vector of node names representing the adjustment set.

See Also

Other adjustment: all_adjustment_sets_admg(), all_backdoor_sets(), d_separated(), is_valid_adjustment_admg(),
is_valid_backdoor()

6 aid

Examples

cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"

)

adjustment_set(cg, "X", "Y", type = "parents") # C, A
adjustment_set(cg, "X", "Y", type = "backdoor") # C, A
adjustment_set(cg, "X", "Y", type = "optimal") # K

aid Adjustment Identification Distance

Description

Compute the Adjustment Identification Distance (AID) between two graphs using the gadjid Rust
package.

Usage

aid(truth, guess, type = c("oset", "ancestor", "parent"), normalized = TRUE)

Arguments

truth A caugi object.

guess A caugi object.

type A character string specifying the type of AID to compute. Options are "oset"
(default), "ancestor", and "parent".

normalized Logical; if TRUE, returns the normalized AID. If FALSE, returns the count.

Value

A numeric representing the AID between the two graphs, if normalized = TRUE, or an integer count
if normalized = FALSE.

See Also

Other metrics: hd(), shd()

all_adjustment_sets_admg 7

Examples

set.seed(1)
truth <- generate_graph(n = 100, m = 200, class = "DAG")
guess <- generate_graph(n = 100, m = 200, class = "DAG")
aid(truth, guess) # 0.0187

all_adjustment_sets_admg

Get all valid adjustment sets in an ADMG

Description

Enumerates all valid adjustment sets for estimating the causal effect of X on Y in an ADMG, up to a
specified maximum size.

Usage

all_adjustment_sets_admg(
cg,
X = NULL,
Y = NULL,
X_index = NULL,
Y_index = NULL,
minimal = TRUE,
max_size = 3L

)

Arguments

cg A caugi object of class ADMG.

X, Y Node names (can be vectors for multiple treatments/outcomes).
X_index, Y_index

Optional 1-based indices.

minimal Logical; if TRUE (default), only minimal sets are returned.

max_size Integer; maximum size of sets to consider (default 3).

Value

A list of character vectors, each a valid adjustment set (possibly empty list if none exist).

See Also

Other adjustment: adjustment_set(), all_backdoor_sets(), d_separated(), is_valid_adjustment_admg(),
is_valid_backdoor()

8 all_backdoor_sets

Examples

cg <- caugi(
L %-->% X,
X %-->% Y,
L %-->% Y,
M %-->% Y,
class = "ADMG"

)

all_adjustment_sets_admg(cg, X = "X", Y = "Y", minimal = TRUE)
Returns {L} as minimal adjustment set

all_backdoor_sets Get all backdoor sets up to a certain size.

Description

This function returns the backdoor sets up to size max_size, which per default is set to 10.

Usage

all_backdoor_sets(
cg,
X = NULL,
Y = NULL,
X_index = NULL,
Y_index = NULL,
minimal = TRUE,
max_size = 3L

)

Arguments

cg A caugi.

X, Y Single node name.
X_index, Y_index

Optional 1-based indices (exclusive with name args).

minimal Logical; if TRUE (default), only minimal sets are returned.

max_size Integer; maximum size of sets to consider (default 3).

Value

A list of character vectors, each an adjustment set (possibly empty).

ancestors 9

See Also

Other adjustment: adjustment_set(), all_adjustment_sets_admg(), d_separated(), is_valid_adjustment_admg(),
is_valid_backdoor()

Examples

cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"

)

all_backdoor_sets(cg, X = "X", Y = "Y", max_size = 3L, minimal = FALSE)
#> [[1]]
#> [1] "A"
#>
#> [[2]]
#> [1] "K"
#>
#> [[3]]
#> [1] "C" "A"
#>
#> [[4]]
#> [1] "C" "K"
#>
#> [[5]]
#> [1] "A" "K"
#>
#> [[6]]
#> [1] "C" "A" "K"

all_backdoor_sets(cg, X = "X", Y = "Y", max_size = 3L, minimal = TRUE)
#> [[1]]
#> [1] "A"
#>
#> [[2]]
#> [1] "K"

ancestors Get ancestors of nodes in a caugi

10 ancestors

Description

Get ancestors of nodes in a caugi

Usage

ancestors(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: anteriors(), children(), descendants(), districts(), edge_types(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
ancestors(cg, "A") # NULL
ancestors(cg, index = 2) # "A"
ancestors(cg, "B") # "A"
ancestors(cg, c("B", "C"))
#> $B
#> [1] "A"
#>
#> $C
#> [1] "A" "B"

anteriors 11

anteriors Get anteriors of nodes in a caugi

Description

Get the anterior set of nodes in a graph. The anterior set (Richardson and Spirtes, 2002) includes
all nodes reachable by following paths where every edge is either undirected or directed toward the
target node.

For DAGs, the anterior set equals the ancestor set (since there are no undirected edges). For PDAGs,
it includes both ancestors and nodes reachable via undirected edges.

Usage

anteriors(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object of class DAG or PDAG.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

References

Richardson, T. and Spirtes, P. (2002). Ancestral graph Markov models. The Annals of Statistics,
30(4):962-1030.

See Also

Other queries: ancestors(), children(), descendants(), districts(), edge_types(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

PDAG example with directed and undirected edges
cg <- caugi(

A %-->% B %---% C,
B %-->% D,
class = "PDAG"

)

12 as_adjacency

anteriors(cg, "A") # NULL (no anteriors)
anteriors(cg, "C") # A, B
anteriors(cg, "D") # A, B, C

For DAGs, anteriors equals ancestors
cg_dag <- caugi(

A %-->% B %-->% C,
class = "DAG"

)
anteriors(cg_dag, "C") # A, B

as_adjacency Convert a caugi to an adjacency matrix

Description

Does not take other edge types than the one found in a PDAG.

Usage

as_adjacency(x)

Arguments

x A caugi object.

Value

An integer 0/1 adjacency matrix with row/col names.

See Also

Other conversions: as_bnlearn(), as_caugi(), as_dagitty(), as_igraph()

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)
adj <- as_adjacency(cg)

as_bnlearn 13

as_bnlearn Convert a caugi to a bnlearn network

Description

Convert a caugi to a bnlearn network

Usage

as_bnlearn(x)

Arguments

x A caugi object.

Value

A bnlearn DAG.

See Also

Other conversions: as_adjacency(), as_caugi(), as_dagitty(), as_igraph()

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)
g_bn <- as_bnlearn(cg)

as_caugi Convert to a caugi

Description

Convert an object to a caugi. The object can be a graphNEL, matrix, tidygraph, daggity, bn, or
igraph.

14 as_caugi

Usage

as_caugi(
x,
class = c("DAG", "PDAG", "ADMG", "PAG", "UNKNOWN"),
simple = TRUE,
build = TRUE,
collapse = FALSE,
collapse_to = "---",
...

)

Arguments

x An object to convert to a caugi.

class "DAG", "PDAG", "ADMG", "PAG", or "UNKNOWN". "PAG" is only sup-
ported for integer coded matrices. "ADMG" is for Acyclic Directed Mixed
Graphs (with --> and <-> edges).

simple logical. If TRUE (default) the graph will be simple (no multiple edges or self-
loops).

build logical. If TRUE (default) build the graph now, otherwise build lazily on first
query or when using build().

collapse logical. If TRUE collapse mutual directed edges to undirected edges. Default is
FALSE.

collapse_to Character string to use as the edge glyph when collapsing. Should be a registered
symmetrical edge glyph. Default is "---".

... Additional arguments passed to specific methods.

Details

For matrices, as_caugi assumes that the rows are the from nodes and the columns are the to nodes.
Thus, for a graph, G: A –> B, we would have that G["A", "B"] == 1 and G["B", "A"] == 0. For
PAGs, the integer codes are as follows (as used in pcalg):

• 0: no edge

• 1: circle (e.g., A o-o B or A o-- B)

• 2: arrowhead (e.g., A --> B or A o-> B)

• 3: tail (e.g., A o-- B or A --- B)

Value

A caugi object.

See Also

Other conversions: as_adjacency(), as_bnlearn(), as_dagitty(), as_igraph()

as_caugi 15

Examples

igraph
ig <- igraph::graph_from_literal(A - +B, B - +C)
cg_ig <- as_caugi(ig, class = "DAG")

graphNEL
gn <- graph::graphNEL(nodes = c("A", "B", "C"), edgemode = "directed")
gn <- graph::addEdge("A", "B", gn)
gn <- graph::addEdge("B", "C", gn)
cg_gn <- as_caugi(gn, class = "DAG")

adjacency matrix
m <- matrix(0L, 3, 3, dimnames = list(LETTERS[1:3], LETTERS[1:3]))
m["A", "B"] <- 1L
m["B", "C"] <- 1L
cg_adj <- as_caugi(m, class = "DAG")

bnlearn
bn <- bnlearn::model2network("[A][B|A][C|B]")
cg_bn <- as_caugi(bn, class = "DAG")

dagitty
dg <- dagitty::dagitty("dag {
A -> B
B -> C
}")

cg_dg <- as_caugi(dg, class = "DAG")

cg <- caugi(A %-->% B %-->% C, class = "DAG")

check that all nodes are equal in all graph objects
for (cg_converted in list(cg_ig, cg_gn, cg_adj, cg_bn, cg_dg)) {

stopifnot(identical(nodes(cg), nodes(cg_converted)))
stopifnot(identical(edges(cg), edges(cg_converted)))

}

collapse mutual edges
ig2 <- igraph::graph_from_literal(A - +B, B - +A, C - +D)
cg2 <- as_caugi(ig2, class = "PDAG", collapse = TRUE, collapse_to = "---")

coded integer matrix for PAGs (pcalg style)
nm <- c("A", "B", "C", "D")
M <- matrix(0L, 4, 4, dimnames = list(nm, nm))

A --> B
M["A", "B"] <- 2L # mark at B end
M["B", "A"] <- 3L # mark at A end

A --- C
M["A", "C"] <- 3L
M["C", "A"] <- 3L

16 as_dagitty

B o-> C
M["B", "C"] <- 2L
M["C", "B"] <- 1L

C o-o D
M["C", "D"] <- 1L
M["D", "C"] <- 1L

cg <- as_caugi(M, class = "PAG")

as_dagitty Convert a caugi to a dagitty graph

Description

Convert a caugi to a dagitty graph

Usage

as_dagitty(x)

Arguments

x A caugi object.

Value

A dagitty object.

See Also

Other conversions: as_adjacency(), as_bnlearn(), as_caugi(), as_igraph()

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)
g_dg <- as_dagitty(cg)

as_igraph 17

as_igraph Convert a caugi to an igraph object

Description

Convert a caugi to an igraph object

Usage

as_igraph(x, ...)

Arguments

x A caugi object.

... Additional arguments passed to igraph::graph_from_data_frame().

Value

An igraph object representing the same graph structure.

See Also

Other conversions: as_adjacency(), as_bnlearn(), as_caugi(), as_dagitty()

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)
ig <- as_igraph(cg)

build Build the graph now

Description

If a caugi has been modified (nodes or edges added or removed), it is marked as not built, i.e
cg@built = FALSE. This function builds the graph using the Rust backend and updates the internal
pointer to the graph. If the graph is already built, it is returned.

Usage

build(cg, ...)

18 caugi

Arguments

cg A caugi object.

... Not used.

Value

The built caugi object.

See Also

Other verbs: caugi_verbs

Examples

initialize empty graph and build slowly
cg <- caugi(class = "PDAG")

cg <- cg |>
add_nodes(c("A", "B", "C", "D", "E")) |> # A, B, C, D, E
add_edges(A %-->% B %-->% C) |> # A --> B --> C, D, E
set_edges(B %---% C) # A --> B --- C, D, E

cg <- remove_edges(cg, B %---% C) |> # A --> B, C, D, E
remove_nodes(c("C", "D", "E")) # A --> B

verbs do not build the Rust backend
cg@built # FALSE
build(cg)
cg@built # TRUE

caugi Create a caugi from edge expressions.

Description

Create a caugi from a series of edge expressions using infix operators. Nodes can be specified as
symbols, strings, or numbers.

