Package ‘Rtwalk’

February 2, 2026

Type Package

Title An MCMC Sampler Using the t-Walk Algorithm

Version 2.0.0

Maintainer Rodrigo Fonseca Villa <rodrigo@3.villa@gmail.com>

Description Implements the t-walk algorithm, a general-purpose, self-adjusting
Markov Chain Monte Carlo (MCMC) sampler for continuous distributions as
described by Christen & Fox (2010) <doi:10.1214/10-BA603>. The t-walk requires
no tuning and is robust for a wide range of target distributions, including
high-dimensional and multimodal problems. This implementation includes an
option for running multiple chains in parallel to accelerate sampling and
facilitate convergence diagnostics.

License GPL-3

Encoding UTF-8
RoxygenNote 7.3.2
Imports parallel, stats, utils

Suggests mvtnorm, coda, devtools, roxygen2, knitr, rmarkdown, ellipse,
ggplot2, ggthemes, gridExtra, reshape2, viridis

VignetteBuilder knitr
URL https://github.com/rodrigosqrt3/Rtwalk

BugReports https://github.com/rodrigosqrt3/Rtwalk/issues
NeedsCompilation no

Author Rodrigo Fonseca Villa [aut, cre]

Repository CRAN

Date/Publication 2026-02-02 10:50:02 UTC

Contents

Index

https://doi.org/10.1214/10-BA603
https://github.com/rodrigosqrt3/Rtwalk
https://github.com/rodrigosqrt3/Rtwalk/issues

2 twalk

twalk Run the t-walk MCMC Algorithm

Description

This function implements the t-walk algorithm by Christen & Fox (2010), a general-purpose MCMC
sampler that does not require manual tuning. The function can run multiple independent MCMC
chains in parallel to accelerate execution and facilitate convergence diagnostics.

Usage

twalk(log_posterior, n_iter, x@, xp@, n_chains = 1, n_cores = NULL, ...)

Arguments

log_posterior A function that takes a parameter vector as its first argument and returns the
scalar log posterior density. Additional arguments can be passed to this function

I3

via ‘.5
n_iter The number of iterations to run for each chain.

X0 A numeric vector with the initial values for the first point (‘x°).

Xp@ A numeric vector with the initial values for the second point (‘x’°).

n_chains The number of independent MCMC chains to run. Defaults to ‘1°, which runs a

single chain sequentially. If greater than 1, parallel mode is activated.

n_cores The number of CPU cores to use in parallel mode. If ‘NULL* (default), it will
attempt to use all available cores minus one.

Additional arguments to be passed to the ‘log_posterior* function.

Value

A list containing:

all_samples A matrix with the combined samples from all chains.
acceptance_rate

The average acceptance rate across all chains.
total_iterations

The total number of samples generated (n_iter * n_chains).
n_dim The dimension of the parameter space.

individual_chains
If ‘n_chains > 1°, a list containing the raw results from each separate chain,
useful for diagnostics like R-hat.

twalk 3

Examples

Example 1: Sampling from a Bivariate Normal (sequential mode)
The 'mvtnorm' package is required for this example
if (requireNamespace("mvtnorm”, quietly = TRUE)) {
log_post <- function(x) {
mvtnorm: :dmvnorm(x, mean = c(@, @), sigma = matrix(c(1, 0.8, 0.8, 1), 2, 2), log = TRUE)
}

Run with fewer iterations for a quick example

Set a seed for reproducibility

set.seed(123)

result_seq <- twalk(log_posterior = log_post, n_iter = 5000,
x0 = c(-1, 1), xp0 = c(1, -1))

plot(result_seq$all_samples, pch = '.', main = "t-walk Samples (Sequential)")

Example 2: The same problem in parallel (will run faster)
Using 2 chains. n_iter is now per chain.
if (requireNamespace("mvtnorm”, quietly = TRUE)) {
set.seed(123)
result_par <- twalk(log_posterior = log_post, n_iter = 2500,
x0 = c(-1, 1), xp@ = c(1, -1), n_chains = 2)

(]

plot(result_par$all_samples, pch = , main = "t-walk Samples (Parallel)")

}

Index

twalk, 2

	twalk
	Index

