
Package ‘ale’
March 10, 2025

Title Interpretable Machine Learning and Statistical Inference with
Accumulated Local Effects (ALE)

Version 0.3.1

Description Accumulated Local Effects (ALE) were initially developed as a model-agnostic ap-
proach for global explanations of the results of black-box machine learning algo-
rithms. ALE has a key advantage over other approaches like partial depen-
dency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean func-
tional decomposition of the model. As such, ALE values are not affected by the presence or ab-
sence of interactions among variables in a mode. Moreover, its computation is rela-
tively rapid. This package rewrites the original code from the 'ALEPlot' package for calculat-
ing ALE data and it completely reimplements the plotting of ALE values. It also ex-
tends the original ALE concept to add bootstrap-based confidence intervals and ALE-
based statistics that can be used for statistical inference. For more de-
tails, see Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Tech-
niques Based on Accumulated Local Effects (ALE).” arXiv. <doi:10.48550/arXiv.2310.09877>.

License GPL-2

Language en-ca

Encoding UTF-8

RoxygenNote 7.3.1

Suggests ALEPlot, knitr, mgcv, patchwork, readr, rmarkdown, testthat
(>= 3.0.0)

VignetteBuilder knitr

Imports assertthat, broom, dplyr, ellipsis, furrr, future, ggplot2,
ggpubr, glue, grDevices, insight, labeling, progressr, purrr,
rlang, stats, stringr, tidyr, univariateML, yaImpute

Depends R (>= 4.2.0)

URL https://github.com/tripartio/ale, https://tripartio.github.io/ale/

BugReports https://github.com/tripartio/ale/issues

Config/testthat/edition 3

LazyData true

NeedsCompilation no

1

https://doi.org/10.48550/arXiv.2310.09877
https://github.com/tripartio/ale
https://tripartio.github.io/ale/
https://github.com/tripartio/ale/issues

2 ale

Author Chitu Okoli [aut, cre] (<https://orcid.org/0000-0001-5574-7572>),
Dan Apley [cph] (The current code for calculating ALE interaction

values is copied with few changes from Dan Apley's ALEPlot package.
We gratefully acknowledge his open-source contribution. However, he
was not directly involved in the development of this ale package.)

Maintainer Chitu Okoli <Chitu.Okoli@skema.edu>

Repository CRAN

Date/Publication 2025-03-10 09:40:02 UTC

Contents
ale . 2
ale_ixn . 9
census . 12
create_p_funs . 13
model_bootstrap . 17
var_cars . 21

Index 23

ale Create and return ALE data, statistics, and plots

Description

ale() is the central function that manages the creation of ALE data and plots for one-way ALE.
For two-way interactions, see ale_ixn(). This function calls ale_core (a non-exported function)
that manages the ALE data and plot creation in detail. For details, see the introductory vignette for
this package or the details and examples below.

Usage

ale(
data,
model,
x_cols = NULL,
y_col = NULL,
...,
parallel = parallel::detectCores(logical = FALSE) - 1,
model_packages = as.character(NA),
output = c("plots", "data", "stats", "conf_regions"),
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",

https://orcid.org/0000-0001-5574-7572

ale 3

p_values = NULL,
p_alpha = c(0.01, 0.05),
x_intervals = 100,
boot_it = 0,
seed = 0,
boot_alpha = 0.05,
boot_centre = "mean",
relative_y = "median",
y_type = NULL,
median_band_pct = c(0.05, 0.5),
rug_sample_size = 500,
min_rug_per_interval = 1,
ale_xs = NULL,
ale_ns = NULL,
compact_plots = FALSE,
silent = FALSE

)

Arguments

data dataframe. Dataset from which to create predictions for the ALE.

model model object. Model for which ALE should be calculated. May be any kind of
R object that can make predictions from data.

x_cols character. Vector of column names from data for which one-way ALE data is to
be calculated (that is, simple ALE without interactions). If not provided, ALE
will be created for all columns in data except y_col.

y_col character length 1. Name of the outcome target label (y) variable. If not pro-
vided, ale() will try to detect it automatically. For non-standard models, y_col
should be provided. For survival models, set y_col to the name of the binary
event column; in that case, pred_type should also be specified.

... not used. Inserted to require explicit naming of subsequent arguments.

parallel non-negative integer length 1. Number of parallel threads (workers or tasks) for
parallel execution of the function. See details.

model_packages character. Character vector of names of packages that model depends on that
might not be obvious. The {ale} package should be able to automatically rec-
ognize and load most packages that are needed, but with parallel processing
enabled (which is the default), some packages might not be properly loaded.
If you get a strange error message that mentions something somewhere about
’future’, try adding the package for your model to this vector, especially if you
see such errors after the progress bars begin displaying (assuming you did not
disable progress bars with silent = TRUE).

output character in c(’plots’, ’data’, ’stats’, ’conf_regions’). Vector of types of results
to return. ’plots’ will return an ALE plot; ’data’ will return the source ALE
data; ’stats’ will return ALE statistics. Each option must be listed to return the
specified component. By default, all are returned.