The following edge operators are supported by default:

• %-->% for directed edges (A –> B)
• %---% for undirected edges (A — B)
• %<->% for bidirected edges (A <-> B)
• %o->% for partially directed edges (A o-> B)
• %--o% for partially undirected edges (A –o B)
• %o-o% for partial edges (A o-o B)

You can register additional edge types using register_caugi_edge().

caugi 19

Usage

caugi(
...,
from = NULL,
edge = NULL,
to = NULL,
nodes = NULL,
edges_df = NULL,
simple = TRUE,
build = TRUE,
class = c("AUTO", "DAG", "UG", "PDAG", "ADMG", "AG", "UNKNOWN"),
state = NULL

)

Arguments

... Edge expressions using the supported infix operators, or nodes given by symbols
or strings. Multiple edges can be combined using +: A --> B + C, indicating
an edge from A to both B and C. Nodes can also be grouped using c(...) or
parentheses.

from Character vector of source node names. Optional; mutually exclusive with
edge Character vector of edge types. Optional; mutually exclusive with
to Character vector of target node names. Optional; mutually exclusive with
nodes Character vector of node names to declare as isolated nodes. An optional, but

recommended, option is to provide all node names in the graph, including those
that appear in edges. If nodes is provided, the order of nodes in the graph will
follow the order in nodes.

edges_df Optional data.frame or data.table with columns from, edge, and to to specify
edges. Mutually exclusive with ... and from, edge, to. Can be used to create
graphs using edges(cg) from another caugi object, cg.

simple Logical; if TRUE (default), the graph is a simple graph, and the function will
throw an error if the input contains parallel edges or self-loops.

build Logical; if TRUE (default), the graph will be built using the Rust backend. If
FALSE, the graph will not be built, and the Rust backend cannot be used. The
graph will build, when queries are made to the graph or if calling build().
Note: Even if build = TRUE, if no edges or nodes are provided, the graph will
not be built and the pointer will be NULL.

class Character; one of "AUTO", "DAG", "UG", "PDAG", "ADMG", "AG", or "UNKNOWN".
"AUTO" will automatically pick the appropriate class based on the first match
in the order of "DAG", "UG", "PDAG", "ADMG", and "AG". It will default to
"UNKNOWN" if no match is found.

state For internal use. Build a graph by supplying a pre-constructed state environ-
ment.

Value

A caugi S7 object containing the nodes, edges, and a pointer to the underlying Rust graph structure.

20 caugi_default_options

Examples

create a simple DAG (using NSE)
cg <- caugi(

A %-->% B + C,
B %-->% D,
class = "DAG"

)

create a PDAG with undirected edges (using NSE)
cg2 <- caugi(

A %-->% B + C,
B %---% D,
E, # no neighbors for this node
class = "PDAG"

)

create a DAG (using SE)
cg3 <- caugi(

from = c("A", "A", "B"),
edge = c("-->", "-->", "-->"),
to = c("B", "C", "D"),
nodes = c("A", "B", "C", "D", "E"),
class = "DAG"

)

create a non-simple graph
cg4 <- caugi(

A %-->% B,
B %-->% A,
class = "UNKNOWN",
simple = FALSE

)

cg4@simple # FALSE
cg4@built # TRUE
cg4@graph_class # "UNKNOWN"

create graph, but don't built Rust object yet, which is needed for queries
cg5 <- caugi(

A %-->% B + C,
B %-->% D,
class = "DAG",
build = FALSE

)

cg5@built # FALSE

caugi_default_options Default options for caugi

caugi_deserialize 21

Description

Returns the default options for the caugi package. Useful for resetting options to their original state.

Usage

caugi_default_options()

Value

A list of default options for caugi.

See Also

caugi_options() for setting and getting options

Examples

Get defaults
caugi_default_options()

Reset to defaults
caugi_options(caugi_default_options())

caugi_deserialize Deserialize caugi Graph from JSON String

Description

Converts a JSON string in the native caugi format back to a caugi graph. This is a lower-level
function; consider using read_caugi() for reading from files.

Usage

caugi_deserialize(json, lazy = FALSE)

Arguments

json Character string containing the JSON representation.

lazy Logical; if FALSE (default), the graph is built immediately. If TRUE, graph build-
ing is deferred until needed.

Value

A caugi object.

22 caugi_dot

See Also

Other export: caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(), caugi_serialize(),
export-classes, format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

Examples

cg <- caugi(A %-->% B, class = "DAG")
json <- caugi_serialize(cg)
cg2 <- caugi_deserialize(json)

caugi_dot S7 Class for DOT Export

Description

An S7 object that wraps a DOT format string for displaying caugi graphs. When printed interac-
tively, displays the DOT string cleanly.

Usage

caugi_dot(content)

Arguments

content A character string containing the DOT format graph.

See Also

Other export: caugi_deserialize(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(),
write_caugi(), write_dot(), write_graphml(), write_mermaid()

caugi_export 23

caugi_export S7 Base Class for Caugi Exports

Description

A base class for all caugi export formats. Provides common structure and behavior for different
export formats (DOT, GraphML, etc.).

Usage

caugi_export(content = character(0), format = character(0))

Arguments

content A character string containing the exported graph.

format A character string indicating the export format.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_graphml(), caugi_mermaid(), caugi_serialize(),
export-classes, format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

caugi_graphml S7 Class for GraphML Export

Description

An S7 object that wraps a GraphML format string for caugi graphs.

Usage

caugi_graphml(content)

Arguments

content A character string containing the GraphML format graph.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_mermaid(), caugi_serialize(),
export-classes, format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

24 caugi_layout

caugi_layout Compute Graph Layout

Description

Computes node coordinates for graph visualization using specified layout algorithm. If the graph
has not been built yet, it will be built automatically before computing the layout.

Usage

caugi_layout(
x,
method = c("auto", "sugiyama", "fruchterman-reingold", "kamada-kawai", "bipartite",

"tiered"),
packing_ratio = 1.618034,
...

)

Arguments

x A caugi object. Must contain only directed edges for Sugiyama layout.

method Character string specifying the layout method. Options:

• "auto": Automatically choose the best layout (default). Selection order:
1. If tiers is provided, uses "tiered"
2. If partition is provided, uses "bipartite"
3. If graph has only directed edges, uses "sugiyama"
4. Otherwise, uses "fruchterman-reingold"

• "sugiyama": Hierarchical layout for DAGs (requires only directed edges)
• "fruchterman-reingold": Fast spring-electrical layout (works with all

edge types)
• "kamada-kawai": High-quality stress minimization (works with all edge

types)
• "bipartite": Bipartite layout (requires partition parameter)
• "tiered": Multi-tier layout (requires tiers parameter)

packing_ratio Aspect ratio for packing disconnected components (width/height). Default is the
golden ratio (1.618) which works well with widescreen displays. Use 1.0 for
square grid, 2.0 for wider layouts, 0.5 for taller layouts, Inf for single row, or
0.0 for single column.

... Additional arguments passed to the specific layout function. For bipartite lay-
outs, use partition (logical vector) and orientation ("columns" or "rows").
For tiered layouts, use tiers (list, named vector, or data.frame) and orientation
("rows" or "columns").

caugi_layout 25

Value

A data.frame with columns name, x, and y containing node names and their coordinates.

Layout Algorithms

Sugiyama (Hierarchical Layout)

Optimized for directed acyclic graphs (DAGs). Places nodes in layers to emphasize hierarchical
structure and causal flow from top to bottom. Edges are routed to minimize crossings. Best for
visualizing clear cause-effect relationships. Only works with directed edges.

Fruchterman-Reingold (Spring-Electrical)

Fast force-directed layout using a spring-electrical model. Treats edges as springs and nodes as
electrically charged particles. Produces organic, symmetric layouts with uniform edge lengths.
Good for general-purpose visualization and works with all edge types. Results are deterministic.

Kamada-Kawai (Stress Minimization)

High-quality force-directed layout that minimizes "stress" by making Euclidean distances propor-
tional to graph-theoretic distances. Better preserves the global structure and path lengths compared
to Fruchterman-Reingold. Ideal for publication-quality visualizations where accurate distance rep-
resentation matters. Works with all edge types and produces deterministic results.

Source

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement.
Software: Practice and Experience, 21(11), 1129-1164. doi:10.1002/spe.4380211102

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1), 7-15. doi:10.1016/00200190(89)901026

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2), 109-125.
doi:10.1109/TSMC.1981.4308636

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout_bipartite(), caugi_layout_fruchterman_reingold(),
caugi_layout_kamada_kawai(), caugi_layout_sugiyama(), caugi_layout_tiered(), caugi_plot(),
divide-caugi_plot-caugi_plot, plot()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Default: auto-selects best layout
layout <- caugi_layout(cg)

https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1016/0020-0190%2889%2990102-6
https://doi.org/10.1109/TSMC.1981.4308636

26 caugi_layout_bipartite

Auto-selects tiered when tiers provided
cg_tiered <- caugi(X1 %-->% M1, X2 %-->% M2, M1 %-->% Y, M2 %-->% Y)
tiers <- list(c("X1", "X2"), c("M1", "M2"), "Y")
layout_auto <- caugi_layout(cg_tiered, tiers = tiers) # Uses "tiered"

Explicitly use hierarchical layout
layout_sug <- caugi_layout(cg, method = "sugiyama")

Use force-directed for organic appearance
layout_fr <- caugi_layout(cg, method = "fruchterman-reingold")

Use stress minimization for publication quality
layout_kk <- caugi_layout(cg, method = "kamada-kawai")

Bipartite layout with auto-detected partition
cg_bp <- caugi(A %-->% X, A %-->% Y, B %-->% X, B %-->% Y)
layout_bp_rows <- caugi_layout(

cg_bp,
method = "bipartite",
orientation = "rows"

)

Explicit partition
partition <- c(TRUE, TRUE, FALSE, FALSE)
layout_bp_cols <- caugi_layout(

cg_bp,
method = "bipartite",
partition = partition,
orientation = "columns"

)

Tiered layout with three tiers
cg_tiered <- caugi(

X1 %-->% M1 + M2,
X2 %-->% M1 + M2,
M1 %-->% Y,
M2 %-->% Y

)
tiers <- list(c("X1", "X2"), c("M1", "M2"), "Y")
layout_tiered <- caugi_layout(

cg_tiered,
method = "tiered",
tiers = tiers,
orientation = "rows"

)

caugi_layout_bipartite

Bipartite Graph Layout

caugi_layout_bipartite 27

Description

Computes node coordinates for bipartite graphs, placing nodes in two parallel lines (rows or columns)
based on a partition. If the graph has not been built yet, it will be built automatically before com-
puting the layout.

Usage

caugi_layout_bipartite(x, partition = NULL, orientation = c("columns", "rows"))

Arguments

x A caugi object.

partition Optional logical vector indicating node partitions. Nodes with TRUE are placed
in one partition and nodes with FALSE in the other. Length must equal the num-
ber of nodes. Both partitions must be non-empty. If NULL (default), attempts
to detect bipartite structure automatically by assigning nodes without incoming
edges to one partition and others to the second partition.

orientation Character string specifying the layout orientation:

• "columns": Two vertical columns. First partition on right (x=1), second
partition on left (x=0).

• "rows": Two horizontal rows. First partition on top (y=1), second partition
on bottom (y=0).

Value

A data.frame with columns name, x, and y containing node names and their coordinates.

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_fruchterman_reingold(),
caugi_layout_kamada_kawai(), caugi_layout_sugiyama(), caugi_layout_tiered(), caugi_plot(),
divide-caugi_plot-caugi_plot, plot()

Examples

Create a bipartite graph (causes -> effects)
cg <- caugi(A %-->% X, A %-->% Y, B %-->% X, B %-->% Y)
partition <- c(TRUE, TRUE, FALSE, FALSE) # A, B = causes, X, Y = effects

Two horizontal rows (causes on top)
layout_rows <- caugi_layout_bipartite(cg, partition, orientation = "rows")

Two vertical columns (causes on right)
layout_cols <- caugi_layout_bipartite(cg, partition, orientation = "columns")

28 caugi_layout_fruchterman_reingold

caugi_layout_fruchterman_reingold

Fruchterman-Reingold Force-Directed Layout

Description

Computes node coordinates using the Fruchterman-Reingold force-directed layout algorithm. Fast
spring-electrical model that treats edges as springs and nodes as electrically charged particles. Pro-
duces organic, symmetric layouts with uniform edge lengths. Works with all edge types and pro-
duces deterministic results.

