Package ‘LCPA’

January 22, 2026

Type Package

Title A General Framework for Latent Classify and Profile Analysis
Version 1.0.0

Date 2026-01-10

Author Haijiang Qin [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0000-6721-5653>),
Lei Guo [aut, cph] (ORCID: <https://orcid.org/0000-0002-8273-3587>)

Maintainer Haijiang Qin <haijiang133@outlook.com>

Description A unified latent class modeling framework that encompasses both latent class analy-
sis (LCA) and latent profile analysis (LPA), offering a one-stop solution for latent class model-
ing. It implements state-of-the-art parameter estimation methods, including the expecta-
tion—maximization (EM) algorithm, neural network estimation (NNE; re-
quires users to have 'Python' and its dependent libraries installed on their computer), and integra-
tion with 'Mplus' (requires users to have 'Mplus' installed on their computer). In addition, it pro-
vides commonly used model fit indices such as the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC), as well as classification accuracy mea-
sures such as entropy. The package also includes fully functional likelihood ra-
tio tests (LRT) and bootstrap likelihood ratio tests (BLRT) to facilitate model compari-
son, along with bootstrap-based and observed information matrix-based standard error estima-
tion. Furthermore, it supports the standard three-step approach for LCA, LPA, and latent transi-
tion analysis (LTA) with covariates, enabling detailed covariate analysis. Finally, it includes sev-
eral user-friendly auxiliary functions to enhance interactive usability.

License GPL-3
Depends R (>=4.1.0)

Imports reticulate, clue, ggplot2, tidyr, dplyr, mvtnorm, Matrix,
MASS, MplusAutomation, tidyselect, numDeriv, nloptr, Rcpp (>=
1.0.0)

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.3
Encoding UTF-8

NeedsCompilation yes

https://orcid.org/0009-0000-6721-5653
https://orcid.org/0000-0002-8273-3587

2 Contents

Collate 'adjust.response.R' 'check.response.R' 'compare.model.R'
'EM.LCA.R''EM.LPA.R' 'get. AvePP.R' 'get. CEP.R' 'get.entropy.R’
'get.fit.index.R' 'get.Log.Lik. LCA.R' 'get.Log.Lik. LPA R’
'get.Log.Lik.LTA.R' 'get.npar. LCA.R' 'get.npar.LPA.R’
'get.npar.LTA.R' 'get. P.Z. Xn.LCA.R' 'get.P.Z. Xn.LPA.R'
'get.SE.R' 'install_python_dependencies.R' 'Kmeans.LCA.R'
'LCA.R''LCPA.R' logit.R' 'LPA.R' 'LTA.R' 'LRT.test.R’
'LRT.test.Bootstrap.R' 'LRT.test. VLMR.R' 'Mplus.LCA.R’
'Mplus.LPA.R' normalize.R' '‘plotResponse.R' 'ReppExports.R'
'rdirichlet.R' 'S3extract.R' 'S3print.R' 'S3summary.R’
'S3update.R' 'sim.correlation.R' 'sim. LCA.R" 'sim.LPA.R’
'sim.LTA.R' 'tools.R" 'utils.R' logpdf_component.R' 'zzz.R'

Repository CRAN
Date/Publication 2026-01-22 09:40:08 UTC

Contents
AdjUSLIESPONSE . . . v v v v i e e e e e e e e e e e e e e e e e e 3
checkresponse L 4
compare.model L. 5
EXITACE v o e e e e e e e e 7
get AvePP . . . e 13
get.CEP e 15
GELENIIOPY .« « . v v v e e e e e e e e e e e 16
getfitindex 18
getLog LIk LCA e 19
get.Log Lik LPA e 21
getLog Lik LTA e 23
getnpar.LCA L e e 25
getnpar.LPA L 26
getnpar.LTA o e e 28
getPZXnLCA e 30
getPZ.XnLPA e e 32
get.SE . . e 33
install_python_dependencies 35
Kmeans.LCA e 36
LCA . 38
LCPA . . e 44
logit e 51
LPA . o 53
LRTutest o e e e e 60
LRT.test.Bootstrap o e e e e e 61
LRT.test VLMR e 63
LTA . e 64
normalize e 73
PIOtRESpONSE e e e e 75

PIINt . . . o e 76

adjust.response

updateo e

Index

adjust.response Adjust Categorical Response Data for Polytomous Items

Description

Standardizes polytomous response data by converting raw category values to consecutive integers
starting from 0. Records original category values for potential reverse transformation. Handles

varying numbers of response categories across items.

Usage

adjust.response(response)

Arguments
response A matrix or data frame containing response data where:
* Rows represent respondents (/N observations)
* Columns represent items/questions (/ items)
* Cells contain raw response values (numeric)
Non-numeric columns will be coerced to numeric with warning.
Details

The function processes each item column independently:

1. Extracts unique response values and sorts them in ascending order
2. Maps smallest value to 0, second smallest to 1, etc.
3. Records original values in poly.orig for possible reverse transformation

4. Handles items with different numbers of categories through NA-padding

Missing values (NA) in input are preserved as NA in output.

4 check.response

Value

A named list containing:

poly.orig I x K4, matrix. Original sorted category values for each item. Rows correspond to
items, columns to category positions. Empty cells filled with NA.

poly.value Integer vector of length /. Number of unique response categories per item.
poly.max Scalar integer. Maximum number of categories across all items, i.e., K,q,.-

response NN x I matrix. Adjusted response data where original values are replaced by zero-based
category indices (0 to & — 1 for k categories).