4 ale

pred_fun, pred_type
function,character length 1. pred_fun is a function that returns a vector of pre-
dicted values of type pred_type from model on data. See details.

p_values instructions for calculating p-values and to determine the median band. If NULL
(default), no p-values are calculated and median_band_pct is used to determine
the median band. To calculate p-values, an object generated by the create_p_funs()
function must be provided here. If p_values is set to ’auto’, this ale() func-
tion will try to automatically create the p-values function; this only works with
standard R model types. Any error message will be given if p-values cannot be
generated. Any other input provided to this argument will result in an error. For
more details about creating p-values, see documentation for create_p_funs().
Note that p-values will not be generated if ’stats’ are not included as an option
in the output argument.

p_alpha numeric length 2 from 0 to 1. Alpha for "confidence interval" ranges for print-
ing bands around the median for single-variable plots. These are the default
values used if p_values are provided. If p_values are not provided, then
median_band_pct is used instead. The inner band range will be the median
value of y ± p_alpha[2] of the relevant ALE statistic (usually ALE range or
normalized ALE range). For plots with a second outer band, its range will be the
median ± p_alpha[1]. For example, in the ALE plots, for the default p_alpha
= c(0.01, 0.05), the inner band will be the median ± ALE minimum or max-
imum at p = 0.05 and the outer band will be the median ± ALE minimum or
maximum at p = 0.01.

x_intervals positive integer length 1. Maximum number of intervals on the x-axis for the
ALE data for each column in x_cols. The number of intervals that the algo-
rithm generates might eventually be fewer than what the user specifies if the
data values for a given x value do not support that many intervals.

boot_it non-negative integer length 1. Number of bootstrap iterations for the ALE val-
ues. If boot_it = 0 (default), then ALE will be calculated on the entire dataset
with no bootstrapping.

seed integer length 1. Random seed. Supply this between runs to assure that identical
random ALE data is generated each time

boot_alpha numeric length 1 from 0 to 1. Alpha for percentile-based confidence interval
range for the bootstrap intervals; the bootstrap confidence intervals will be the
lowest and highest (1 - 0.05) / 2 percentiles. For example, if boot_alpha =
0.05 (default), the intervals will be from the 2.5 and 97.5 percentiles.

boot_centre character length 1 in c(’mean’, ’median’). When bootstrapping, the main es-
timate for ale_y is considered to be boot_centre. Regardless of the value
specified here, both the mean and median will be available.

relative_y character length 1 in c(’median’, ’mean’, ’zero’). The ale_y values will be ad-
justed relative to this value. ’median’ is the default. ’zero’ will maintain the
default of ALEPlot::ALEPlot(), which is not shifted.

y_type character length 1. Datatype of the y (outcome) variable. Must be one of
c(’binary’, ’numeric’, ’multinomial’, ’ordinal’). Normally determined automat-
ically; only provide for complex non-standard models that require it.

ale 5

median_band_pct

numeric length 2 from 0 to 1. Alpha for "confidence interval" ranges for print-
ing bands around the median for single-variable plots. These are the default
values used if p_values are not provided. If p_values are provided, then
median_band_pct is ignored. The inner band range will be the median value
of y ± median_band_pct[1]/2. For plots with a second outer band, its range
will be the median ± median_band_pct[2]/2. For example, for the default
median_band_pct = c(0.05, 0.5), the inner band will be the median ± 2.5%
and the outer band will be the median ± 25%.

rug_sample_size, min_rug_per_interval
single non-negative integer length 1. Rug plots are normally down-sampled oth-
erwise they are too slow. rug_sample_size specifies the size of this sample. To
prevent down-sampling, set to Inf. To suppress rug plots, set to 0. When down-
sampling, the rug plots maintain representativeness of the data by guaranteeing
that each of the x_intervals intervals will retain at least min_rug_per_interval
elements; usually set to just 1 or 2.

ale_xs, ale_ns list of ale_x and ale_n vectors. If provided, these vectors will be used to set
the intervals of the ALE x axis for each variable. By default (NULL), the
function automatically calculates the ale_x intervals. ale_xs is normally used
in advanced analyses where the ale_x intervals from a previous analysis are
reused for subsequent analyses (for example, for full model bootstrapping; see
the model_bootstrap() function).

compact_plots logical length 1, default FALSE. When output includes ’plots’, the returned
ggplot objects each include the environments of the plots. This lets the user
modify the plots with all the flexibility of ggplot, but it can result in very large
return objects (sometimes even hundreds of megabytes large). To compact the
plots to their bare minimum, set compact_plots = TRUE. However, returned
plots will not be easily modifiable, so this should only be used if you do not
want to subsequently modify the plots.

silent logical length 1, default FALSE. If TRUE, do not display any non-essential mes-
sages during execution (such as progress bars). Regardless, any warnings and
errors will always display. See details for how to enable progress bars.