Usage

caugi_layout_fruchterman_reingold(x, packing_ratio = 1.618034, ...)

Arguments

x A caugi object.
packing_ratio Aspect ratio for packing disconnected components (width/height). Default is the

golden ratio (1.618) which works well with widescreen displays. Use 1.0 for
square grid, 2.0 for wider layouts, 0.5 for taller layouts, Inf for single row, or
0.0 for single column.

... Ignored. For future extensibility.

Value

A data.frame with columns name, x, and y containing node names and their coordinates.

Source

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement.
Software: Practice and Experience, 21(11), 1129-1164. doi:10.1002/spe.4380211102

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_kamada_kawai(), caugi_layout_sugiyama(), caugi_layout_tiered(), caugi_plot(),
divide-caugi_plot-caugi_plot, plot()

Examples

cg <- caugi(
A %-->% B,
B %<->% C,
C %-->% D

)
layout <- caugi_layout_fruchterman_reingold(cg)

https://doi.org/10.1002/spe.4380211102

caugi_layout_kamada_kawai 29

caugi_layout_kamada_kawai

Kamada-Kawai Stress Minimization Layout

Description

Computes node coordinates using the Kamada-Kawai stress minimization algorithm. High-quality
force-directed layout that minimizes "stress" by making Euclidean distances proportional to graph-
theoretic distances. Better preserves global structure and path lengths compared to Fruchterman-
Reingold. Ideal for publication-quality visualizations. Works with all edge types and produces
deterministic results.

Usage

caugi_layout_kamada_kawai(x, packing_ratio = 1.618034, ...)

Arguments

x A caugi object.
packing_ratio Aspect ratio for packing disconnected components (width/height). Default is the

golden ratio (1.618) which works well with widescreen displays. Use 1.0 for
square grid, 2.0 for wider layouts, 0.5 for taller layouts, Inf for single row, or
0.0 for single column.

... Ignored. For future extensibility.

Value

A data.frame with columns name, x, and y containing node names and their coordinates.

Source

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1), 7-15. doi:10.1016/00200190(89)901026

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_sugiyama(), caugi_layout_tiered(),
caugi_plot(), divide-caugi_plot-caugi_plot, plot()

Examples

cg <- caugi(
A %-->% B,
B %<->% C,
C %-->% D

)
layout <- caugi_layout_kamada_kawai(cg)

https://doi.org/10.1016/0020-0190%2889%2990102-6

30 caugi_layout_sugiyama

caugi_layout_sugiyama Sugiyama Hierarchical Layout

Description

Computes node coordinates using the Sugiyama hierarchical layout algorithm. Optimized for di-
rected acyclic graphs (DAGs), placing nodes in layers to emphasize hierarchical structure and causal
flow from top to bottom.

Usage

caugi_layout_sugiyama(x, packing_ratio = 1.618034, ...)

Arguments

x A caugi object. Must contain only directed edges.

packing_ratio Aspect ratio for packing disconnected components (width/height). Default is the
golden ratio (1.618) which works well with widescreen displays. Use 1.0 for
square grid, 2.0 for wider layouts, 0.5 for taller layouts, Inf for single row, or
0.0 for single column.

... Ignored. For future extensibility.

Value

A data.frame with columns name, x, and y containing node names and their coordinates.

Source

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2), 109-125.
doi:10.1109/TSMC.1981.4308636

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_kamada_kawai(), caugi_layout_tiered(),
caugi_plot(), divide-caugi_plot-caugi_plot, plot()

Examples

cg <- caugi(A %-->% B + C, B %-->% D, C %-->% D, class = "DAG")
layout <- caugi_layout_sugiyama(cg)

https://doi.org/10.1109/TSMC.1981.4308636

caugi_layout_tiered 31

caugi_layout_tiered Tiered Graph Layout

Description

Computes node coordinates for graphs with multiple tiers (layers), placing nodes in parallel rows or
columns based on tier assignments. If the graph has not been built yet, it will be built automatically
before computing the layout.

Usage

caugi_layout_tiered(x, tiers, orientation = c("columns", "rows"))

Arguments

x A caugi object.

tiers Tier assignments specifying which tier each node belongs to. Can be provided
in multiple formats:

• Named list: List where each element is a character vector of node names
belonging to that tier. Element names are ignored; tier order is determined
by list order (first element = tier 0, etc.).

• Named numeric vector: Vector where names are node names and values
are tier indices (starting from 0 or 1).

• Data.frame: Must contain columns name (node names) and tier (tier in-
dices).

All nodes must be assigned to a tier, all tiers must be non-empty, and tier indices
must be consecutive starting from 0 or 1.

orientation Character string specifying the layout orientation:

• "columns": Vertical tiers. First tier at left (x=0), subsequent tiers to the
right, last tier at right (x=1).

• "rows": Horizontal tiers. First tier at top (y=1), subsequent tiers below, last
tier at bottom (y=0).

Value

A data.frame with columns name, x, y, and tier containing node names, their coordinates, and
tier assignments (0-indexed). The returned data.frame also has an orientation attribute storing
the orientation used. When passed to plot(), tier information is automatically extracted, so you
don’t need to specify tiers again.

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_kamada_kawai(), caugi_layout_sugiyama(),
caugi_plot(), divide-caugi_plot-caugi_plot, plot()

32 caugi_mermaid

Examples

Create a three-tier causal graph (exposures -> mediators -> outcome)
cg <- caugi(

X1 %-->% M1 + M2,
X2 %-->% M1 + M2,
M1 %-->% Y,
M2 %-->% Y

)

Option 1: Named list (tier names are just labels)
tiers <- list(

exposures = c("X1", "X2"),
mediators = c("M1", "M2"),
outcome = "Y"

)
layout_rows <- caugi_layout_tiered(cg, tiers, orientation = "rows")

Option 2: Named numeric vector (0-indexed or 1-indexed both work)
tiers <- c(X1 = 1, X2 = 1, M1 = 2, M2 = 2, Y = 3)
layout_cols <- caugi_layout_tiered(cg, tiers, orientation = "columns")

Option 3: Data.frame
tiers <- data.frame(

name = c("X1", "X2", "M1", "M2", "Y"),
tier = c(1, 1, 2, 2, 3)

)
layout <- caugi_layout_tiered(cg, tiers, orientation = "rows")

The layout includes tier information, so plot() works without passing tiers
plot(cg, layout = layout)

caugi_mermaid S7 Class for Mermaid Export

Description

An S7 object that wraps a Mermaid format string for displaying caugi graphs. When printed inter-
actively, displays the Mermaid string cleanly.

Usage

caugi_mermaid(content)

Arguments

content A character string containing the Mermaid format graph.

caugi_options 33

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_serialize(),
export-classes, format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

caugi_options Get or set global options for caugi

Description

Configure global defaults for caugi, including plot composition spacing and default visual styles for
nodes, edges, labels, and titles.

Usage

caugi_options(...)

Arguments

... Named values to update options with, or unnamed option names to retrieve. To
query all options, call without arguments.

Details

Currently supported options are nested under the plot key:

• spacing: A grid::unit() controlling space between composed plots (default: grid::unit(1,
"lines"))

• node_style: List of default node appearance parameters:

– fill: Fill color (default: "lightgrey")
– padding: Padding around labels in mm (default: 2)
– size: Size multiplier (default: 1)

• edge_style: List of default edge appearance parameters:

– arrow_size: Arrow size in mm (default: 3)
– circle_size: Radius of endpoint circles for partial edges in mm (default: 1.5)
– fill: Arrow/line color (default: "black")

• label_style: List of label text parameters (see grid::gpar())

• title_style: List of title text parameters:

– col: Text color (default: "black")
– fontface: Font face (default: "bold")
– fontsize: Font size in pts (default: 14.4)

Options set via caugi_options() serve as global defaults that can be overridden by arguments to
plot().

34 caugi_plot

Value

When setting, returns (invisibly) the previous values for the updated options. When getting (no
arguments or unnamed character vector), returns the requested options.

See Also

plot() for per-plot style arguments, grid::gpar() for available graphical parameters

Examples

Query all options
caugi_options()

Query specific option
caugi_options("plot")

Set plot spacing
caugi_options(plot = list(spacing = grid::unit(2, "lines")))

Set default node style
caugi_options(plot = list(

node_style = list(fill = "lightblue", padding = 3)
))

Set multiple options at once
caugi_options(plot = list(

spacing = grid::unit(1.5, "lines"),
node_style = list(fill = "lightblue", padding = 3),
edge_style = list(arrow_size = 4, fill = "darkgray"),
title_style = list(col = "blue", fontsize = 16)

))

Reset to defaults
caugi_options(caugi_default_options())

caugi_plot S7 Class for caugi Plot

Description

An S7 object that wraps a grid gTree for displaying caugi graphs. Similar to ggplot objects, these
are created by the plot method but not drawn until explicitly printed or plotted. This allows for
returning plot objects from functions and controlling when/where they are displayed.

Usage

caugi_plot(grob = NULL)

caugi_serialize 35

Arguments

grob A grid gTree representing the graph plot.

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_kamada_kawai(), caugi_layout_sugiyama(),
caugi_layout_tiered(), divide-caugi_plot-caugi_plot, plot()

caugi_serialize Serialize caugi Graph to JSON String

Description

Converts a caugi graph to a JSON string in the native caugi format. This is a lower-level function;
consider using write_caugi() for writing to files.

Usage

caugi_serialize(x, comment = NULL, tags = NULL)

Arguments

x A caugi object or an object coercible to caugi.

comment Optional character string with a comment about the graph.

tags Optional character vector of tags for categorizing the graph.

Value

A character string containing the JSON representation.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
export-classes, format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

Examples

cg <- caugi(A %-->% B, class = "DAG")
json <- caugi_serialize(cg)
cat(json)

36 caugi_verbs

caugi_verbs Manipulate nodes and edges of a caugi

Description

Add, remove, or and set nodes or edges to / from a caugi object. Edges can be specified using
expressions with the infix operators. Alternatively, the edges to be added are specified using the
from, edge, and to arguments.

Usage

add_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)

remove_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)

set_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)

add_nodes(cg, ..., name = NULL, inplace = FALSE)

remove_nodes(cg, ..., name = NULL, inplace = FALSE)

Arguments

cg A caugi object.

... Expressions specifying edges to add using the infix operators, or nodes to add
using unquoted names, vectors via c(), or + composition.

from Character vector of source node names. Default is NULL.

edge Character vector of edge types. Default is NULL.

to Character vector of target node names. Default is NULL.

inplace Logical, whether to modify the graph inplace or not. If FALSE (default), a copy
of the caugi is made and modified.

name Character vector of node names. Default is NULL.

Details

Caugi graph verbs

Value

The updated caugi.

children 37

Functions

• add_edges(): Add edges.
• remove_edges(): Remove edges.
• set_edges(): Set edge type for given pair(s).
• add_nodes(): Add nodes.
• remove_nodes(): Remove nodes.

See Also

Other verbs: build()

Examples

initialize empty graph and build slowly
cg <- caugi(class = "PDAG")

cg <- cg |>
add_nodes(c("A", "B", "C", "D", "E")) |> # A, B, C, D, E
add_edges(A %-->% B %-->% C) |> # A --> B --> C, D, E
set_edges(B %---% C) # A --> B --- C, D, E

cg <- remove_edges(cg, B %---% C) |> # A --> B, C, D, E
remove_nodes(c("C", "D", "E")) # A --> B

verbs do not build the Rust backend
cg@built # FALSE
build(cg)
cg@built # TRUE

children Get children of nodes in a caugi

Description

Get children of nodes in a graph (nodes with directed edges pointing OUT from the target nodes).
This is equivalent to neighbors(cg, nodes, mode = "out").

Usage

children(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.
nodes A vector of node names, a vector of unquoted node names, or an expression

combining these with + and c().
index A vector of node indexes.

38 condition_marginalize

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: ancestors(), anteriors(), descendants(), districts(), edge_types(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
children(cg, "A") # "B"
children(cg, index = 2) # "C"
children(cg, "B") # "C"
children(cg, c("B", "C"))
#> $B
#> [1] "C"
#>
#> $C
#> NULL

condition_marginalize Marginalize and/or condition on variables in an ancestral graph (AG)

Description

Marginalize variables out of an AG, and/or condition on variables. Depending on the structure, it
could produce a graph with directed, bidirected, and undirected edges.

