

Package ‘Rtwalk’

February 2, 2026

Type Package

Title An MCMC Sampler Using the t-Walk Algorithm

Version 2.0.0

Maintainer Rodrigo Fonseca Villa <rodrigo03.villa@gmail.com>

Description Implements the t-walk algorithm, a general-purpose, self-adjusting Markov Chain Monte Carlo (MCMC) sampler for continuous distributions as described by Christen & Fox (2010) <[doi:10.1214/10-BA603](https://doi.org/10.1214/10-BA603)>. The t-walk requires no tuning and is robust for a wide range of target distributions, including high-dimensional and multimodal problems. This implementation includes an option for running multiple chains in parallel to accelerate sampling and facilitate convergence diagnostics.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Imports parallel, stats, utils

Suggests mvtnorm, coda, devtools, roxygen2, knitr, rmarkdown, ellipse, ggplot2, ggthemes, gridExtra, reshape2, viridis

VignetteBuilder knitr

URL <https://github.com/rodrigosqrt3/Rtwalk>

BugReports <https://github.com/rodrigosqrt3/Rtwalk/issues>

NeedsCompilation no

Author Rodrigo Fonseca Villa [aut, cre]

Repository CRAN

Date/Publication 2026-02-02 10:50:02 UTC

Contents

twalk	2
Index	4

twalk*Run the t-walk MCMC Algorithm*

Description

This function implements the t-walk algorithm by Christen & Fox (2010), a general-purpose MCMC sampler that does not require manual tuning. The function can run multiple independent MCMC chains in parallel to accelerate execution and facilitate convergence diagnostics.

Usage

```
twalk(log_posterior, n_iter, x0, xp0, n_chains = 1, n_cores = NULL, ...)
```

Arguments

log_posterior	A function that takes a parameter vector as its first argument and returns the scalar log posterior density. Additional arguments can be passed to this function via ‘...’.
n_iter	The number of iterations to run for each chain.
x0	A numeric vector with the initial values for the first point ('x').
xp0	A numeric vector with the initial values for the second point ('x').
n_chains	The number of independent MCMC chains to run. Defaults to ‘1’, which runs a single chain sequentially. If greater than 1, parallel mode is activated.
n_cores	The number of CPU cores to use in parallel mode. If ‘NULL’ (default), it will attempt to use all available cores minus one.
...	Additional arguments to be passed to the ‘log_posterior’ function.

Value

A list containing:

all_samples	A matrix with the combined samples from all chains.
acceptance_rate	The average acceptance rate across all chains.
total_iterations	The total number of samples generated (n_iter * n_chains).
n_dim	The dimension of the parameter space.
individual_chains	If ‘n_chains > 1’, a list containing the raw results from each separate chain, useful for diagnostics like R-hat.

Examples

```
# Example 1: Sampling from a Bivariate Normal (sequential mode)
# The 'mvtnorm' package is required for this example
if (requireNamespace("mvtnorm", quietly = TRUE)) {
  log_post <- function(x) {
    mvtnorm::dmvnorm(x, mean = c(0, 0), sigma = matrix(c(1, 0.8, 0.8, 1), 2, 2), log = TRUE)
  }

  # Run with fewer iterations for a quick example
  # Set a seed for reproducibility
  set.seed(123)
  result_seq <- twalk(log_posterior = log_post, n_iter = 5000,
                       x0 = c(-1, 1), xp0 = c(1, -1))

  plot(result_seq$all_samples, pch = '.', main = "t-walk Samples (Sequential)")
}

# Example 2: The same problem in parallel (will run faster)
# Using 2 chains. n_iter is now per chain.
if (requireNamespace("mvtnorm", quietly = TRUE)) {
  set.seed(123)
  result_par <- twalk(log_posterior = log_post, n_iter = 2500,
                       x0 = c(-1, 1), xp0 = c(1, -1), n_chains = 2)

  plot(result_par$all_samples, pch = '.', main = "t-walk Samples (Parallel)")
}
```

Index

`twalk`, 2