Details

ale_core.R

Core functions for the ale package: ale, ale_ixn, and ale_core

Value

list with the following elements:

• data: a list whose elements, named by each requested x variable, are each a tibble with the
following columns:

– ale_x: the values of each of the ALE x intervals or categories.
– ale_n: the number of rows of data in each ale_x interval or category.

6 ale

– ale_y: the ALE function value calculated for that interval or category. For bootstrapped
ALE, this is the same as ale_y_mean by default or ale_y_median if the boot_centre
= 'median' argument is specified. Regardless, both ale_y_mean and ale_y_median are
returned as columns here.

– ale_y_lo, ale_y_hi: the lower and upper confidence intervals, respectively, for the
bootstrapped ale_y value. Note: regardless what options are requested in the output
argument, this data element is always returned.

• stats: if stats are requested in the output argument (as is the default), returns a list. If
not requested, returns NULL. The returned list provides ALE statistics of the data element
duplicated and presented from various perspectives in the following elements:

– by_term: a list named by each requested x variable, each of whose elements is a tibble
with the following columns:

* statistic: the ALE statistic specified in the row (see the by_statistic element
below).

* estimate: the bootstrapped mean or median of the statistic, depending on the
boot_centre argument to the ale() function. Regardless, both mean and median
are returned as columns here.

* conf.low, conf.high: the lower and upper confidence intervals, respectively, for
the bootstrapped estimate.

– by_statistic: list named by each of the following ALE statistics: aled, aler_min,
aler_max, naled, naler_min, naler_max. See vignette('ale-statistics') for de-
tails.

– estimate: a tibble whose data consists of the estimate values from the by_term element
above. The columns are term (the variable name) and the statistic for which the estimate
is given: aled, aler_min, aler_max, naled, naler_min, naler_max.

– effects_plot: a ggplot object which is the ALE effects plot for all the x variables.

• plots: if plots are requested in the output argument (as is the default), returns a list whose
elements, named by each requested x variable, are each a ggplot object of the ALE y values
plotted against the x variable intervals. If plots is not included in output, this element is
NULL.

• conf_regions: if conf_regions are requested in the output argument (as is the default),
returns a list. If not requested, returns NULL. The returned list provides summaries of the con-
fidence regions of the relevant ALE statistics of the data element. The list has the following
elements:

– by_term: a list named by each requested x variable, each of whose elements is a tibble
with the relevant data for the confidence regions. (See vignette('ale-statistics')
for details about confidence regions.)

– significant: a tibble that summarizes the by_term to only show confidence regions
that are statistically significant. Its columns are those from by_term plus a term column
to specify which x variable is indicated by the respective row.

– sig_criterion: a length-one character vector that reports which values were used to
determine statistical significance: if p_values was provided to the ale() function, it will
be used; otherwise, median_band_pct will be used.

• Various values echoed from the original call to the ale() function, provided to document the
key elements used to calculate the ALE data, statistics, and plots: y_col, x_cols, boot_it,

ale 7

seed, boot_alpha, boot_centre, relative_y, y_type, median_band_pct, rug_sample_size.
These are either the values provided by the user or used by default if the user did not change
them.

• y_summary: summary statistics of y values used for the ALE calculation. These statistics are
based on the actual values of y_col unless if y_type is a probability or other value that is
constrained in the [0, 1] range. In that case, y_summary is based on the predicted values of
y_col by applying model to the data. y_summary is a named numeric vector. Most of the
elements are the percentile of the y values. E.g., the ’5%’ element is the 5th percentile of y
values. The following elements have special meanings:

– The first element is named either p or q and its value is always 0. The value is not
used; only the name of the element is meaningful. p means that the following special
y_summary elements are based on the provided p_values object. q means that quantiles
were calculated based on median_band_pct because p_values was not provided.

– min, mean, max: the minimum, mean, and maximum y values, respectively. Note that the
median is 50%, the 50th percentile.

– med_lo_2, med_lo, med_hi, med_hi_2: med_lo and med_hi are the inner lower and up-
per confidence intervals of y values with respect to the median (50%); med_lo_2 and
med_hi_2 are the outer confidence intervals. See the documentation for the p_alpha and
median_band_pct arguments to understand how these are determined.

Custom predict function

The calculation of ALE requires modifying several values of the original data. Thus, ale() needs
direct access to a predict function that work on model. By default, ale() uses a generic default
predict function of the form predict(object, newdata, type) with the default prediction type
of ’response’. If, however, the desired prediction values are not generated with that format, the
user must specify what they want. Most of the time, the only modification needed is to change the
prediction type to some other value by setting the pred_type argument (e.g., to ’prob’ to generated
classification probabilities). But if the desired predictions need a different function signature, then
the user must create a custom prediction function and pass it to pred_fun. The requirements for
this custom function are:

• It must take three required arguments and nothing else:

– object: a model
– newdata: a dataframe or compatible table type
– type: a string; it should usually be specified as type = pred_type These argument names

are according to the R convention for the generic stats::predict function.