Examples

Simulate response data with 3 items and varying categories
set.seed(123)
resp <- data.frame(
iteml = sample(1:3, 10, replace = TRUE),
item2 = sample(c(@, 5, 10), 10, replace = TRUE),
item3 = sample(1:2, 10, replace = TRUE)
)

Apply adjustment
adjusted <- adjust.response(resp)

Inspect results

str(adjusted)

print(adjusted$poly.orig) # Original category values
print(adjusted$response) # Standardized responses

check.response Validate response matrix against expected polytomous category counts

Description

Checks whether each column in the response matrix contains exactly the number of unique response
categories specified in poly.value. Handles edge cases where all items have identical category
counts efficiently.

Usage

check.response(response, poly.value)

Arguments

response A numeric matrix of dimension N x I, where:

e N: Number of subjects/observations (rows)
e I: Number of items/variables (columns)

compare.model 5

Each cell contains the observed response value for a subject on an item.

poly.value An integer vector of length I specifying the expected number of unique response
categories (levels) for each corresponding item in response. Values must be
positive integers.

Value
Logical value indicating validation status:

* TRUE if either:
— All columns have identical numbers of unique values (regardless of poly.value specifi-
cation)
— Each column’s unique value count matches its corresponding poly.value entry

* FALSE if any column’s unique value count mismatches its specified poly. value (when columns
have varying category counts)

Note

This function contains a specific behavior: When all items have identical numbers of unique re-
sponse categories, it returns TRUE immediately without validating against poly.value. This may
lead to unexpected results if poly.value contains inconsistent expectations. Users should ensure
poly.value accurately reflects their measurement model.

Examples

Valid case: Matching category counts
resp_matrix <- matrix(c(1,1,2,2, 1,2,3,1), ncol = 2)
check.response(resp_matrix, poly.value = c(2, 3)) # Returns TRUE

Invalid case: Mismatched category counts
check.response(resp_matrix, poly.value = c(2, 2)) # Returns FALSE

Special case: Uniform category counts bypass poly.value check
uniform_resp <- matrix(rep(1:2, each = 4), ncol = 2)
check.response(uniform_resp, poly.value = c(2, 5)) # Returns TRUE (bypass behavior)

compare.model Model Comparison Tool

Description
Compares two nested latent class/profile models using multiple fit indices, likelihood ratio tests,
and classification metrics.

Usage

compare.model (object1, object2, n.Bootstrap = 0)

6 compare.model

Arguments
object1 An object of class LCA or LPA, representing the first latent class/profile model.
object2 An object of class LCA or LPA, representing the second latent class/profile model.
Must be of the same type as object1.
n.Bootstrap Integer specifying the number of bootstrap replications for the parametric boot-
strap likelihood ratio test (BLRT). Default is @ (no bootstrap test performed).
Details

This function performs comprehensive model comparison between two nested LCA/LPA models.
Key features include:

* Automatically orders models by parameter count (smaller model first)

* Computes multiple fit indices via get.fit.index

¢ Calculates classification quality metrics (entropy, average posterior probabilities)

* Performs three types of likelihood ratio tests:

— Standard LRT, see LRT. test
— VLMR adjusted LRT, see LRT. test.VLMR
— Parametric bootstrap LRT (computationally intensive but robust), see LRT. test.Bootstrap

* Computes Bayes Factor using Sample-Size Adjusted BIC (SIC)
Important Requirements:

* Both models must be of the same type (LCA or LPA)
¢ Models must be nested (one model is a constrained version of the other)

* n.Bootstrap > @ requires significant computational resources

Value
An object of class compare.model containing:

npar Named vector with number of free parameters for each model

entropy Named vector with entropy values (classification accuracy measure) for each model
AvePP List containing average posterior probabilities per latent class/profile

fit.index List of get.fit.index objects for both models

BF Bayes Factor for model comparison (based on SIC)

LRT.obj Likelihood ratio test (LRT) results

LRT.VLMR.obj Vuong-Lo-Mendell-Rubin (VLMR) adjusted LRT results
LRT.Bootstrap.obj Bootstrap LRT results (if n.Bootstrap > 0)

call The matched function call

arguments List containing the original arguments passed to the function

See Also

LCA, LPA, get.fit.index, extract, LRT. test, LRT.test.VLMR

extract 7

Examples

library(LCPA)
set.seed(123)

data.obj <- sim.LPA(N =500, I =5, L = 3, constraint = "V@")
response <- data.obj$response

need Mplus

Not run:

Compare 3-class vs 4-class LPA models

objectl <- LPA(response, L = 3, method = "Mplus”, constraint = "V@")
object2 <- LPA(response, L = 4, method = "Mplus”, constraint = "V@")

compare.model.obj <- compare.model(objectl, object2)
print(compare.model.obj)

End(Not run)

extract S3 Methods: extract

Description

A generic S3 extractor function designed to retrieve internal components from various model and
simulation objects produced by the LCPA package. This function provides a consistent interface
across different classes, allowing users to access estimated parameters, fit statistics, simulation
truths, standard errors, and more.

Usage
extract(object, what, ...)

S3 method for class 'LCA'
extract(object, what, ...)

S3 method for class 'LPA'
extract(object, what, ...)

S3 method for class 'LCPA'
extract(object, what, ...)

S3 method for class 'LTA'
extract(object, what, ...)

S3 method for class 'sim.LCA'
extract(object, what, ...)

S3 method for class 'sim.LPA'
extract(object, what, ...)

S3 method for class 'sim.LTA'
extract(object, what, ...)

S3 method for class 'fit.index'
extract(object, what, ...)

S3 method for class 'compare.model'
extract(object, what, ...)