Usage

condition_marginalize(cg, cond_vars = NULL, marg_vars = NULL)

Arguments

cg A caugi ancestral graph of class "AG".

cond_vars Character vector of nodes to condition on.

marg_vars Character vector of nodes to marginalize over.

descendants 39

Value

A caugi object of class "AG".

References

Definition 4.2.1 in Thomas Richardson. Peter Spirtes. "Ancestral graph Markov models." Ann.
Statist. 30 (4) 962 - 1030, August 2002. doi:10.1214/aos/1031689015

See Also

Other operations: exogenize(), latent_project(), moralize(), mutate_caugi(), skeleton()

Examples

mg <- caugi(
U %-->% X + Y,
A %-->% X,
B %-->% Y,
class = "DAG"

)

condition_marginalize(mg, marg_vars = "U") # ADMG
condition_marginalize(mg, cond_vars = "U") # DAG

descendants Get descendants of nodes in a caugi

Description

Get descendants of nodes in a caugi

Usage

descendants(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

https://doi.org/10.1214/aos/1031689015

40 districts

See Also

Other queries: ancestors(), anteriors(), children(), districts(), edge_types(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
descendants(cg, "A") # "B" "C"
descendants(cg, index = 2) # "C"
descendants(cg, "B") # "C"
descendants(cg, c("B", "C"))
#> $B
#> [1] "C"
#>
#> $C
#> NULL

districts Get districts (c-components) of an ADMG

Description

Get the districts (c-components) of an ADMG. A district is a maximal set of nodes connected via
bidirected edges.

Usage

districts(cg)

Arguments

cg A caugi object of class ADMG.

Value

A list of character vectors, each containing the nodes in a district.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), edge_types(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

divide-caugi_plot-caugi_plot 41

Examples

cg <- caugi(
A %-->% B,
A %<->% C,
D %<->% E,
class = "ADMG"

)
districts(cg)
Returns list with districts: {A, C}, {B}, {D, E}

divide-caugi_plot-caugi_plot

Compose Plots Vertically

Description

Stack two plots vertically with configurable spacing. Compositions can be nested to create complex
multi-plot layouts.

Arguments

e1 A caugi_plot object (top plot)

e2 A caugi_plot object (bottom plot)

Details

The spacing between plots is controlled by the global option caugi_options()$plot$spacing,
which defaults to grid::unit(1, "lines"). Compositions can be nested arbitrarily:

• p1 / p2 - two plots stacked vertically

• p1 / p2 / p3 - three plots in a column

• (p1 + p2) / p3 - two plots on top, one below

Value

A caugi_plot object containing the composed layout

See Also

caugi_options() for configuring spacing and default styles

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_kamada_kawai(), caugi_layout_sugiyama(),
caugi_layout_tiered(), caugi_plot(), plot()

42 d_separated

Examples

cg1 <- caugi(A %-->% B, B %-->% C)
cg2 <- caugi(X %-->% Y, Y %-->% Z)

p1 <- plot(cg1, main = "Graph 1")
p2 <- plot(cg2, main = "Graph 2")

Vertical composition
p1 / p2

Mixed composition
(p1 + p2) / p1

d_separated Are X and Y d-separated given Z?

Description

Checks whether every node in X is d-separated from every node in Y given Z in a DAG.

Usage

d_separated(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL

)

Arguments

cg A caugi object.

X, Y, Z Node selectors: character vector of names, unquoted expression (supports + and
c()), or NULL. Use *_index to pass 1-based indices. If Z is NULL or missing, no
nodes are conditioned on.

X_index, Y_index, Z_index
Optional numeric 1-based indices (exclusive with X,Y,Z respectively).

Value

TRUE if d-separated, FALSE otherwise.

edges 43

See Also

Other adjustment: adjustment_set(), all_adjustment_sets_admg(), all_backdoor_sets(),
is_valid_adjustment_admg(), is_valid_backdoor()

Examples

cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"

)

d_separated(cg, "X", "Y", Z = c("A", "D")) # TRUE
d_separated(cg, "X", "Y", Z = NULL) # FALSE

edges Get edges of a caugi.

Description

Get edges of a caugi.

Usage

edges(cg)

E(cg)

Arguments

cg A caugi object.

Value

A data.table with columns from, edge, and to.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

44 edge_types

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
D,
class = "DAG"

)
edges(cg) # returns the data.table with columns from, edge, to

edge_types Get the edge types of a caugi.

Description

Get the edge types of a caugi.

Usage

edge_types(cg)

Arguments

cg A caugi object.

Value

A character vector of edge types.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edges(),
exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %--o% C,
C %<->% D,
D %---% E,
A %o-o% E,
class = "UNKNOWN"

)
edge_types(cg) # returns c("-->", "o-o", "--o", "<->", "---")

exogenize 45

exogenize Exogenize a graph

Description

Exogenize a graph by removing all ingoing edges to the set of nodes specified (i.e., make the
nodes exogenous), as well as joining the parents of the nodes specified to the children of the nodes
specified.

Usage

exogenize(cg, nodes)

Arguments

cg A caugi object of class "DAG".

nodes A character vector of node names to exogenize. Must be a subset of the nodes
in the graph.

Value

A caugi object representing the exogenized graph.

See Also

Other operations: condition_marginalize(), latent_project(), moralize(), mutate_caugi(),
skeleton()

Examples

cg <- caugi(A %-->% B, class = "DAG")
exogenize(cg, nodes = "B") # A, B

exogenous Get all exogenous nodes in a caugi

Description

Get all exogenous nodes (nodes with no parents) in a caugi.

Usage

exogenous(cg, undirected_as_parents = FALSE)

46 export-classes

Arguments

cg A caugi object.
undirected_as_parents

Logical; if TRUE, undirected edges are treated as (possible) parents, if FALSE
(default), undirected edges are ignored.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
exogenous(cg) # "A"

export-classes Export Format Classes

Description

S7 classes for representing caugi graphs in various export formats. These classes provide a common
interface for serializing graphs to different text formats like DOT, GraphML, JSON, etc.

Base Class

caugi_export is the base class for all export formats. It provides:

• content property: Character string containing the serialized graph

• format property: Character string indicating the format type

• Common methods: print(), as.character(), knit_print()

Subclasses

• caugi_dot: DOT format for Graphviz visualization

• caugi_mermaid: Mermaid format for web-based visualization

format-caugi 47

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), format-caugi, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

format-caugi Caugi Native Format Serialization

Description

Functions for converting caugi graphs to and from the native caugi JSON format. This format
provides efficient, reproducible serialization for saving and sharing caugi graphs.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-dot, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

format-dot DOT Format Export and Import

Description

Functions for converting caugi graphs to and from Graphviz DOT format. The DOT format is a
plain text graph description language used by Graphviz tools for visualization.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-graphml, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

48 generate_graph

format-graphml GraphML Format Export and Import

Description

Functions for converting caugi graphs to and from GraphML format. GraphML is an XML-based
file format for graphs supported by many graph tools and libraries.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-mermaid, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

format-mermaid Mermaid Format Export

Description

Functions for converting caugi graphs to Mermaid flowchart format. Mermaid is a JavaScript-based
diagramming tool that renders in web browsers and is natively supported by Quarto, GitHub, and
many other platforms.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, knit_print.caugi_export,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

generate_graph Generate a caugi using Erdős-Rényi.

Description

Sample a random DAG or CPDAG using Erdős-Rényi for random graph generation.

Usage

generate_graph(n, m = NULL, p = NULL, class = c("DAG", "CPDAG"))

hd 49

Arguments

n Integer >= 0. Number of nodes in the graph.

m Integer in 0, n*(n-1)/2. Number of edges in the graph. Exactly one of m or p
must be supplied.

p Numeric in [0,1]. Probability of edge creation. Exactly one of m or p must be
supplied.

class "DAG" or "CPDAG".

Value

The sampled caugi object.

See Also

Other simulation functions: simulate_data()

Examples

generate a random DAG with 5 nodes and 4 edges
dag <- generate_graph(n = 5, m = 4, class = "DAG")

generate a random CPDAG with 5 nodes and edge probability 0.3
cpdag <- generate_graph(n = 5, p = 0.3, class = "CPDAG")

hd Hamming Distance

Description

Compute the Hamming Distance between two graphs.

Usage

hd(cg1, cg2, normalized = FALSE)

Arguments

cg1 A caugi object.

cg2 A caugi object.

normalized Logical; if TRUE, returns the normalized Hamming Distance.

Value

An integer representing the Hamming Distance between the two graphs, if normalized = FALSE, or
a numeric between 0 and 1 if normalized = TRUE.

50 is_acyclic

See Also

Other metrics: aid(), shd()

Examples

cg1 <- caugi(A %-->% B %-->% C, D %-->% C, class = "DAG")
cg2 <- caugi(A %-->% B %-->% C, D %---% C, class = "PDAG")
hd(cg1, cg2) # 0

is_acyclic Is the caugi acyclic?

Description

Checks if the given caugi graph is acyclic.

Usage

is_acyclic(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is acyclic, if FALSE (default),
it will look at the graph class and match it, if possible.

Details

Logically, it should not be possible to have a graph class of "DAG" or "PDAG" that has cycles, but
in case the user modified the graph after creation in some unforeseen way that could have introduced
cycles, this function allows to force a check of acyclicity, if needed.

Value

A logical value indicating whether the graph is acyclic.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

is_admg 51

Examples

cg_acyclic <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
is_acyclic(cg_acyclic) # TRUE
cg_cyclic <- caugi(

A %-->% B,
B %-->% C,
C %-->% A,
class = "UNKNOWN"

)
is_acyclic(cg_cyclic) # FALSE

is_admg Is the caugi graph an ADMG?

Description

Checks if the given caugi graph is an Acyclic Directed Mixed Graph (ADMG).

An ADMG contains only directed (-->) and bidirected (<->) edges, and the directed part must be
acyclic.

Usage

is_admg(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is an ADMG, if FALSE (de-
fault), it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is an ADMG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_ag(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

52 is_ag

Examples

cg_admg <- caugi(
A %-->% B,
A %<->% C,
class = "ADMG"

)
is_admg(cg_admg) # TRUE

cg_dag <- caugi(
A %-->% B,
class = "DAG"

)
is_admg(cg_dag) # TRUE (DAGs are valid ADMGs)

is_ag Is the caugi graph an AG?

Description

Checks if the given caugi graph is an Ancestral Graph (AG).

An AG contains directed (-->), bidirected (<->), and undirected (---) edges, and must satisfy
ancestral graph constraints (no directed cycles, anterior constraint, and undirected constraint).

Usage

is_ag(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is an AG, if FALSE (default),
it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is an AG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_caugi(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

is_caugi 53

Examples

cg_ag <- caugi(
A %-->% B,
C %<->% D,
E %---% F,
class = "AG"

)
is_ag(cg_ag) # TRUE

cg_ug <- caugi(
A %---% B,
class = "UG"

)
is_ag(cg_ug) # TRUE (UGs are valid AGs)

is_caugi Is it a caugi graph?

Description

Checks if the given object is a caugi. Mostly used internally to validate inputs.

Usage

is_caugi(x, throw_error = FALSE)

Arguments

x An object to check.

throw_error Logical; if TRUE, throws an error if x is not a caugi.

Value

A logical value indicating whether the object is a caugi.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_cpdag(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

54 is_cpdag

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)

is_caugi(cg) # TRUE

is_cpdag Is the caugi graph a CPDAG?

Description

Checks if the given caugi graph is a Complete Partially Directed Acyclic Graph (CPDAG).

Usage

is_cpdag(cg)

Arguments

cg A caugi object.

Value

A logical value indicating whether the graph is a CPDAG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_dag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_cpdag <- caugi(
A %---% B,
A %-->% C,
B %-->% C,
class = "PDAG"

)
is_cpdag(cg_cpdag) # TRUE

cg_not_cpdag <- caugi(
A %---% B,
A %---% C,
B %-->% C,

is_dag 55

class = "PDAG"
)
is_cpdag(cg_not_cpdag) # FALSE

is_dag Is the caugi graph a DAG?

Description

Checks if the given caugi graph is a Directed Acyclic Graph (DAG).