• It must return a vector of numeric values as the prediction.

You can see an example below of a custom prediction function.

Note: survival models probably do not need a custom prediction function but y_col must be set
to the name of the binary event column and pred_type must be set to the desired prediction type.

ALE statistics

For details about the ALE-based statistics (ALED, ALER, NALED, and NALER), see vignette('ale-statistics').

8 ale

Parallel processing

Parallel processing using the {furrr} library is enabled by default. By default, it will use all the
available physical CPU cores (minus the core being used for the current R session) with the setting
parallel = parallel::detectCores(logical = FALSE) - 1. Note that only physical cores are
used (not logical cores or "hyperthreading") because machine learning can only take advantage of
the floating point processors on physical cores, which are absent from logical cores. Trying to
use logical cores will not speed up processing and might actually slow it down with useless data
transfer. If you will dedicate the entire computer to running this function (and you don’t mind
everything else becoming very slow while it runs), you may use all cores by setting parallel =
parallel::detectCores(logical = FALSE). To disable parallel processing, set parallel = 0.

Progress bars

Progress bars are implemented with the {progressr} package, which lets the user fully control
progress bars. To disable progress bars, set silent = TRUE. The first time a function is called
in the {ale} package that requires progress bars, it checks if the user has activated the necessary
{progressr} settings. If not, the {ale} package automatically enables {progressr} progress bars
with the cli handler and prints a message notifying the user.

If you like the default progress bars and you want to make them permanent, then you can add the
following lines of code to your .Rprofile configuration file and they will become your defaults for
every R session; you will not see the message again:

progressr::handlers(global = TRUE)
progressr::handlers('cli')

For more details on formatting progress bars to your liking, see the introduction to the {progressr}
package.

References

Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE).” arXiv. https://arxiv.org/abs/2310.09877.

Examples

set.seed(0)
diamonds_sample <- ggplot2::diamonds[sample(nrow(ggplot2::diamonds), 1000),]

Create a GAM model with flexible curves to predict diamond price
Smooth all numeric variables and include all other variables
gam_diamonds <- mgcv::gam(

price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +
cut + color + clarity,

data = diamonds_sample
)
summary(gam_diamonds)

https://progressr.futureverse.org/articles/progressr-intro.html
https://progressr.futureverse.org/articles/progressr-intro.html
https://arxiv.org/abs/2310.09877

ale_ixn 9

Simple ALE without bootstrapping
ale_gam_diamonds <- ale(

diamonds_sample, gam_diamonds,
parallel = 2 # CRAN limit (delete this line on your own computer)

)

Plot the ALE data
ale_gam_diamonds$plots |>

patchwork::wrap_plots()

Bootstrapped ALE
This can be slow, since bootstrapping runs the algorithm boot_it times

Create ALE with 100 bootstrap samples
ale_gam_diamonds_boot <- ale(

diamonds_sample, gam_diamonds, boot_it = 100,
parallel = 2 # CRAN limit (delete this line on your own computer)

)

Bootstrapped ALEs print with confidence intervals
ale_gam_diamonds_boot$plots |>

patchwork::wrap_plots()

If the predict function you want is non-standard, you may define a
custom predict function. It must return a single numeric vector.
custom_predict <- function(object, newdata, type = pred_type) {

predict(object, newdata, type = type, se.fit = TRUE)$fit
}

ale_gam_diamonds_custom <- ale(
diamonds_sample, gam_diamonds,
pred_fun = custom_predict, pred_type = 'link',
parallel = 2 # CRAN limit (delete this line on your own computer)

)

Plot the ALE data
ale_gam_diamonds_custom$plots |>

patchwork::wrap_plots()

ale_ixn Create and return ALE interaction data, statistics, and plots

10 ale_ixn

Description

This is the central function that manages the creation of ALE data and plots for two-way ALE
interactions. For simple one-way ALE, see ale(). See documentation there for functionality shared
between both functions.

For details, see the introductory vignette for this package or the details and examples below.

For the plots, n_y_quant is the number of quantiles into which to divide the predicted variable (y).
The middle quantiles are grouped specially:

• The middle quantile is the first confidence interval of median_band_pct (median_band_pct[1])
around the median. This middle quantile is special because it generally represents no mean-
ingful interaction.

• The quantiles above and below the middle are extended from the borders of the middle quantile
to the regular borders of the other quantiles.

There will always be an odd number of quantiles: the special middle quantile plus an equal number
of quantiles on each side of it. If n_y_quant is even, then a middle quantile will be added to it. If
n_y_quant is odd, then the number specified will be used, including the middle quantile.