S3 method for class 'SE'

extract(object, what, ...)
Arguments
object An object of one of the following classes:

what A character string specifying the name of the component to extract.

LCA — Latent Class Analysis model results.
LPA — Latent Profile Analysis model results.

LCPA — Latent Class/Profile Analysis with covariates.

LTA — Latent Transition Analysis model results.
sim.LCA — Simulated LCA data with known truth.
sim.LPA — Simulated LPA data with known truth.
sim.LTA — Simulated LTA data with known truth.
get.fit.index — Model fit indices object.
compare.model — Model comparison results.
get.SE — Standard error estimation results.

extract

Valid

choices depend on the class of object. See Details section for full listings.

Additional arguments passed to methods (currently ignored).

Details

This function supports extraction from ten primary object classes. Below are available components

for each:

LCA Latent Class Analysis model results. Available components:

params List containing all estimated model parameters.

par 3D array (L x I x K, ,x) of conditional response probabilities.

P.Z Vector of length L with latent class prior probabilities.

npar Number of free parameters in the model.
Log.Lik Log-likelihood of the final model.
AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

extract

best_BIC Best BIC value across replication runs (if nrep > 1).

P.Z.Xn N x L matrix of posterior class probabilities.

Z Vector of length N with MAP-classified latent class memberships.
probability List of formatted conditional probability matrices per item.
Log.Lik.history Vector tracking log-likelihood at each EM iteration.
Log.Lik.nrep Vector of log-likelihoods from each replication run.

model Trained neural network model object (only when method="NNE").
call The original function call used for model estimation.

arguments List containing all input arguments passed to the LCA function.

LPA Latent Profile Analysis model results. Available components:

params List containing all estimated model parameters.

means L X I matrix of estimated mean vectors for each profile.

covs I x I x L array of estimated covariance matrices.

P.Z Vector of length L with profile prior probabilities.

npar Number of free parameters (depends on constraint).

Log.Lik Log-likelihood of the final model.

AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

best_BIC Best BIC value across replication runs (if nrep > 1).

P.Z.Xn N x L matrix of posterior profile probabilities.

Z Vector of length N with MAP-classified profile memberships.
Log.Lik.history Vector tracking log-likelihood at each EM iteration.
Log.Lik.nrep Vector of log-likelihoods from each replication run.
model Trained model object (neural network or Mplus).

call The original function call used for model estimation.

arguments List containing all input arguments passed to the LPA function.

constraint Covariance structure constraints applied during estimation (from original argu-
ments).

LCPA Latent Class/Profile Analysis (with covariates). Available components:

beta Initial class coefficients (p1 x L matrix).
beta.se Standard errors for beta.

beta.Z.sta Z-statistics for beta.
beta.p.value.taill One-tailed p-values for beta.
beta.p.value.tail2 Two-tailed p-values for beta.
P.Z.Xn Posterior probabilities (N x L).

P.Z Prior proportions (length L).

Z Modal class assignments (length N).

npar Number of free parameters.

Log.Lik Log-likelihood.

AIC AIC.

BIC BIC.

iterations Optimization iterations in Step 3.

extract

coveraged Logical: did optimization converge early?
params Step 1 model parameters (LCA/LPA output).
call Function call.

arguments Input arguments list.

LTA Latent Transition Analysis model results. Available components:

beta Initial class coefficients (p1 x L matrix).

gamma Transition coefficients (nested list).

beta.se Standard errors for beta.

gamma.se Standard errors for gamma.

beta.Z.sta Z-statistics for beta.

gamma.Z.sta Z-statistics for gamma.
beta.p.value.taill One-tailed p-values for beta.
gamma.p.value.taill One-tailed p-values for gamma.
beta.p.value.tail2 Two-tailed p-values for beta.
gamma.p.value.tail2 Two-tailed p-values for gamma.
P.Z.Xns List of posterior probabilities per time (each N x L).
P.Zs List of prior proportions per time (each length L).
Zs List of modal class assignments per time (each length N).
npar Number of free parameters.

Log.Lik Log-likelihood.

AIC AIC.

BIC BIC.

iterations Optimization iterations in Step 3.
coveraged Logical: did optimization converge early?
params Step 1 model parameters (LCA/LPA output).
call Function call.

arguments Input arguments list.

sim.LCA Simulated Latent Class Analysis data. Available components:

response Integer matrix (N x I) of simulated categorical observations.

par Array (L x I X Ppax) of true class-specific category probabilities.

Z Integer vector (length V) of true latent class assignments.

P.Z Numeric vector (length L) of true class proportions.

poly.value Integer vector (length I) specifying categories per variable.

P.Z.Xn Binary matrix (N x L) of true class membership indicators.

call The original function call used for simulation.

arguments List containing all input arguments passed to sim.LCA.
sim.LPA Simulated Latent Profile Analysis data. Available components:

response Numeric matrix (/N x I) of simulated continuous observations.

means L x I matrix of true class-specific means.

covs I x I x L array of true class-specific covariance matrices.

P.Z.Xn N x L matrix of true class membership indicators.

extract

11

P.Z Numeric vector (Ilength L) of true class proportions.

Z Integer vector (length V) of true profile assignments.
constraint Original constraint specification passed to sim.LPA.
call The original function call used for simulation.

arguments List containing all input arguments passed to sim.LPA.

sim.LTA Simulated Latent Transition Analysis data. Available components:

responses List of response matrices per time point.

Zs List of true latent class assignments per time.