Usage

is_dag(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is a DAG, if FALSE (default),
it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is a DAG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_empty_caugi(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_dag_class <- caugi(
A %-->% B,
class = "DAG"

)
is_dag(cg_dag_class) # TRUE
cg_dag_but_pdag_class <- caugi(

A %-->% B,
class = "PDAG"

)
is_dag(cg_dag_but_pdag_class) # TRUE
cg_cyclic <- caugi(

A %-->% B,
B %-->% C,
C %-->% A,

56 is_empty_caugi

class = "UNKNOWN",
simple = FALSE

)
is_dag(cg_cyclic) # FALSE

cg_undirected <- caugi(
A %---% B,
class = "UNKNOWN"

)
is_dag(cg_undirected) # FALSE

is_empty_caugi Is the caugi graph empty?

Description

Checks if the given caugi graph is empty (has no nodes).

Usage

is_empty_caugi(cg)

Arguments

cg A caugi object.

Value

A logical value indicating whether the graph is empty.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_empty <- caugi(class = "DAG")
is_empty_caugi(cg_empty) # TRUE
cg_non_empty <- caugi(

A %-->% B,
class = "DAG"

)
is_empty_caugi(cg_non_empty) # FALSE

cg_no_edges_but_has_nodes <- caugi(

is_mag 57

A, B,
class = "DAG"

)
is_empty_caugi(cg_no_edges_but_has_nodes) # FALSE

is_mag Is the caugi graph a MAG?

Description

Checks if the given caugi graph is a Maximal Ancestral Graph (MAG).

A MAG is an ancestral graph where no additional edge can be added without violating the ancestral
graph constraints or changing the encoded independence model.

Usage

is_mag(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is a MAG, if FALSE (default),
it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is a MAG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_ag <- caugi(
A %-->% B,
B %-->% C,
class = "AG"

)
is_mag(cg_ag) # TRUE (0 and 2 are m-separated by {B})

58 is_pdag

is_pdag Is the caugi graph a PDAG?

Description

Checks if the given caugi graph is a Partially Directed Acyclic Graph (PDAG).

Usage

is_pdag(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is a PDAG, if FALSE (default),
it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is a PDAG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_ug(), m_separated(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_dag_class <- caugi(
A %-->% B,
class = "DAG"

)
is_pdag(cg_dag_class) # TRUE
cg_dag_but_pdag_class <- caugi(

A %-->% B,
class = "PDAG"

)
is_pdag(cg_dag_but_pdag_class) # TRUE
cg_cyclic <- caugi(

A %-->% B,
B %-->% C,
C %-->% A,
D %---% A,
class = "UNKNOWN",
simple = FALSE

)
is_pdag(cg_cyclic) # FALSE

is_ug 59

cg_undirected <- caugi(
A %---% B,
class = "UNKNOWN"

)
is_pdag(cg_undirected) # TRUE

cg_pag <- caugi(
A %o->% B,
class = "UNKNOWN"

)
is_pdag(cg_pag) # FALSE

is_ug Is the caugi graph an UG?

Description

Checks if the given caugi graph is an undirected graph (UG).

Usage

is_ug(cg, force_check = FALSE)

Arguments

cg A caugi object.

force_check Logical; if TRUE, the function will test if the graph is an UG, if FALSE (default),
it will look at the graph class and match it, if possible.

Value

A logical value indicating whether the graph is an UG.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg_ug_class <- caugi(
A %---% B,
class = "UG"

)
is_ug(cg_ug_class) # TRUE

60 is_valid_adjustment_admg

cg_not_ug <- caugi(
A %-->% B,
class = "DAG"

)
is_ug(cg_not_ug) # FALSE

is_valid_adjustment_admg

Is a set a valid adjustment set in an ADMG?

Description

Checks whether Z is a valid adjustment set for estimating the causal effect of X on Y in an ADMG
using the generalized adjustment criterion.

Usage

is_valid_adjustment_admg(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL

)

Arguments

cg A caugi object of class ADMG.

X, Y Node names (can be vectors for multiple treatments/outcomes).

Z Conditioning set (character vector of node names).
X_index, Y_index, Z_index

Optional 1-based indices.

Value

Logical value indicating if the adjustment set is valid.

See Also

Other adjustment: adjustment_set(), all_adjustment_sets_admg(), all_backdoor_sets(),
d_separated(), is_valid_backdoor()

is_valid_backdoor 61

Examples

Classic confounding
cg <- caugi(

L %-->% X,
X %-->% Y,
L %-->% Y,
class = "ADMG"

)

is_valid_adjustment_admg(cg, X = "X", Y = "Y", Z = NULL) # FALSE
is_valid_adjustment_admg(cg, X = "X", Y = "Y", Z = "L") # TRUE

is_valid_backdoor Is a backdoor set valid?

Description

Checks whether Z is a valid backdoor adjustment set for X --> Y.

Usage

is_valid_backdoor(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL

)

Arguments

cg A caugi object.

X, Y Single node names.

Z Optional node set for conditioning
X_index, Y_index, Z_index

Optional 1-based indices.

Value

Logical value indicating if backdoor is valid or not.

See Also

Other adjustment: adjustment_set(), all_adjustment_sets_admg(), all_backdoor_sets(),
d_separated(), is_valid_adjustment_admg()

62 knit_print.caugi_export

Examples

cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"

)

is_valid_backdoor(cg, X = "X", Y = "Y", Z = NULL) # FALSE
is_valid_backdoor(cg, X = "X", Y = "Y", Z = "K") # TRUE
is_valid_backdoor(cg, X = "X", Y = "Y", Z = c("A", "C")) # TRUE

knit_print.caugi_export

Knit Print Method for caugi_export

Description

Renders caugi export objects as code blocks in Quarto/R Markdown documents. This method is
automatically invoked when an export object is the last expression in a code chunk.

Arguments

x A caugi_export object.

... Additional arguments (currently unused).

Details

This method enables seamless rendering of caugi graphs in Quarto and R Markdown. The code
block type is determined by the export format. Simply use an export function (e.g., to_dot(cg))
as the last expression in a chunk with output: asis:

#| output: asis
to_dot(cg)

Value

A knit_asis object for rendering by knitr.

latent_project 63

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(), write_dot(),
write_graphml(), write_mermaid()

latent_project Project latent variables from a DAG to an ADMG

Description

Projects out latent (unobserved) variables from a DAG to produce an Acyclic Directed Mixed Graph
(ADMG) over the observed variables.

Usage

latent_project(cg, latents)

Arguments

cg A caugi object of class "DAG".

latents Character vector of latent variable names to project out.

Value

A caugi object of class "ADMG" containing only the observed variables.

See Also

Other operations: condition_marginalize(), exogenize(), moralize(), mutate_caugi(), skeleton()

Examples

DAG with latent confounder U
dag <- caugi(

U %-->% X,
U %-->% Y,
X %-->% Y,
class = "DAG"

)

Project out the latent variable
admg <- latent_project(dag, latents = "U")
Result: X -> Y, X <-> Y (children of U become bidirected-connected)
edges(admg)

DAG with directed path through latent
dag2 <- caugi(

64 length

X %-->% L,
L %-->% Y,
class = "DAG"

)

Project out the latent variable
admg2 <- latent_project(dag2, latents = "L")
Result: X -> Y (directed path X -> L -> Y becomes X -> Y)
edges(admg2)

length Length of a caugi

Description

Returns the number of nodes in the graph.

Arguments

x A caugi object.

Value

An integer representing the number of nodes.

See Also

Other caugi methods: print()

Examples

cg <- caugi(
A %-->% B,
class = "DAG"

)
length(cg) # 2

cg2 <- caugi(
A %-->% B + C,
nodes = LETTERS[1:5],
class = "DAG"

)
length(cg2) # 5

markov_blanket 65

markov_blanket Get Markov blanket of nodes in a caugi

Description

Get Markov blanket of nodes in a caugi

Usage

markov_blanket(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
markov_blanket(cg, "A") # "B"
markov_blanket(cg, index = 2) # "A" "C"
markov_blanket(cg, "B") # "A" "C"
markov_blanket(cg, c("B", "C"))
#> $B
#> [1] "A" "C"
#>
#> $C
#> [1] "B"

66 mutate_caugi

moralize Moralize a DAG

Description

Moralizing a DAG involves connecting all parents of each node and then converting all directed
edges into undirected edges.

Usage

moralize(cg)

Arguments

cg A caugi object (DAG).

Details

This changes the graph from a Directed Acyclic Graph (DAG) to an Undirected Graph (UG), also
known as a Markov Graph.

Value

A caugi object representing the moralized graph (UG).

See Also

Other operations: condition_marginalize(), exogenize(), latent_project(), mutate_caugi(),
skeleton()

Examples

cg <- caugi(A %-->% C, B %-->% C, class = "DAG")
moralize(cg) # A -- B, A -- C, B -- C

mutate_caugi Mutate caugi class

Description

Mutate the caugi class from one graph class to another, if possible. For example, convert a DAG to
a PDAG, or a fully directed caugi of class UNKNOWN to a DAG. Throws an error if not possible.

Usage

mutate_caugi(cg, class)

m_separated 67

Arguments

cg A caugi object.

class A character string specifying the new class.

Details

This function returns a copy of the object, and the original remains unchanged.

Value

A caugi object of the specified class.

See Also

Other operations: condition_marginalize(), exogenize(), latent_project(), moralize(),
skeleton()

Examples

cg <- caugi(A %-->% B, class = "UNKNOWN")
cg_dag <- mutate_caugi(cg, "DAG")

m_separated M-separation test for AGs and ADMGs

Description

Test whether two sets of nodes are m-separated given a conditioning set in an ancestral graph (AG)
or an ADMG.

M-separation generalizes d-separation to AGs/ADMGs and applies to DAGs.

Usage

m_separated(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL

)

68 neighbors

Arguments

cg A caugi object of class AG, ADMG, or DAG.

X, Y, Z Node selectors: character vector of names, unquoted expression (supports + and
c()), or NULL. Use *_index to pass 1-based indices. If Z is NULL or missing, no
nodes are conditioned on.

X_index, Y_index, Z_index
Optional numeric 1-based indices (exclusive with X,Y,Z respectively).

Value

A logical value; TRUE if X and Y are m-separated given Z.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), markov_blanket(), neighbors(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

Classic confounding example
cg <- caugi(

L %-->% X,
X %-->% Y,
L %-->% Y,
class = "ADMG"

)
m_separated(cg, X = "X", Y = "Y") # FALSE (connected via L)
m_separated(cg, X = "X", Y = "Y", Z = "L") # TRUE (L blocks the path)

neighbors Get neighbors of nodes in a caugi

Description

Get neighbors of a node in the graph, optionally filtered by edge direction or type. This function
works for all graph classes including UNKNOWN.

Usage

neighbors(
cg,
nodes = NULL,
index = NULL,
mode = c("all", "in", "out", "undirected", "bidirected", "partial")

neighbors 69

)

neighbours(
cg,
nodes = NULL,
index = NULL,
mode = c("all", "in", "out", "undirected", "bidirected", "partial")

)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

mode Character; specifies which types of neighbors to return:

"all" All neighbors (default)
"in" Parents: nodes with directed edges pointing INTO the target node (equiv-

alent to parents())
"out" Children: nodes with directed edges pointing OUT from the target node

(equivalent to children())
"undirected" Nodes connected via undirected (---) edges
"bidirected" Nodes connected via bidirected (<->) edges (equivalent to spouses()

for ADMGs)
"partial" Nodes connected via partial edges (edges with circle endpoints:

o-o, o->, --o)

Not all modes are valid for all graph classes:

• DAG: "in", "out", "all" only
• PDAG: "in", "out", "undirected", "all"
• UG: "undirected", "all" only
• ADMG: "in", "out", "bidirected", "all"
• UNKNOWN: all modes allowed

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), nodes(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

70 nodes

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
neighbors(cg, "A") # "B"
neighbors(cg, index = 2) # "A" "C"
neighbors(cg, "B") # "A" "C"
neighbors(cg, c("B", "C"))
#> $B
#> [1] "A" "C"
#>
#> $C
#> [1] "B"

Using mode to filter by edge direction
neighbors(cg, "B", mode = "in") # "A" (parents)
neighbors(cg, "B", mode = "out") # "C" (children)

Works for UNKNOWN graphs too
cg_unknown <- caugi(

A %-->% B,
B %---% C,
C %o->% D,
class = "UNKNOWN"

)
neighbors(cg_unknown, "B", mode = "in") # "A"
neighbors(cg_unknown, "B", mode = "undirected") # "C"
neighbors(cg_unknown, "C", mode = "partial") # "D"

nodes Get nodes or edges of a caugi

Description

Get nodes or edges of a caugi

Usage

nodes(cg)

vertices(cg)

V(cg)

Arguments

cg A caugi object.

parents 71

Value

A data.table with a name column.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
parents(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
D,
class = "DAG"

)
nodes(cg) # returns the data.table with nodes A, B, C, D

parents Get parents of nodes in a caugi

Description

Get parents of nodes in a graph (nodes with directed edges pointing INTO the target node). This is
equivalent to neighbors(cg, nodes, mode = "in").