Usage

ale_ixn(
data,
model,
x1_cols = NULL,
x2_cols = NULL,
y_col = NULL,
...,
parallel = parallel::detectCores(logical = FALSE) - 1,
model_packages = as.character(NA),
output = c("plots", "data"),
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",
x_intervals = 100,
relative_y = "median",
y_type = NULL,
median_band_pct = c(0.05, 0.5),
rug_sample_size = 500,
min_rug_per_interval = 1,
ale_xs = NULL,
n_x1_int = 20,
n_x2_int = 20,
n_y_quant = 10,
compact_plots = FALSE,
silent = FALSE

)

ale_ixn 11

Arguments

data See documentation for ale()

model See documentation for ale()
x1_cols, x2_cols

character. Vectors of column names from data for which two-way interaction
ALE data is to be calculated. ALE data will be calculated for each x1 column
interacting with each x2 column. x1_cols can be of any standard datatype (log-
ical, factor, or numeric) but x2_cols can only be numeric. If ixn is TRUE, then
both values must be provided.

y_col See documentation for ale()

... not used. Inserted to require explicit naming of subsequent arguments.

parallel See documentation for ale()

model_packages See documentation for ale()

output See documentation for ale()
pred_fun, pred_type

See documentation for ale()

x_intervals See documentation for ale()

relative_y See documentation for ale()

y_type See documentation for ale()
median_band_pct

See documentation for ale()
rug_sample_size, min_rug_per_interval

See documentation for ale()

ale_xs See documentation for ale()
n_x1_int, n_x2_int

positive scalar integer. Number of intervals for the x1 or x2 axes respectively
for interaction plot. These values are ignored if x1 or x2 are not numeric (i.e, if
they are logical or factors).

n_y_quant positive scalar integer. Number of intervals over which the range of y values is
divided for the colour bands of the interaction plot. See details.

compact_plots See documentation for ale()

silent See documentation for ale()

Value

list of ALE interaction data tibbles and plots. The list has two levels of depth:

• The first level is named by the x1 variables.

• Within each x1 variable list, the second level is named by the x2 variables.

• Within each x1-x2 list element, the data or plot is returned as requested in the output argu-
ment.

12 census

Examples

set.seed(0)
diamonds_sample <- ggplot2::diamonds[sample(nrow(ggplot2::diamonds), 1000),]

Create a GAM model with flexible curves to predict diamond price
Smooth all numeric variables and include all other variables
gam_diamonds <- mgcv::gam(

price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +
cut + color + clarity,

data = diamonds_sample
)
summary(gam_diamonds)

ALE two-way interactions
ale_ixn_gam_diamonds <- ale_ixn(

diamonds_sample, gam_diamonds,
parallel = 2 # CRAN limit (delete this line on your own computer)

)

Print interaction plots
ale_ixn_gam_diamonds$plots |>

extract list of x1 ALE outputs
purrr::walk(\(.x1) {

plot all x2 plots in each .x1 element
patchwork::wrap_plots(.x1) |>

print()
})

census Census Income

Description

Census data that indicates, among other details, if the respondent’s income exceeds $50,000 per
year. Also known as "Adult" dataset.

Usage

census

Format

A tibble with 32,561 rows and 15 columns:

higher_income TRUE if income > $50,000

create_p_funs 13

age continuous

workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-
pay, Never-worked

fnlwgt continuous. "A proxy for the demographic background of the people: ’People with similar
demographic characteristics should have similar weights’" For more details, see https://www.openml.org/search?type=data&id=1590.

education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,
7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool

education_num continuous

marital_status Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-
absent, Married-AF-spouse

occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-
cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-
serv, Protective-serv, Armed-Forces

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

sex Female, Male

capital_gain continuous

capital_loss continuous

hours_per_week continuous

native_country United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-
US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines,
Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic,
Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thai-
land, Yugoslavia, El-Salvador, Trinidad&Tobago, Peru, Hong, Holland-Netherlands

This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) li-
cense.

Source

Becker,Barry and Kohavi,Ronny. (1996). Adult. UCI Machine Learning Repository. https://doi.org/10.24432/C5XW20.

create_p_funs Create a p-value functions object that can be used to generate p-values

Description

Calculating p-values is not trivial for ALE statistics because ALE is non-parametric and model-
agnostic. Because ALE is non-parametric (that is, it does not assume any particular distribution
of data), the ale package generates p-values by calculating ALE for many random variables; this
makes the procedure somewhat slow. For this reason, they are not calculated by default; they must
be explicitly requested. Because the ale package is model-agnostic (that is, it works with any kind
of R model), the ale() function cannot always automatically manipulate the model object to create

14 create_p_funs

the p-values. It can only do so for models that follow the standard R statistical modelling conven-
tions, which includes almost all built-in R algorithms (like stats::lm() and stats::glm()) and
many widely used statistics packages (like mgcv and survival), but which excludes most machine
learning algorithms (like tidymodels and caret). For non-standard algorithms, the user needs to
do a little work to help the ale function correctly manipulate its model object:

• The full model call must be passed as a character string in the argument ’random_model_call_string’,
with two slight modifications as follows.