P.Zs List of true class proportions per time.

par True conditional probabilities (for categorical items).
means True profile means (for continuous variables).
covs True covariance matrices per class and time.
poly.value Categories per variable (for categorical items).
rate Transition rate matrix or structure.

covariates Simulated covariate matrix.

beta True initial class coefficients.

gamma True transition coefficients.

call Original simulation function call.

arguments Input arguments used in simulation.

fit.index Model fit indices object. Available components:

npar Number of free parameters in the model.

Log.Lik Log-likelihood of the model.

-2LL Deviance statistic (-2 times log-likelihood).

AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

SIC Sample-Size Adjusted BIC (-0.5 * BIC).

CAIC Consistent AIC.

AWE Approximate Weight of Evidence.

SABIC Sample-Size Adjusted BIC (alternative formulation).
call Original function call that generated the fit indices.
arguments List containing input arguments (includes original model object).

compare.model Model comparison results. Available components:

npar Named numeric vector with free parameters for each model (model1, model?2).
entropy Named numeric vector with entropy values for each model.

AvePP List of average posterior probabilities per class/profile for each model.

fit.index Listof get.fit.index objects for both models.

BF Bayes Factor comparing models (based on SIC differences).

LRT.obj Standard likelihood ratio test results (requires nested models).

LRT.VLMR.obj Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test results.
LRT.Bootstrap.obj Parametric bootstrap likelihood ratio test results (if n.Bootstrap > 9).
call The matched function call used for comparison.

12

extract

arguments List containing original input arguments (object1, object2, n.Bootstrap).

SE Standard error estimation results. Available components:

Value

se List containing standard errors for parameters (components depend on model type).
vcov Variance-covariance matrix (only for method="0bs").

hessian Observed information matrix (only for method="0bs").

diagnostics Method-specific diagnostic information (e.g., estimation method).

call Function call that generated the object.

arguments Input arguments used in estimation.

means Standard errors for profile means (LPA models only — accessed via se list).

covs Standard errors for covariance parameters (LPA models only — accessed via se list).
P.Z Standard errors for class proportions (both LCA/LPA — accessed via se list).

par Standard errors for conditional probabilities (LCA models only — accessed via se list).

The requested component. Return type varies depending on what and the class of object. If an
invalid what is provided, an informative error is thrown listing valid options.

Methods (by class)

extract(LCA): Extract fields from a LCA object

extract (LPA): Extract fields from a LPA object

extract(LCPA): Extract fields from a LCPA object

extract(LTA): Extract fields from a LTA object

extract(sim.LCA): Extract fields from a sim.LCA object
extract(sim.LPA): Extract fields from a sim.LPA object
extract(sim.LTA): Extract fields from a sim.LTA object
extract(fit.index): Extractor method for fit.index objects
extract(compare.model): Extract fields from a compare.model object
extract(SE): Extract fields from a SE object

Usage Notes

For LCA, LPA, LCPA, and LTA objects, components reflect estimated parameters.
For sim.LCA, sim.LPA, and sim.LTA objects, components reflect rrue data-generating param-
eters.
In SE objects:
— Top-level components like vcov and hessian are only available when method = "Obs".
Requesting them under Bootstrap triggers a warning and returns NULL.
— Parameter-specific SEs (e.g., means, par) are stored within the se list. You can extract
them directly by name (e.g., extract(se_obj, "means")).
— Attempting to extract unavailable parameter SEs (e.g., par from an LPA model) triggers
an error with available options.
For fit.index and compare.model objects, valid components are dynamically determined
from the object’s names.
All methods ignore additional arguments (. . .).

get.AvePP 13

Examples
set.seed(123)
Simulate LPA data: 500 observations, 3 continuous variables, 2 latent profiles

Constraint "EQ": Equal variances across classes, zero covariances
data.obj <- sim.LPA(N =500, I = 3, L = 2, constraint = "EQ")

Extract the simulated response matrix (N x I) for model fitting
response <- extract(data.obj, "response”)

Extract the TRUE covariance matrices (I x I x L array)
extract(data.obj, "covs")

Fit an LPA model to the simulated data using the SAME constraint ("EQ")
fit_E@ <- LPA(response, L = 2, constraint = "EQ")

Extract the ESTIMATED covariance matrices from the fitted model
extract(fit_E@, "covs")

Simulate LCA data: 30 observations, 5 categorical items, 3 latent classes
sim_data <- sim.LCA(N = 30, I =5, L = 3)

Extract the TRUE conditional probability array
extract(sim_data, "par")

get.AvePP Calculate Average Posterior Probability (AvePP)

Description

Computes the average posterior probability for the most likely class assignment in latent class/profile
analysis. This metric quantifies classification precision. The total average posterior probability
> 0.70 (Nylund-Gibson & Choi, 2018) indicate adequate classification quality.

Usage

get.AvePP(object)

Arguments

object An object of class "LCA" or "LPA" returned by LCA or LPA, or any object con-
taining:
* P.Z.Xn: N x L matrix of posterior class probabilities, where:
— N = Total number of observations (n = 1,2,..., N)
— L = Number of latent classes (I = 1,2,...,L)

— Element p,; = P(Z,, =1 | X,,) denotes the posterior probability that
observation n belongs to class [given observed data X,

14 get.AvePP

Value
A (L+1) x (L + 1) matrix with the following structure:
* Rows: Represent each latent class (1 to L) and a final "Total" row.

* Columns: Represent each latent class (1 to L) and a final "Total" column.

* Diagonal elements avell, []: Average posterior probability for observations assigned to class I.

That is,
— 1
Pu== > pu
u N, Pni

n:zZ,=l
where NN; is the number of observations assigned to class [, and Z,, = arg maxy pp’.