Note that not both nodes and index can be given.

Usage

parents(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

72 plot

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), same_nodes(), spouses(), subgraph(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
parents(cg, "A") # NULL
parents(cg, index = 2) # "A"
parents(cg, "B") # "A"
parents(cg, c("B", "C"))
#> $B
#> [1] "A"
#>
#> $C
#> [1] "B"

plot Create a caugi Graph Plot Object

Description

Creates a grid graphics object (gTree) representing a caugi graph. If the graph has not been built
yet, it will be built automatically before plotting. This implementation uses idiomatic grid graphics
with viewports for proper coordinate handling.

Arguments

x A caugi object. Must contain only directed edges for Sugiyama layout.

layout Specifies the graph layout method. Can be:

• A character string: "auto" (default), "sugiyama", "fruchterman-reingold",
"kamada-kawai", "bipartite". See caugi_layout() for details.

• A layout function: e.g., caugi_layout_sugiyama, caugi_layout_bipartite,
etc. The function will be called with x and any additional arguments passed
via

• A pre-computed layout data.frame with columns name, x, and y.

... Additional arguments passed to caugi_layout(). For bipartite layouts, include
partition (logical vector) and orientation ("rows" or "columns").

node_style List of node styling parameters. Supports:

plot 73

• Appearance (passed to gpar()): fill, col, lwd, lty, alpha
• Geometry: padding (text padding inside nodes in mm, default 2), size

(node size multiplier, default 1)
• Local overrides via by_node: a named list of nodes with their own style

lists, e.g. by_node = list(A = list(fill = "red"), B = list(col = "blue"))

edge_style List of edge styling parameters. Can specify global options or per-type options
via directed, undirected, bidirected, partial. Supports:

• Appearance (passed to gpar()): col, lwd, lty, alpha, fill.
• Geometry: arrow_size (arrow length in mm, default 3), circle_size (ra-

dius of endpoint circles for partial edges in mm, default 1.5)
• Local overrides via by_edge: a named list with:

– Node-wide styles: applied to all edges touching a node, e.g. A = list(col
= "red", lwd = 2)

– Specific edges: nested named lists for particular edges, e.g. A = list(B
= list(col = "blue", lwd = 4))

Multiple levels can be combined: Style precedence (highest to lowest):
specific edge settings > node-wide settings > edge type settings > global
settings.

label_style List of label styling parameters. Supports:

• Appearance (passed to gpar()): col, fontsize, fontface, fontfamily,
cex

tier_style List of tier box styling parameters. Tier boxes are shown when boxes = TRUE is
set within this list. Supports:

• Appearance (passed to gpar()): fill, col (border color), lwd, lty, alpha
• Geometry: padding (padding around tier nodes as proportion of plot range,

default 0.05)
• Labels: labels (logical or character vector). If TRUE, uses tier names from
tiers argument. If a character vector, uses custom labels (one per tier). If
FALSE or NULL (default), no labels are shown.

• Label styling: label_style (list with col, fontsize, fontface, etc.)
• Values can be scalars (applied to all tiers) or vectors (auto-expanded to each

tier in order)
• Local overrides via by_tier: a named list (using tier names from tiers ar-

gument) or indexed list for per-tier customization, e.g. by_tier = list(exposures
= list(fill = "lightblue"), outcome = list(fill = "yellow")) or by_tier = list(1 = list(fill = "lightblue"))

main Optional character string for plot title. If NULL (default), no title is displayed.

title_style List of title styling parameters. Supports:

• Appearance (passed to gpar()): col, fontsize, fontface, fontfamily,
cex

outer_margin Grid unit specifying outer margin around the plot. Default is grid::unit(2,
"mm").

title_gap Grid unit specifying gap between title and graph. Default is grid::unit(1,
"lines").

74 plot

Value

A caugi_plot object that wraps a gTree for grid graphics display. The plot is automatically drawn
when printed or explicitly plotted.

See Also

Other plotting: add-caugi_plot-caugi_plot, caugi_layout(), caugi_layout_bipartite(),
caugi_layout_fruchterman_reingold(), caugi_layout_kamada_kawai(), caugi_layout_sugiyama(),
caugi_layout_tiered(), caugi_plot(), divide-caugi_plot-caugi_plot

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

plot(cg)

Use a specific layout method (as string)
plot(cg, layout = "kamada-kawai")

Use a layout function
plot(cg, layout = caugi_layout_sugiyama)

Pre-compute layout and use it
coords <- caugi_layout_fruchterman_reingold(cg)
plot(cg, layout = coords)

Bipartite layout with a function
cg_bp <- caugi(A %-->% X, B %-->% X, C %-->% Y)
partition <- c(TRUE, TRUE, TRUE, FALSE, FALSE)
plot(cg_bp, layout = caugi_layout_bipartite, partition = partition)

Customize nodes
plot(cg, node_style = list(fill = "lightgreen", padding = 0.8))

Customize edges by type
plot(

cg,
edge_style = list(
directed = list(col = "blue", arrow_size = 4),
undirected = list(col = "red")

)
)

Add a title
plot(cg, main = "Causal Graph")

Customize title

print 75

plot(
cg,
main = "My Graph",
title_style = list(fontsize = 18, col = "blue", fontface = "italic")

)

print Print a caugi

Description

Print a caugi

Arguments

x A caugi object.

max_nodes Optional numeric; maximum number of node names to consider. If NULL, the
method automatically prints as many as fit on one console line (plus a separate
truncation line if needed).

max_edges Optional numeric; maximum number of edges to consider. If NULL, the method
automatically prints as many edges as fit on two console lines (plus a separate
truncation line if needed).

... Not used.

Value

The input caugi object, invisibly.

See Also

Other caugi methods: length()

Examples

cg <- caugi(A %-->% B, class = "DAG")
print(cg)

76 read_caugi

read_caugi Read caugi Graph from File

Description

Reads a caugi graph from a file in the native caugi JSON format.

Usage

read_caugi(path, lazy = FALSE)

Arguments

path Character string specifying the file path.

lazy Logical; if FALSE (default), the graph is built immediately. If TRUE, graph build-
ing is deferred until needed.

Details

The function validates the file format and version, ensuring compatibility with the current version
of the caugi package.

Value

A caugi object.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_graphml(), to_dot(), to_graphml(), to_mermaid(), write_caugi(),
write_dot(), write_graphml(), write_mermaid()

Examples

cg <- caugi(
A %-->% B + C,
class = "DAG"

)

Write and read
tmp <- tempfile(fileext = ".caugi.json")
write_caugi(cg, tmp)
cg2 <- read_caugi(tmp)

Clean up
unlink(tmp)

read_graphml 77

read_graphml Read GraphML File to caugi Graph

Description

Imports a GraphML file as a caugi graph. Supports GraphML files exported from caugi with full
edge type information.

Usage

read_graphml(path, class = NULL)

Arguments

path File path to the GraphML file.

class Graph class to assign. If NULL (default), attempts to read from the GraphML
metadata. If not present, defaults to "UNKNOWN".

Details

This function provides basic GraphML import support. It reads:

• Nodes and their IDs

• Edges with source and target

• Edge types (if present in edge_type attribute)

• Graph class (if present in graph data)

For GraphML files not created by caugi, edge types default to "–>" for directed graphs and "—" for
undirected graphs.

Value

A caugi object.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), to_dot(), to_graphml(), to_mermaid(), write_caugi(),
write_dot(), write_graphml(), write_mermaid()

78 register_caugi_edge

Examples

Create and export a graph
cg <- caugi(

A %-->% B,
B %-->% C,
class = "DAG"

)

tmp <- tempfile(fileext = ".graphml")
write_graphml(cg, tmp)

Read it back
cg2 <- read_graphml(tmp)

Clean up
unlink(tmp)

register_caugi_edge Register a new edge type in the global registry.

Description

Register a new edge type in the global registry.

Usage

register_caugi_edge(glyph, tail_mark, head_mark, class, symmetric = FALSE)

Arguments

glyph A string representing the edge glyph (e.g., "-->", "<->").

tail_mark One of "arrow", "tail", "circle", "other".

head_mark One of "arrow", "tail", "circle", "other".

class One of "directed","undirected","bidirected","partial".

symmetric Logical.

Value

TRUE, invisibly.

See Also

Other registry: registry

registry 79

Examples

first, for reproducability, we reset the registry to default
reset_caugi_registry()

create a new registry
reg <- caugi_registry()

register an edge
register_caugi_edge(

glyph = "<--",
tail_mark = "arrow",
head_mark = "tail",
class = "directed",
symmetric = FALSE

)

now, this edge is available for caugi graphs:
cg <- caugi(A %-->% B, B %<--% C, class = "DAG")

reset the registry to default
reset_caugi_registry()

registry caugi edge registry

Description

The caugi edge registry stores information about the different edge types that can be used in caugi
graphs. It maps edge glyphs (e.g., "-->", "<->", "o->", etc.) to their specifications, including
tail and head marks, class, and symmetry. The registry allows for dynamic registration of new
edge types, enabling users to extend the set of supported edges in caugi. It is implemented as a
singleton, ensuring that there is a single global instance of the registry throughout the R session.

Usage

caugi_registry()

reset_caugi_registry()

seal_caugi_registry()

Details

The intended use of the caugi registry is mostly for advanced users and developers. The registry
enables users who need to define their own custom edge types in caugi directly. . It currently
mostly supports the representation of new edges, but for users that might want to represent reverse
edges, this preserves correctness of reason over these edges.

80 same_nodes

Value

An edge_registry external pointer.

Functions

• caugi_registry(): Access the global edge registry, creating it if needed.

• reset_caugi_registry(): Reset the global edge registry to its default state.

• seal_caugi_registry(): Seal the global edge registry to prevent further modifications.

See Also

Other registry: register_caugi_edge()

Examples

first, for reproducability, we reset the registry to default
reset_caugi_registry()

create a new registry
reg <- caugi_registry()

register an edge
register_caugi_edge(

glyph = "<--",
tail_mark = "arrow",
head_mark = "tail",
class = "directed",
symmetric = FALSE

)

now, this edge is available for caugi graphs:
cg <- caugi(A %-->% B, B %<--% C, class = "DAG")

reset the registry to default
reset_caugi_registry()

same_nodes Same nodes?

Description

Check if two caugi objects have the same nodes.

Usage

same_nodes(cg1, cg2, throw_error = FALSE)

shd 81

Arguments

cg1 A caugi object.

cg2 A caugi object.

throw_error Logical; if TRUE, throws an error if the graphs do not have the same nodes.

Value

A logical indicating if the two graphs have the same nodes.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), spouses(), subgraph(), topological_sort()

Examples

cg1 <- caugi(
A %-->% B,
class = "DAG"

)
cg2 <- caugi(

A %-->% B + C,
class = "DAG"

)
same_nodes(cg1, cg2) # FALSE

shd Structural Hamming Distance

Description

Compute the Structural Hamming Distance (SHD) between two graphs.

Usage

shd(cg1, cg2, normalized = FALSE)

Arguments

cg1 A caugi object.

cg2 A caugi object.

normalized Logical; if TRUE, returns the normalized SHD.

82 simulate_data

Value

An integer representing the Hamming Distance between the two graphs, if normalized = FALSE, or
a numeric between 0 and 1 if normalized = TRUE.