• In the formula that specifies the model, you must add a variable named ’random_variable’.
This corresponds to the random variables that create_p_funs() will use to estimate p-values.

• The dataset on which the model is trained must be named ’rand_data’. This corresponds to
the modified datasets that will be used to train the random variables.

See the example below for how this is implemented.

Usage

create_p_funs(
data,
model,
...,
parallel = parallel::detectCores(logical = FALSE) - 1,
model_packages = as.character(NA),
random_model_call_string = NULL,
random_model_call_string_vars = character(),
y_col = NULL,
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",
rand_it = 1000,
silent = FALSE,
.testing_mode = FALSE

)

Arguments

data See documentation for ale()

model See documentation for ale()

... not used. Inserted to require explicit naming of subsequent arguments.

parallel See documentation for ale()

model_packages See documentation for ale()
random_model_call_string

character string. If NULL, create_p_funs() tries to automatically detect and
construct the call for p-values. If it cannot, the function will fail early. In that
case, a character string of the full call for the model must be provided that in-
cludes the random variable. See details.

create_p_funs 15

random_model_call_string_vars

See documentation for model_call_string_vars in model_bootstrap(); the
operation is very similar.

y_col See documentation for ale()
pred_fun, pred_type

See documentation for ale().

rand_it non-negative integer length 1. Number of times that the model should be re-
trained with a new random variable. The default of 1000 should give reasonably
stable p-values. It can be reduced as low as 100 for faster test runs.

silent See documentation for ale()

.testing_mode logical. Internal use only.

Value

The return value is a list of class c('p_funs', 'ale', 'list') with an ale_version attribute
whose value is the version of the ale package used to create the object. See examples for an
illustration of how to inspect this list. Its elements are:

• value_to_p: a list of functions named for each each available ALE statistic. Each func-
tion signature is function(x) where x is a numeric. The function returns the p-value (min-
imum 0; maximum 1) for the respective statistic based on the random variable analysis.
For an input x that returns p, its interpretation is that p% of random variables obtained the
same or higher statistic value. For example, to get the p-value of a NALED of 4.2, enter
p_funs$value_to_p(4.2). A return value of 0.03 means that only 3% of random variables
obtained a NALED greater than or equal to 4.2.

• p_to_random_value: a list of functions named for each each available ALE statistic. These
are the inverse functions of value_to_p. The signature is function(p) where p is a numeric
from 0 to 1. The function returns the numeric value of the random variable statistic that would
yield the provided p-value. For an input p that returns x, its interpretation is that p% of random
variables obtained the same or higher statistic value. For example, to get the random variable
ALED for the 0.05 p-value, enter p_funs$p_to_random_value(0.05). A return value of 102
means that only 5% of random variables obtained an ALED greater than or equal to 102.

• rand_stats: a tibble whose rows are each of the rand_it iterations of the random variable
analysis and whose columns are the ALE statistics obtained for each random variable.

• residuals: the actual y_col values from data minus the predicted values from the model
(without random variables) on the data. residual_distribution: the closest estimated dis-
tribution for the residuals as determined by univariateML::rml(). This is the distribution
used to generate all the random variables.

Approach to calculating p-values

The ale package takes a literal frequentist approach to the calculation of p-values. That is, it
literally retrains the model 1000 times, each time modifying it by adding a distinct random variable
to the model. (The number of iterations is customizable with the rand_it argument.) The ALEs
and ALE statistics are calculated for each random variable. The percentiles of the distribution of
these random-variable ALEs are then used to determine p-values for non-random variables. Thus,
p-values are interpreted as the frequency of random variable ALE statistics that exceed the value of
ALE statistic of the actual variable in question. The specific steps are as follows:

16 create_p_funs

• The residuals of the original model trained on the training data are calculated (residuals are
the actual y target value minus the predicted values).

• The closest distribution of the residuals is detected with univariateML::model_select().

• 1000 new models are trained by generating a random variable each time with univariateML::rml()
and then training a new model with that random variable added.

• The ALEs and ALE statistics are calculated for each random variable.

• For each ALE statistic, the empirical cumulative distribution function (from stats::ecdf())
is used to create a function to determine p-values according to the distribution of the random
variables’ ALE statistics.

References

Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE).” arXiv. https://arxiv.org/abs/2310.09877.