* Off-diagonal elements ave[l, k] (I # k): Average posterior probability of class k£ among ob-
servations assigned to class [. Useful for assessing classification confusion.

?lk = Nil Z Pnk-

n:zZ,=l

* Bottom-right corner ave[L + 1, L + 1]: Overall average posterior probability across all obser-
vations,

1 N
Piotar = N 2:1mlaxpnl~
n=

Note

Classification quality is considered acceptable if Pio > 0.70 (Nylund-Gibson & Choi, 2018).

References

Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analy-
sis. Translational Issues in Psychological Science, 4(4), 440-461. https://doi.org/10.1037/tps0000176

Examples

Example with simulated data
set.seed(123)

data.obj <- sim.LCA(N =500, I =4, L
response <- data.obj$response

2, 10=0.9)

Fit 2-class model with EM algorithm
fit.em <- LCA(response, L = 2, method = "EM", nrep = 10)

AvePP_value <- get.AvePP(fit.em)
print(AvePP_value)

get.CEP 15

get.CEP Compute Classification Error Probability (CEP) Matrices

Description
Computes the Classification Error Probability (CEP) matrices (Liang et al., 2023) used in the bias-
corrected three-step estimation of Latent Class/Profile Analysis with Covariates.

Usage
get.CEP(P.Z.Xns, time.cross = TRUE)

Arguments
P.Z.Xns A list of length T' (number of time points). Each element is an N x L matrix of
posterior probabilities P(Z;; = [| X;) from the first-step model.
* Rows correspond to individuals (: = 1,..., N);
* Columns correspond to latent classes (I = 1, ..., L);
* Each row must sum to 1.
The list must be ordered chronologically (e.g., time 1 to 7T').
time.cross Logical. If TRUE (default), returns a list where every element is the same pooled
CEP matrix (averaged across all time points). If FALSE, returns time-specific
CEP matrices.
Details

The CEP matrix at time ¢ gives the probability that an individual truly belongs to latent class I’ given
that they were assigned (via modal assignment) to class [at time ¢.

Formally, for time point ¢:

Zi:ﬁuzz' P(Zit =1 | Xz’)

CEP(,I)=P(Z, =1|Z =1) = N7
tl

where:

e Z;; is the true latent class of individual ¢ at time ¢;

P(Z;; =1 | X;) is the posterior probability from the first-step model;

o Z; = argmax; P(Z; = U’ | X;) is the modal (most likely) assigned class;

o Ty = % Zfil 1(%;; = 1) is the observed proportion assigned to class [at time ¢;

* N is the total sample size.
If time.cross = TRUE (default), a single pooled CEP matrix is computed by aggregating counts
across all time points. This assumes the classification error structure is invariant over time (i.e.,

measurement invariance), as in Liang et al. (2023). The same pooled matrix is then returned for
every time point.

16 get.entropy

Value
A named list of length T'. Each element is an L x L matrix:

e Row [: true latent class;
 Column [’; individuals assigned to class I’;

* Entry (1,1’): estimated P(assigned class = I’ | true class = [).

When time.cross = TRUE, all matrices in the list are identical. Names are "t1", "t2", ..., "tT".

Note

* Assumes complete data (no missing values in posterior matrices).
¢ All matrices in P.Z.Xns must have identical dimensions (same N and).
* Assignment is based on modal class (which.max).

* If no individual is assigned to a class at a time point, division by zero may occur.

References

Liang, Q., la Torre, J. d., & Law, N. (2023). Latent Transition Cognitive Diagnosis Model With
Covariates: A Three-Step Approach. Journal of Educational and Behavioral Statistics, 48(6), 690-
718. https://doi.org/10.3102/10769986231163320

Examples

Simulate posterior probabilities for 2 time points, 3 classes, 100 individuals
set.seed(123)
N <- 100; L <- 3; times <- 2
P.Z.Xns <- replicate(times,
t(apply(matrix(runif(N = L), N, L), 1, function(x) x / sum(x))),
simplify = FALSE)

Compute time-specific CEP matrices
cep_time_specific <- get.CEP(P.Z.Xns, time.cross = FALSE)

Compute time-invariant (pooled) CEP matrix
cep_pooled <- get.CEP(P.Z.Xns, time.cross = TRUE)

get.entropy Calculate Classification Entropy

Description

Computes the relative entropy statistic to evaluate classification quality in Latent Class Analysis
(LCA) or Latent Profile Analysis (LPA) models. Entropy measures how accurately cases are as-
signed to latent classes based on posterior probabilities, with values closer to 1 indicating better
separation between classes.

get.entropy 17

Usage

get.entropy(object)

Arguments
object An object of class "LCA" or "LPA" returned by LCA or LPA functions, or any
other object containing:
* P.Z.Xn: N x L matrix of posterior class probabilities for each observation.
* params$P.Z: Vector of length L with latent class prior probabilities.
Value

A numeric value between 0 and 1 representing the relative entropy (Nylund-Gibson et al., 2018;
Clark et al., 2013):

* 1.0: Perfect classification (each case belongs exclusively to one class)

* 0.8-1.0: Good classification quality

* 0.6-0.8: Moderate classification quality

* < 0.6: Poor classification quality (consider model simplification)

Calculated using the formula:

Zgzl Zlel —Dni ln(pnl)
NIn(L)

1—

where:

e N = Sample size
e [, = Number of latent classes

* pn; = Posterior probability of observation n belonging to class [

Note

The calculation includes a small constant (1e-10) to avoid log(@) instability when posterior prob-
abilities are exactly zero.