See Also

Other metrics: aid(), hd()

Examples

cg1 <- caugi(A %-->% B %-->% C, D %-->% C, class = "DAG")
cg2 <- caugi(A %-->% B %-->% C, D %---% C, class = "PDAG")
shd(cg1, cg2) # 1

simulate_data Simulate data from a caugi DAG.

Description

Simulate data from a caugi object of class DAG using a linear structural equation model (SEM). As
standard, the data is simulated from a DAG, where each node is generated as a linear combination
of its parents plus Gaussian noise, following the topological order of the graph. Nodes without
custom equations are simulated using auto-generated linear Gaussian relationships.

Usage

simulate_data(
cg,
n,
...,
standardize = TRUE,
coef_range = c(0.1, 0.9),
error_sd = 1,
seed = NULL

)

Arguments

cg A caugi object of class DAG.

n Integer; number of observations to simulate.

... Named expressions for custom structural equations. Names must match node
names in the graph. Expressions can reference parent node names and the vari-
able n (sample size). Nodes without custom equations use auto-generated linear
Gaussian relationships.

standardize Logical; if TRUE, standardize all variables to have mean 0 and standard deviation
1. Default is TRUE.

skeleton 83

coef_range Numeric vector of length 2; range for random edge coefficients that will be
sampled uniformly. Default is c(0.1, 0.9).

error_sd Numeric; standard deviation for error terms in auto-generated equations. De-
fault is 1.

seed Optional integer; random seed for reproducibility.

Value

A data.frame with n rows and one column per node, ordered according to the node order in the
graph.

See Also

Other simulation functions: generate_graph()

Examples

cg <- caugi(A %-->% B, B %-->% C, A %-->% C, class = "DAG")

Fully automatic simulation
df <- simulate_data(cg, n = 100)

With standardization
df <- simulate_data(cg, n = 100, standardize = TRUE)

Custom equations for some nodes
df <- simulate_data(cg, n = 100,

A = rnorm(n, mean = 10, sd = 2),
B = 0.5 * A + rnorm(n, sd = 0.5)

)

Reproducible simulation
df <- simulate_data(cg, n = 100, seed = 42)

skeleton Get the skeleton of a graph

Description

The skeleton of a graph is obtained by replacing all directed edges with undirected edges.

Usage

skeleton(cg)

Arguments

cg A caugi object. Either a DAG or PDAG.

84 spouses

Details

This changes the graph from any class to an Undirected Graph (UG), also known as a Markov
Graph.

Value

A caugi object representing the skeleton of the graph (UG).

See Also

Other operations: condition_marginalize(), exogenize(), latent_project(), moralize(),
mutate_caugi()

Examples

cg <- caugi(A %-->% B, class = "DAG")
skeleton(cg) # A --- B

spouses Get spouses (bidirected neighbors) of nodes in an ADMG

Description

Get nodes connected via bidirected edges in an ADMG.

Usage

spouses(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object of class ADMG.

nodes A vector of node names.

index A vector of node indexes.

Value

Either a character vector of node names (if a single node is requested) or a list of character vectors
(if multiple nodes are requested).

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), same_nodes(), subgraph(), topological_sort()

subgraph 85

Examples

cg <- caugi(
A %-->% B,
A %<->% C,
B %<->% C,
class = "ADMG"

)
spouses(cg, "A") # "C"
spouses(cg, "C") # c("A", "B")

subgraph Get the induced subgraph

Description

Get the induced subgraph

Usage

subgraph(cg, nodes = NULL, index = NULL)

Arguments

cg A caugi object.

nodes A vector of node names, a vector of unquoted node names, or an expression
combining these with + and c().

index A vector of node indexes.

Value

A new caugi that is a subgraph of the selected nodes.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), same_nodes(), spouses(), topological_sort()

Examples

cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"

)
sub_cg <- subgraph(cg, c("B", "C"))

86 topological_sort

cg2 <- caugi(B %-->% C, class = "DAG")
all(nodes(sub_cg) == nodes(cg2)) # TRUE
all(edges(sub_cg) == edges(cg2)) # TRUE

topological_sort Get a topological ordering of a DAG

Description

Returns a topological ordering of the nodes in a DAG. For every directed edge u -> v in the graph,
u will appear before v in the returned ordering.

Usage

topological_sort(cg)

Arguments

cg A caugi object of class DAG.

Value

A character vector of node names in topological order.

See Also

Other queries: ancestors(), anteriors(), children(), descendants(), districts(), edge_types(),
edges(), exogenous(), is_acyclic(), is_admg(), is_ag(), is_caugi(), is_cpdag(), is_dag(),
is_empty_caugi(), is_mag(), is_pdag(), is_ug(), m_separated(), markov_blanket(), neighbors(),
nodes(), parents(), same_nodes(), spouses(), subgraph()

Examples

Simple DAG: A -> B -> C
cg <- caugi(

A %-->% B,
B %-->% C,
class = "DAG"

)
topological_sort(cg) # Returns c("A", "B", "C") or equivalent valid ordering

DAG with multiple valid orderings
cg2 <- caugi(

A %-->% C,
B %-->% C,
class = "DAG"

)
Could return c("A", "B", "C") or c("B", "A", "C")
topological_sort(cg2)

to_dot 87

to_dot Export caugi Graph to DOT Format

Description

Converts a caugi graph to the Graphviz DOT format as a string. The DOT format can be used with
Graphviz tools for visualization and analysis.

Usage

to_dot(x, graph_attrs = list(), node_attrs = list(), edge_attrs = list())

Arguments

x A caugi object.

graph_attrs Named list of graph attributes (e.g., list(rankdir = "LR")).

node_attrs Named list of default node attributes.

edge_attrs Named list of default edge attributes.

Details

The function handles different edge types:

• Directed edges (-->) use -> in DOT

• Undirected edges (---) use -- in DOT (or -> with dir=none in digraphs)

• Bidirected edges (<->) use -> with [dir=both] attribute

• Partial edges (o->) use -> with [arrowtail=odot, dir=both] attribute

Value

A caugi_dot object containing the DOT representation.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_graphml(), to_mermaid(),
write_caugi(), write_dot(), write_graphml(), write_mermaid()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

88 to_graphml

Get DOT string
dot <- to_dot(cg)
dot@content

With custom attributes
dot <- to_dot(

cg,
graph_attrs = list(rankdir = "LR"),
node_attrs = list(shape = "box")

)

to_graphml Export caugi Graph to GraphML Format

Description

Converts a caugi graph to the GraphML XML format as a string. GraphML is widely supported by
graph analysis tools and libraries.

Usage

to_graphml(x)

Arguments

x A caugi object.

Details

The GraphML export includes:

• Node IDs and labels

• Edge types stored as a custom edge_type attribute

• Graph class stored as a graph-level attribute

Edge types are encoded using the caugi DSL operators (e.g., "–>", "<->"). This allows for perfect
round-trip conversion back to caugi.

Value

A caugi_graphml object containing the GraphML representation.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_mermaid(), write_caugi(),
write_dot(), write_graphml(), write_mermaid()

to_mermaid 89

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Get GraphML string
graphml <- to_graphml(cg)
cat(graphml@content)

Write to file
Not run:
write_graphml(cg, "graph.graphml")

End(Not run)

to_mermaid Export caugi Graph to Mermaid Format

Description

Converts a caugi graph to the Mermaid flowchart format as a string. Mermaid diagrams can be
rendered in Quarto, R Markdown, GitHub, and many other platforms.

Usage

to_mermaid(x, direction = "TD")

Arguments

x A caugi object.

direction Graph direction: "TB" (top-bottom), "TD" (top-down), "BT" (bottom-top), "LR"
(left-right), or "RL" (right-left). Default is "TD".

Details

The function handles different edge types:

• Directed edges (-->) use --> in Mermaid

• Undirected edges (---) use --- in Mermaid

• Bidirected edges (<->) use <--> in Mermaid

• Partial edges (o->) use o--> in Mermaid (circle end)

Node names are automatically escaped if they contain special characters.

90 write_caugi

Value

A caugi_mermaid object containing the Mermaid representation.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), write_caugi(),
write_dot(), write_graphml(), write_mermaid()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Get Mermaid string
mmd <- to_mermaid(cg)
mmd@content

With custom direction
mmd <- to_mermaid(cg, direction = "LR")

write_caugi Write caugi Graph to File

Description

Writes a caugi graph to a file in the native caugi JSON format. This format is designed for repro-
ducibility, caching, and sharing caugi graphs across R sessions.

Usage

write_caugi(x, path, comment = NULL, tags = NULL)

Arguments

x A caugi object or an object coercible to caugi.

path Character string specifying the file path.

comment Optional character string with a comment about the graph.

tags Optional character vector of tags for categorizing the graph.

write_caugi 91

Details

The caugi format is a versioned JSON schema that captures:

• Graph structure (nodes and edges with their types)

• Graph class (DAG, PDAG, ADMG, UG, etc.)

• Optional metadata (comments and tags)

Edge types are encoded using their DSL operators (e.g., "-->", "<->", "--").

For a complete guide to the format, see vignette("serialization", package = "caugi"). The
formal JSON Schema is available at: https://caugi.org/schemas/caugi-v1.schema.json

Value

Invisibly returns the input x.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(),
write_dot(), write_graphml(), write_mermaid()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Write to file
tmp <- tempfile(fileext = ".caugi.json")
write_caugi(cg, tmp, comment = "Example DAG")

Read back
cg2 <- read_caugi(tmp)
identical(edges(cg), edges(cg2))

Clean up
unlink(tmp)

https://caugi.org/schemas/caugi-v1.schema.json

92 write_dot

write_dot Write caugi Graph to DOT File

Description

Writes a caugi graph to a file in Graphviz DOT format.

Usage

write_dot(x, file, ...)

Arguments

x A caugi object.

file Path to output file.

... Additional arguments passed to to_dot(), such as graph_attrs, node_attrs,
and edge_attrs.

Value

Invisibly returns the path to the file.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(),
write_caugi(), write_graphml(), write_mermaid()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Not run:
Write to file
write_dot(cg, "graph.dot")

With custom attributes
write_dot(

cg,
"graph.dot",
graph_attrs = list(rankdir = "LR")

)

write_graphml 93

End(Not run)

write_graphml Write caugi Graph to GraphML File

Description

Exports a caugi graph to a GraphML file.

Usage

write_graphml(x, path)

Arguments

x A caugi object.

path File path for the output GraphML file.

Value

Invisibly returns NULL. Called for side effects.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(),
write_caugi(), write_dot(), write_mermaid()

Examples

cg <- caugi(A %-->% B + C, class = "DAG")

tmp <- tempfile(fileext = ".graphml")
write_graphml(cg, tmp)

Read it back
cg2 <- read_graphml(tmp)

Clean up
unlink(tmp)

94 write_mermaid

write_mermaid Write caugi Graph to Mermaid File

Description

Writes a caugi graph to a file in Mermaid format.

Usage

write_mermaid(x, file, ...)

Arguments

x A caugi object.

file Path to output file.

... Additional arguments passed to to_mermaid(), such as direction.

Value

Invisibly returns the path to the file.