Examples

Sample 1000 rows from the ggplot2::diamonds dataset (for a simple example)
set.seed(0)
diamonds_sample <- ggplot2::diamonds[sample(nrow(ggplot2::diamonds), 1000),]

Create a GAM model with flexible curves to predict diamond price
Smooth all numeric variables and include all other variables
gam_diamonds <- mgcv::gam(

price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +
cut + color + clarity,

data = diamonds_sample
)
summary(gam_diamonds)

Create p-value functions
pf_diamonds <- create_p_funs(

diamonds_sample,
gam_diamonds,
only 100 iterations for a quick demo; but usually should remain at 1000
rand_it = 100,

)

Examine the structure of the returned object
str(pf_diamonds)
In RStudio: View(pf_diamonds)

Calculate ALEs with p-values
ale_gam_diamonds <- ale(

diamonds_sample,
gam_diamonds,
p_values = pf_diamonds

)

Plot the ALE data. The horizontal bands in the plots use the p-values.
ale_gam_diamonds$plots |>

https://arxiv.org/abs/2310.09877

model_bootstrap 17

patchwork::wrap_plots()

For non-standard models that give errors with the default settings,
you can use 'random_model_call_string' to specify a model for the estimation
of p-values from random variables as in this example.
See details above for an explanation.
pf_diamonds <- create_p_funs(

diamonds_sample,
gam_diamonds,
random_model_call_string = 'mgcv::gam(
price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +

cut + color + clarity + random_variable,
data = rand_data

)',
only 100 iterations for a quick demo; but usually should remain at 1000
rand_it = 100,

)

model_bootstrap model_bootstrap.R

Description

Execute full model bootstrapping with ALE calculation on each bootstrap run

Usage

model_bootstrap(
data,
model,
...,
model_call_string = NULL,
model_call_string_vars = character(),
parallel = parallel::detectCores(logical = FALSE) - 1,
model_packages = as.character(NA),
boot_it = 100,
seed = 0,
boot_alpha = 0.05,
boot_centre = "mean",
output = c("ale", "model_stats", "model_coefs"),
ale_options = list(),
tidy_options = list(),
glance_options = list(),
compact_plots = FALSE,

18 model_bootstrap

silent = FALSE
)

Arguments

data dataframe. Dataset that will be bootstrapped.

model See documentation for ale()

... not used. Inserted to require explicit naming of subsequent arguments.
model_call_string

character string. If NULL, model_bootstrap() tries to automatically detect
and construct the call for bootstrapped datasets. If it cannot, the function will
fail early. In that case, a character string of the full call for the model must
be provided that includes boot_data as the data argument for the call. See
examples.

model_call_string_vars

character. Character vector of names of variables included in model_call_string
that are not columns in data. If any such variables exist, they must be speci-
fied here or else parallel processing will produce an error. If parallelization is
disabled with parallel = 0, then this is not a concern.

parallel See documentation for ale()

model_packages See documentation for ale()

boot_it integer from 0 to Inf. Number of bootstrap iterations. If boot_it = 0, then the
model is run as normal once on the full data with no bootstrapping.

seed integer. Random seed. Supply this between runs to assure identical bootstrap
samples are generated each time on the same data.

boot_alpha numeric. The confidence level for the bootstrap confidence intervals is 1 -
boot_alpha. For example, the default 0.05 will give a 95% confidence interval,
that is, from the 2.5% to the 97.5% percentile.

boot_centre See See documentation for ale()

output character vector. Which types of bootstraps to calculate and return:

• ’ale’: Calculate and return bootstrapped ALE data and plot.
• ’model_stats’: Calculate and return bootstrapped overall model statistics.
• ’model_coefs’: Calculate and return bootstrapped model coefficients.
• ’boot_data’: Return full data for all bootstrap iterations. This data will

always be calculated because it is needed for the bootstrap averages. By
default, it is not returned except if included in this output argument.

ale_options, tidy_options, glance_options
list of named arguments. Arguments to pass to the ale(), broom::tidy(), or
broom::glance() functions, respectively, beyond (or overriding) the defaults.
In particular, to obtain p-values for ALE statistics, see the details.

compact_plots See documentation for ale()

silent See documentation for ale()

model_bootstrap 19

Details

No modelling results, with or without ALE, should be considered reliable without being boot-
strapped. For large datasets, normally the model provided to ale() is the final deployment model
that has been validated and evaluated on training and testing on subsets; that is why ale() is calcu-
lated on the full dataset. However, when a dataset is too small to be subdivided into training and test
sets for a standard machine learning process, then the entire model should be bootstrapped. That
is, multiple models should be trained, one on each bootstrap sample. The reliable results are the
average results of all the bootstrap models, however many there are. For details, see the vignette on
small datasets or the details and examples below.

model_bootstrap() automatically carries out full-model bootstrapping suitable for small datasets.
Specifically, it:

• Creates multiple bootstrap samples (default 100; the user can specify any number);

• Creates a model on each bootstrap sample;

• Calculates model overall statistics, variable coefficients, and ALE values for each model on
each bootstrap sample;

• Calculates the mean, median, and lower and upper confidence intervals for each of those
values across all bootstrap samples.

P-values The broom::tidy() summary statistics will provide p-values as normal, but the situation
is somewhat complicated with p-values for ALE statistics. The challenge is that the procedure for
obtaining their p-values is very slow: it involves retraining the model 1000 times. Thus, it is not ef-
ficient to calculate p-values on every execution of model_bootstrap(). Although the ale() func-
tion provides an ’auto’ option for creating p-values, that option is disabled in model_bootstrap()
because it would be far too slow: it would involve retraining the model 1000 times the number of
bootstrap iterations. Rather, you must first create a p-values function object using the procedure
described in help(create_p_funs). If the name of your p-values object is p_funs, you can then
request p-values each time you run model_bootstrap() by passing it the argument ale_options
= list(p_values = p_funs).