Values should be interpreted alongside other diagnostics (BIC, bootstrapped LRT) as high entropy
alone doesn’t guarantee model validity. Low entropy may indicate:

* Overly complex model (too many classes)

* Poorly measured latent constructs

* Violation of local independence assumption

References

Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analy-
sis. Translational Issues in Psychological Science, 4(4), 440-461. https://doi.org/10.1037/tps0000176
Clark, S. L., Muthén, B., Kaprio, J., D’Onofrio, B. M., Viken, R., & Rose, R. J. (2013). Models
and Strategies for Factor Mixture Analysis: An Example Concerning the Structure Underlying

Psychological Disorders. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 681-
703. https://doi.org/10.1080/10705511.2013.824786

18 get fit.index

Examples

Example with simulated data
set.seed(123)

data.obj <- sim.LCA(N = 500, I =4, L
response <- data.obj$response

2, 10=0.9)

Fit 2-class model with EM algorithm

fit.em <- LCA(response, L = 2, method "EM", nrep = 10)

entropy_value <- get.entropy(fit.em)

cat("Classification entropy:"”, round(entropy_value, 3), "\n")
get.fit.index Calculate Fit Indices
Description

Computes a comprehensive set of model fit indices for objects returned by LCA or LPA. These indices
balance model fit (log-likelihood) with model complexity (number of parameters) to facilitate model
selection. All indices are derived from the observed-data log-likelihood and parameter count.

Usage

get.fit.index(object)

Arguments
object An object of class "LCA" or "LPA" returned by LCA, LPA or any object containing:
* Log.Lik: Log-likelihood value
* npar: Number of free parameters
e N = Total number of observations (n = 1,2,...,N)
Value

An object of class "fit.index" containing:

npar Number of free parameters in the model
Log.Lik Log-likelihood of the model: log £
-2LL Deviance statistic: —21og £

N L
—2ZIOg [Z 7 f(Xn | 91)]
n=1 =1

, where 7 is the prior probability of class [, f(-) is the probability density/mass function
(multivariate normal for LPA, multinomial for LCA), and 0, are class-specific parameters.

get.Log.Lik. LCA 19

AIC Akaike Information Criterion: AIC = —2log £ + 2k, where npar = number of free parame-
ters. Lower values indicate better fit.

BIC Bayesian Information Criterion: BIC = —2log £ + nparlog(N), where N = sample size.
Incorporates stronger penalty for complexity than AIC.

SIC Sample-Size Adjusted BIC: SIC = —1BIC. Equivalent to log £ — 22" Jog(NN). Often used
in latent class modeling.

CAIC Consistent AIC: CAIC = —2log £ + npar [log(N) + 1]. Consistent version of AIC that
converges to true model as N — oo.

AWE Approximate Weight of Evidence: AWE = —2log £ + 1.5k [log(N) + 1]. Penalizes com-
plexity more heavily than CAIC.

SABIC Sample-Size Adjusted BIC: SABIC = —2log £ + npar log (£5t2). Recommended for
latent class/profile analysis with moderate sample sizes.

Examples

Fit LPA model

set.seed(123)

data.obj <- sim.LPA(N =100, I = 3, L = 2, constraint = "E@")

fit <- LPA(data.obj$response, L = 2, constraint = "VV", method = "EM")

Compute fit indices
fit_indices <- get.fit.index(fit)

fit_indices

extract(fit_indices, "SABIC")

get.Log.Lik.LCA Calculate Log-Likelihood for Latent Class Analysis

Description

Computes the log-likelihood of observed categorical data under a Latent Class Analysis (LCA)
model given class probabilities and conditional response probabilities. The calculation assumes
local independence of responses conditional on latent class membership.

Usage

get.Log.Lik.LCA(response, P.Z, par)

Arguments

response A numeric matrix of dimension N x [containing discrete responses. Values can
be any categorical encoding (e.g., 1/2/3, A/B/C, or 0/1). The function automati-
cally:

20

P.Z

par

Details

get.Log.Lik.LCA

» Converts all responses to 0-based integer encoding internally
* Determines the maximum number of categories (K ,ax) across items

A numeric vector of length L containing prior probabilities for latent classes.
Must satisfy:

¢ ZZL:I m=1

em>0forall=1,...,L
A 3-dimensional array of dimension L x I X K, containing conditional prob-
abilities, where par|l, i, k] represents P(X; = k — 1 | Z = [) (after internal
0-based re-encoding). Must satisfy:

* For each class [and item i: Zszl par[l i k] =1

* Probabilities for non-existent categories (where £ > Kj) are ignored but

must be present in the array

The log-likelihood calculation follows these steps:

Value

Response Standardization: Original responses are converted to 0-based integers using adjust . response.
For example, original values {1,2,5} become {0,1,2} (ordered and relabeled sequentially).

Class-Specific Likelihood: For each observation n and class [, compute:

I
PXy, | Zn=1) =[] P(Xni = @i | Zn=1)
i=1
where x,,; is the standardized response value, and probabilities are taken from par[l, i,
x_{ni}+1].

Marginal Likelihood: For each observation n, combine class-specific likelihoods weighted by

class probabilities:
L

P(X,) =Y m - PXpn| Zy=1)
=1

Log Transformation: Sum log-transformed marginal likelihoods across all observations:

N
log £ =" log P(X,)

n=1

A single numeric value representing the total log-likelihood:

N L

log£ =" log |Y m [P(Xpni=2ni | Z=1)

=1 =1 =1

where x,,; is the standardized (0-based) response for person n on item :.

get.Log.Lik.LPA 21

get.Log.Lik.LPA Calculate Log-Likelihood for Latent Profile Analysis

Description

Computes the log-likelihood of observed continuous data under a Latent Profile Analysis (LPA)
model with multivariate normal distributions within each latent profile. Implements robust numeri-
cal techniques to handle near-singular covariance matrices.