See Also

Other export: caugi_deserialize(), caugi_dot(), caugi_export(), caugi_graphml(), caugi_mermaid(),
caugi_serialize(), export-classes, format-caugi, format-dot, format-graphml, format-mermaid,
knit_print.caugi_export, read_caugi(), read_graphml(), to_dot(), to_graphml(), to_mermaid(),
write_caugi(), write_dot(), write_graphml()

Examples

cg <- caugi(
A %-->% B + C,
B %-->% D,
C %-->% D,
class = "DAG"

)

Not run:
Write to file
write_mermaid(cg, "graph.mmd")

With custom direction
write_mermaid(cg, "graph.mmd", direction = "LR")

End(Not run)

Index

∗ adjustment
adjustment_set, 5
all_adjustment_sets_admg, 7
all_backdoor_sets, 8
d_separated, 42
is_valid_adjustment_admg, 60
is_valid_backdoor, 61

∗ caugi methods
length, 64
print, 75

∗ caugi
caugi, 18

∗ conversions
as_adjacency, 12
as_bnlearn, 13
as_caugi, 13
as_dagitty, 16
as_igraph, 17

∗ export
caugi_deserialize, 21
caugi_dot, 22
caugi_export, 23
caugi_graphml, 23
caugi_mermaid, 32
caugi_serialize, 35
export-classes, 46
format-caugi, 47
format-dot, 47
format-graphml, 48
format-mermaid, 48
knit_print.caugi_export, 62
read_caugi, 76
read_graphml, 77
to_dot, 87
to_graphml, 88
to_mermaid, 89
write_caugi, 90
write_dot, 92
write_graphml, 93

write_mermaid, 94
∗ methods

length, 64
print, 75

∗ metrics
aid, 6
hd, 49
shd, 81

∗ operations
condition_marginalize, 38
exogenize, 45
latent_project, 63
moralize, 66
mutate_caugi, 66
skeleton, 83

∗ options
caugi_default_options, 20
caugi_options, 33

∗ plotting
add-caugi_plot-caugi_plot, 4
caugi_layout, 24
caugi_layout_bipartite, 26
caugi_layout_fruchterman_reingold,

28
caugi_layout_kamada_kawai, 29
caugi_layout_sugiyama, 30
caugi_layout_tiered, 31
caugi_plot, 34
divide-caugi_plot-caugi_plot, 41
plot, 72

∗ queries
ancestors, 9
anteriors, 11
children, 37
descendants, 39
districts, 40
edge_types, 44
edges, 43
exogenous, 45

95

96 INDEX

is_acyclic, 50
is_admg, 51
is_ag, 52
is_caugi, 53
is_cpdag, 54
is_dag, 55
is_empty_caugi, 56
is_mag, 57
is_pdag, 58
is_ug, 59
m_separated, 67
markov_blanket, 65
neighbors, 68
nodes, 70
parents, 71
same_nodes, 80
spouses, 84
subgraph, 85
topological_sort, 86

∗ registry
register_caugi_edge, 78
registry, 79

∗ simulation functions
generate_graph, 48
simulate_data, 82

∗ simulation
generate_graph, 48
simulate_data, 82

∗ verbs
build, 17
caugi_verbs, 36

add-caugi_plot-caugi_plot, 4
add_edges (caugi_verbs), 36
add_nodes (caugi_verbs), 36
adjustment_set, 5, 7, 9, 43, 60, 61
aid, 6, 50, 82
all_adjustment_sets_admg, 5, 7, 9, 43, 60,

61
all_backdoor_sets, 5, 7, 8, 43, 60, 61
ancestors, 9, 11, 38, 40, 43, 44, 46, 50–59,

65, 68, 69, 71, 72, 81, 84–86
anteriors, 10, 11, 38, 40, 43, 44, 46, 50–59,

65, 68, 69, 71, 72, 81, 84–86
as_adjacency, 12, 13, 14, 16, 17
as_bnlearn, 12, 13, 14, 16, 17
as_caugi, 12, 13, 13, 16, 17
as_dagitty, 12–14, 16, 17
as_igraph, 12–14, 16, 17

build, 17, 37
build(), 14, 19

caugi, 18
caugi_default_options, 20
caugi_deserialize, 21, 22, 23, 33, 35, 47,

48, 63, 76, 77, 87, 88, 90–94
caugi_dot, 22, 22, 23, 33, 35, 46–48, 63, 76,

77, 87, 88, 90–94
caugi_export, 22, 23, 23, 33, 35, 46–48, 63,

76, 77, 87, 88, 90–94
caugi_graphml, 22, 23, 23, 33, 35, 47, 48, 63,

76, 77, 87, 88, 90–94
caugi_layout, 4, 24, 27–31, 35, 41, 74
caugi_layout(), 72
caugi_layout_bipartite, 4, 25, 26, 28–31,

35, 41, 74
caugi_layout_fruchterman_reingold, 4,

25, 27, 28, 29–31, 35, 41, 74
caugi_layout_kamada_kawai, 4, 25, 27, 28,

29, 30, 31, 35, 41, 74
caugi_layout_sugiyama, 4, 25, 27–29, 30,

31, 35, 41, 74
caugi_layout_tiered, 4, 25, 27–30, 31, 35,

41, 74
caugi_mermaid, 22, 23, 32, 35, 46–48, 63, 76,

77, 87, 88, 90–94
caugi_options, 33
caugi_options(), 4, 21, 41
caugi_plot, 4, 25, 27–31, 34, 41, 74
caugi_registry (registry), 79
caugi_serialize, 22, 23, 33, 35, 47, 48, 63,

76, 77, 87, 88, 90–94
caugi_verbs, 18, 36
children, 10, 11, 37, 40, 43, 44, 46, 50–59,

65, 68, 69, 71, 72, 81, 84–86
condition_marginalize, 38, 45, 63, 66, 67,

84

d_separated, 5, 7, 9, 42, 60, 61
descendants, 10, 11, 38, 39, 40, 43, 44, 46,

50–59, 65, 68, 69, 71, 72, 81, 84–86
districts, 10, 11, 38, 40, 40, 43, 44, 46,

50–59, 65, 68, 69, 71, 72, 81, 84–86
divide-caugi_plot-caugi_plot, 41

E (edges), 43
edge_types, 10, 11, 38, 40, 43, 44, 46, 50–59,

65, 68, 69, 71, 72, 81, 84–86

INDEX 97

edges, 10, 11, 38, 40, 43, 44, 46, 50–59, 65,
68, 69, 71, 72, 81, 84–86

exogenize, 39, 45, 63, 66, 67, 84
exogenous, 10, 11, 38, 40, 43, 44, 45, 50–59,

65, 68, 69, 71, 72, 81, 84–86
export-classes, 46

format-caugi, 47
format-dot, 47
format-graphml, 48
format-mermaid, 48

generate_graph, 48, 83
grid::gpar(), 33, 34
grid::unit(), 33

hd, 6, 49, 82

is_acyclic, 10, 11, 38, 40, 43, 44, 46, 50,
51–59, 65, 68, 69, 71, 72, 81, 84–86

is_admg, 10, 11, 38, 40, 43, 44, 46, 50, 51,
52–59, 65, 68, 69, 71, 72, 81, 84–86

is_ag, 10, 11, 38, 40, 43, 44, 46, 50, 51, 52,
53–59, 65, 68, 69, 71, 72, 81, 84–86

is_caugi, 10, 11, 38, 40, 43, 44, 46, 50–52,
53, 54–59, 65, 68, 69, 71, 72, 81,
84–86

is_cpdag, 10, 11, 38, 40, 43, 44, 46, 50–53,
54, 55–59, 65, 68, 69, 71, 72, 81,
84–86

is_dag, 10, 11, 38, 40, 43, 44, 46, 50–54, 55,
56–59, 65, 68, 69, 71, 72, 81, 84–86

is_empty_caugi, 10, 11, 38, 40, 43, 44, 46,
50–55, 56, 57–59, 65, 68, 69, 71, 72,
81, 84–86

is_mag, 10, 11, 38, 40, 43, 44, 46, 50–56, 57,
58, 59, 65, 68, 69, 71, 72, 81, 84–86

is_pdag, 10, 11, 38, 40, 43, 44, 46, 50–57, 58,
59, 65, 68, 69, 71, 72, 81, 84–86

is_ug, 10, 11, 38, 40, 43, 44, 46, 50–58, 59,
65, 68, 69, 71, 72, 81, 84–86

is_valid_adjustment_admg, 5, 7, 9, 43, 60,
61

is_valid_backdoor, 5, 7, 9, 43, 60, 61

knit_print.caugi_export, 22, 23, 33, 35,
47, 48, 62, 76, 77, 87, 88, 90–94

latent_project, 39, 45, 63, 66, 67, 84
length, 64, 75

m_separated, 10, 11, 38, 40, 43, 44, 46,
50–59, 65, 67, 69, 71, 72, 81, 84–86

markov_blanket, 10, 11, 38, 40, 43, 44, 46,
50–59, 65, 68, 69, 71, 72, 81, 84–86

moralize, 39, 45, 63, 66, 67, 84
mutate_caugi, 39, 45, 63, 66, 66, 84

neighbors, 10, 11, 38, 40, 43, 44, 46, 50–59,
65, 68, 68, 71, 72, 81, 84–86

neighbours (neighbors), 68
nodes, 10, 11, 38, 40, 43, 44, 46, 50–59, 65,

68, 69, 70, 72, 81, 84–86

parents, 10, 11, 38, 40, 43, 44, 46, 50–59, 65,
68, 69, 71, 71, 81, 84–86

pipe-caugi_plot-caugi_plot
(add-caugi_plot-caugi_plot), 4

plot, 4, 25, 27–31, 35, 41, 72
plot(), 33, 34
print, 64, 75

read_caugi, 22, 23, 33, 35, 47, 48, 63, 76, 77,
87, 88, 90–94

read_graphml, 22, 23, 33, 35, 47, 48, 63, 76,
77, 87, 88, 90–94

register_caugi_edge, 78, 80
register_caugi_edge(), 18
registry, 78, 79
remove_edges (caugi_verbs), 36
remove_nodes (caugi_verbs), 36
reset_caugi_registry (registry), 79

same_nodes, 10, 11, 38, 40, 43, 44, 46, 50–59,
65, 68, 69, 71, 72, 80, 84–86

seal_caugi_registry (registry), 79
set_edges (caugi_verbs), 36
shd, 6, 50, 81
simulate_data, 49, 82
skeleton, 39, 45, 63, 66, 67, 83
spouses, 10, 11, 38, 40, 43, 44, 46, 50–59, 65,

68, 69, 71, 72, 81, 84, 85, 86
subgraph, 10, 11, 38, 40, 43, 44, 46, 50–59,

65, 68, 69, 71, 72, 81, 84, 85, 86

to_dot, 22, 23, 33, 35, 47, 48, 63, 76, 77, 87,
88, 90–94

to_dot(), 92
to_graphml, 22, 23, 33, 35, 47, 48, 63, 76, 77,

87, 88, 90–94

98 INDEX

to_mermaid, 22, 23, 33, 35, 47, 48, 63, 76, 77,
87, 88, 89, 91–94

to_mermaid(), 94
topological_sort, 10, 11, 38, 40, 43, 44, 46,

50–59, 65, 68, 69, 71, 72, 81, 84, 85,
86

V (nodes), 70
vertices (nodes), 70

write_caugi, 22, 23, 33, 35, 47, 48, 63, 76,
77, 87, 88, 90, 90, 92–94

write_dot, 22, 23, 33, 35, 47, 48, 63, 76, 77,
87, 88, 90, 91, 92, 93, 94

write_graphml, 22, 23, 33, 35, 47, 48, 63, 76,
77, 87, 88, 90–92, 93, 94

write_mermaid, 22, 23, 33, 35, 47, 48, 63, 76,
77, 87, 88, 90–93, 94

	add-caugi_plot-caugi_plot
	adjustment_set
	aid
	all_adjustment_sets_admg
	all_backdoor_sets
	ancestors
	anteriors
	as_adjacency
	as_bnlearn
	as_caugi
	as_dagitty
	as_igraph
	build
	caugi
	caugi_default_options
	caugi_deserialize
	caugi_dot
	caugi_export
	caugi_graphml
	caugi_layout
	caugi_layout_bipartite
	caugi_layout_fruchterman_reingold
	caugi_layout_kamada_kawai
	caugi_layout_sugiyama
	caugi_layout_tiered
	caugi_mermaid
	caugi_options
	caugi_plot
	caugi_serialize
	caugi_verbs
	children
	condition_marginalize
	descendants
	districts
	divide-caugi_plot-caugi_plot
	d_separated
	edges
	edge_types
	exogenize
	exogenous
	export-classes
	format-caugi
	format-dot
	format-graphml
	format-mermaid
	generate_graph
	hd
	is_acyclic
	is_admg
	is_ag
	is_caugi
	is_cpdag
	is_dag
	is_empty_caugi
	is_mag
	is_pdag
	is_ug
	is_valid_adjustment_admg
	is_valid_backdoor
	knit_print.caugi_export
	latent_project
	length
	markov_blanket
	moralize
	mutate_caugi
	m_separated
	neighbors
	nodes
	parents
	plot
	print
	read_caugi
	read_graphml
	register_caugi_edge
	registry
	same_nodes
	shd
	simulate_data
	skeleton
	spouses
	subgraph
	topological_sort
	to_dot
	to_graphml
	to_mermaid
	write_caugi
	write_dot
	write_graphml
	write_mermaid
	Index