Value

list with tibbles of the following elements (depending on values requested in the output argument:

• model_stats: bootstrapped results from broom::glance()

• model_coefs: bootstrapped results from broom::tidy()

• ale: bootstrapped ALE results

– data: ALE data (see ale() for details about the format)
– stats: ALE statistics. The same data is duplicated with different views that might be

variously useful. The column

* by_term: statistic, estimate, conf.low, median, mean, conf.high. ("term" means vari-
able name.) The column names are compatible with the broom package. The confi-
dence intervals are based on the ale() function defaults; they can be changed with
the ale_options argument. The estimate is the median or the mean, depending on
the boot_centre argument.

* by_statistic: term, estimate, conf.low, median, mean, conf.high.

20 model_bootstrap

* estimate: term, then one column per statistic Provided with the default estimate. This
view does not present confidence intervals.

– plots: ALE plots (see ale() for details about the format)

• boot_data: full bootstrap data (not returned by default)

• other values: the boot_it, seed, boot_alpha, and boot_centre arguments that were origi-
nally passed are returned for reference.

References

Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE).” arXiv. https://arxiv.org/abs/2310.09877.

Examples

attitude dataset
attitude

ALE for general additive models (GAM)
GAM is tweaked to work on the small dataset.
gam_attitude <- mgcv::gam(rating ~ complaints + privileges + s(learning) +

raises + s(critical) + advance,
data = attitude)

summary(gam_attitude)

Full model bootstrapping
Only 4 bootstrap iterations for a rapid example; default is 100
Increase value of boot_it for more realistic results
mb_gam <- model_bootstrap(

attitude,
gam_attitude,
boot_it = 4,
parallel = 2 # CRAN limit (delete this line on your own computer)

)

If the model is not standard, supply model_call_string with
'data = boot_data' in the string (not as a direct argument to [model_bootstrap()])
mb_gam <- model_bootstrap(

attitude,
gam_attitude,
model_call_string = 'mgcv::gam(

rating ~ complaints + privileges + s(learning) +
raises + s(critical) + advance,

data = boot_data
)',
boot_it = 4,
parallel = 2 # CRAN limit (delete this line on your own computer)

)

Model statistics and coefficients
mb_gam$model_stats

https://arxiv.org/abs/2310.09877

var_cars 21

mb_gam$model_coefs

Plot ALE
mb_gamaleplots |>

patchwork::wrap_plots()

var_cars Multi-variable transformation of the mtcars dataset.

Description

This is a transformation of the mtcars dataset from R to produce a small dataset with each of the
fundamental datatypes: logical, factor, ordered, integer, and double. Most of the transformations
are obvious, but two are noteworthy:

• For the unordered factor, the country of the car manufacturer is obtained based on the row
names of mtcars. This var_cars version does not have row names.

• For the ordered factor, gears 3, 4, and 5 are encoded as ’three’, ’four’, and ’five’, respectively.
The text labels make it explicit that the variable is ordinal, yet the number names make the
order crystal clear.

Here is the original description of the mtcars dataset:

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

var_cars

Format

A tibble with 32 observations on 12 variables.

mpg double: Miles/(US) gallon

cyl integer: Number of cylinders

disp double: Displacement (cu.in.)

hp double: Gross horsepower

drat double: Rear axle ratio

wt double: Weight (1000 lbs)

qsec double: 1/4 mile time

vs logical: Engine (0 = V-shaped, 1 = straight)

22 var_cars

am logical: Transmission (0 = automatic, 1 = manual)

gear ordered: Number of forward gears

carb integer: Number of carburetors

country factor: Country of car manufacturer

Note

Henderson and Velleman (1981) comment in a footnote to Table 1: ’Hocking (original transcriber)’s
noncrucial coding of the Mazda’s rotary engine as a straight six-cylinder engine and the Porsche’s
flat engine as a V engine, as well as the inclusion of the diesel Mercedes 240D, have been retained
to enable direct comparisons to be made with previous analyses.’

References

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37,
391–411.

Index

∗ datasets
census, 12
var_cars, 21

ale, 2
ale(), 6, 10, 11, 13–15, 18–20
ale_ixn, 9
ale_ixn(), 2
ALEPlot::ALEPlot(), 4

broom::glance(), 18, 19
broom::tidy(), 18, 19

census, 12
create_p_funs, 13
create_p_funs(), 4, 14

model_bootstrap, 17
model_bootstrap(), 5, 15, 18, 19

stats::glm(), 14
stats::lm(), 14

univariateML::rml(), 15

var_cars, 21

23

	ale
	ale_ixn
	census
	create_p_funs
	model_bootstrap
	var_cars
	Index