Usage

get.Log.Lik.LPA(response, P.Z, means, covs, jitter = 1e-10)

Arguments
response A numeric matrix of dimension [V x I containing continuous observations. Rows
represent observations, columns represent variables. Missing values are not per-
mitted.
P.Z A numeric vector of length L containing prior probabilities for latent profiles.
Must satisfy:
L
¢ 21:1 m =1
em>0foralli=1,...,L
means A matrix of dimension L x I where row [contains the mean vector u, for profile
l.
covs An array of dimension I x I x L where slice | contains the covariance matrix
3, for profile [. Must be symmetric positive semi-definite.
jitter A small positive constant (default: 1e-10) added to diagonal elements of covari-
ance matrices to ensure numerical stability during Cholesky decomposition.
Details

The log-likelihood calculation follows these steps:

* Covariance Stabilization: Each covariance matrix ¥; is symmetrized as (X; + ElT) /2. If
Cholesky decomposition fails:

— Add jitter to diagonal elements iteratively (up to 10 attempts, scaling jitter by 10x each
attempt)

— Fall back to diagonal covariance matrix if decomposition still fails

* Profile-Specific Density for observation n in profile {:

I 1 1 _
log f(xn | Zn = 1) = =5 log(2m) — 5 log[Zu| = 5 (en —) "2y (0 — 1)

Computed efficiently using Cholesky decomposition ; = R TR where applicable.

22 get.Log.Lik.LPA

* Joint Probability for observation n and profile {:
IOg[ﬂ—l : f(Xn | Zy = l)] = log(ﬂ—l) + log f(xn | Zn = l)

log(;) uses log(m; + 10712) to avoid undefined values.

* Marginal Likelihood per observation using log-sum-exp trick for numerical stability:

L
IOg f(xn) = Omax T IOg <Z €xXp {log[ﬂ—l : f(xn | Zp = l)] - amaX}>

=1

where amax = max; log[m; - f(xy, | Zn, =1)].

* Total Log-Likelihood: Sum of log f(x,,) across all observations n = 1,..., N.

Value

A single numeric value representing the total log-likelihood:

N L
1og£:21og ZW['N(Xn | py, 2p)
n=1 =1
where N (-) denotes the multivariate normal density function.

Note

Critical implementation details:
* Cholesky Decomposition: For non-degenerate cases (I > 1), used to compute: log |¥;| =
2 Zle log(r;;) and quadratic form [|R™ T (x,, — ;)2
* Univariate Handling: When I = 1, computes density directly without decomposition
* Numerical Safeguards:

— Densities clamped to —10'° when non-finite
- Marginal likelihoods clamped to —10*° when non-finite

— Explicit dimension checks for means and covs
e Assumptions:

— Multivariate normality within profiles
— No missing data in response

— Positive-definite covariance matrices (after stabilization)

get.Log.Lik.LTA 23

get.Log.Lik.LTA Calculate Log-Likelihood for Latent Transition Analysis

Description

Computes the observed-data log-likelihood for a Latent Transition Analysis (LTA) model using the
three-step approach with measurement error correction. The likelihood integrates over all possible
latent class paths while incorporating classification uncertainty via Classification Error Probability
(CEP) matrices. This function is designed to work with parameters estimated from the LTA function.

Usage
get.Log.Lik.LTA(
params,
CEP,
P.Z.Xns,
Zs,
covariates,
covariates.timeCross = FALSE
)
Arguments
params A named list containing model parameters:

e beta: Matrix of size p; x L with coefficients for the initial class member-
ship multinomial logit model (time 1). The coefficient vector for reference
class L is constrained to 3; = 0.

e gama: Nested list of transition coefficients. For transition to time ¢ (from
timet — 1tot, wheret =2,...,7T):
gamal[[t-111[[from_class]]1[[to_class]] Coefficient vector of length

p; for transition from class from_class at time £ — 1 to class to_class
at time ¢.
Coefficients for transitions to reference class L are constrained to zero vec-
tors (v, = 0 when k = L).
CEP A list of L x L matrices (length = number of time points T'). Element (k,) in
CEPL[t]] estimates:
where Z,,, is the modal class assignment and Z,,; is the true latent class. Com-
puted via non-parametric approximation in Step 2 of three-step LTA.
P.Z.Xns A list of matrices (length = 7"). Each matrix has dimensions N x L, where

element (n, 1) is:
P(Zp =1|Xnt)

the posterior probability of individual n belonging to class [at time ¢ from Step
1 latent class/profile analysis.

24

Zs

get.Log.Lik.LTA

A list of integer vectors (length = T'). Each vector has length IV, where
Zs[[t11[n] is the modal (most likely) class assignment Z,,; for individual n
at time ¢.

covariates A list of design matrices (length = T'). For time ¢, matrix dimension is N X

pt. Must include an intercept column (all 1s) as the first column, i.e., X,; =
(Xnt0s Xnt1s - -, Xnear) | with X,,50 = 1. Covariates may differ across time
points and between initial status ({ = 1) and transitions (¢ > 2).

covariates.timeCross

Details

Logical. If TRUE, forces identical transition coefficients across all time points
(gama[[t]] is copied from gama[[1]] for ¢ > 1). Default is FALSE.

The log-likelihood calculation follows these steps:

1.

2.

Value

Latent Path Enumeration: All LT possible latent class trajectories z, are generated and
cached.

Initial Class Probabilities (time 1): For individual n, compute using multinomial logit with
covariates X,,1:

exXp ([-31T an)

Sr_ exp(Br Xn1)

where 3; = 0 (reference class constraint). Numerical stabilization is applied via subtraction
of the maximum linear predictor.

P(Zn=1|Xn) =

. Transition Probabilities (times ¢ > 2): For transition from class & at time ¢ — 1 to class [at

time ¢: .
exp (Y i Xnt)

L
Zj:l eXP('V;rthnt)

P(Znt =1 ‘ Zn,tfl = I{?,Xnt) =

where v, ;, = 0 for all £ (reference class constraint).

. Path-Specific Likelihood: For each path z,, and individual n:

(a) Compute path probability: P(Z,1 = 2,1 | Xp1) X Hthz P(Znt = 2znt | Zni—1 =
Zn,t—1, Xnt)

(b) Apply CEP WGightSZ Hle P(Znt = 2nt | Znt = Znt) = HZ:I CEPt(Znta ént)

(c) Multiply path probability by CEP weights

. Marginalization: Sum path-specific likelihoods over all L paths for each individual 7, then

sum log-transformed marginal likelihoods across all individuals.

A single numeric value representing the total observed-data log-likelihood:

N T
log £(0) = Z log [Z (H CEP;(znt, ént))'

zn€{l,..,[}T t=1

T
P(an = Znl ‘ X’rbl) : HP(Z’VLt = Znt | Zn,t—l = Zn,t—1, Xnt)]
t=2

where z,, = (zn1,. .., zn7) is a latent class path, 2,; = Zs[[t]][n] is the modal assignment, and
0 denotes all model parameters (beta, gama).

get.npar.LCA 25

Note

When no covariates are included:

* Initial probabilities reduce to P(Z,; = l) = m; (multinomial probabilities)

* Transition probabilities reduce to P(Z,; =1 | Zpi—1 = k) = T,S) (time-specific Markov
transition probabilities)

See Also

LTA for three-step LTA estimation, get.CEP for CEP matrix computation

get.npar.LCA Calculate Number of Free Parameters in Latent Class Analysis

Description

Computes the total number of free parameters in an LCA model based on the number of categories
per observed variable and the number of latent classes. This follows standard LCA parameterization
with local independence assumption.

Usage

get.npar.LCA(poly.value, L)

Arguments
poly.value A numeric vector of length I where each element K; represents the number of
response categories for observed variable .
L Integer specifying the number of latent classes.
Details

Parameter count derivation:

Fixed components (always present): ¢ Conditional response probabilities: > le (LxK;—1)
parameters

* Independent class proportions: L — 1 parameters (since Zlel m=1)

Per-variable parameterization: For each observed variable ¢ with K; categories:
* Each latent class requires K; conditional probabilities P(X; = k|Z =)
* With constraints ,[le P(X; = k|Z =1) =1 for each class [

* Global constraints reduce total parameters to L x K; — 1 per variable

26 get.npar.LPA

Value
Integer representing the total number of free parameters in the model:

I
npar:Z(LxKi—l)—k (L-1)

=1 .
free parameters class proportions

Examples

Example 1: 3 binary variables (K_i=2), 2 latent classes

poly.value <- c(2, 2, 2) # Three binary variables

L <-2

npar <- sum(poly.value x L - 1) + (L - 1) # = (4-1)+(4-1)+(4-1) + 1 = 3+3+3+1 = 10
get.npar.LCA(poly.value, L) # Returns 10

Example 2: Mixed variable types (binary, ternary, quaternary)
poly.value <- c(2, 3, 4) # Variables with 2, 3, and 4 categories
L <-3

npar <- sum(poly.value x L - 1) + (L - 1) #
get.npar.LCA(poly.value, L) # Returns 26

(6-1)+(9-1)+(12-1) + 2 = 5+8+11+2 = 26

Example 3: Single polytomous variable with 5 categories, 4 latent classes
poly.value <- 5

L <-4

npar <- sum(poly.value * L - 1) + (L - 1) # = (20-1) + 3 = 19+3 = 22
get.npar.LCA(poly.value, L) # Returns 22

get.npar.LPA Calculate Number of Free Parameters in Latent Profile Analysis

Description
Computes the total number of free parameters in an LPA model based on the number of observed
variables (1), number of latent profiles (L), and covariance structure constraints.

Usage

get.npar.LPA(I, L, constraint = "VV")

Arguments
I Integer specifying the number of continuous observed variables.
L Integer specifying the number of latent profiles.
constraint Character string specifying covariance structure constraints. Supported options:

Univariate case (I = 1): "UE" Equal variance across all profiles (1 shared vari-
ance parameter).

get.npar.LPA 27

"UV" Varying variances across profiles (L profile-specific variance param-
eters).

Multivariate case (I > 1): "EQ" Equal variances across profiles, zero covari-
ances. Requires / variance parameters.

"V@" Varying variances across profiles, zero covariances. Requires L x I
variance parameters.

"EE" Equal variances and equal covariances across profiles (homogeneous
covariance matrix). Requires I(Hl) parameters.

"VE" Varying variances per profile, but equal covariances across profiles.
Requires L x I + I(I) parameters.

"EV" Equal variances across profiles, but varying covariances per profile.
Requires I + L X I(I parameters.

"VV" Varying variances and varying covariances across profiles (heteroge-
neous covariance matrices). Requires L x 1U+1) +1) parameters.

list Custom constraints. Each element is a 2-element integer vector spec-
ifying variables whose covariance parameters are constrained equal
across all classes. The constraint applies to:

* Variances: When both indices are identical (e.g., c(3, 3) forces vari-
ance of variable 3 to be equal across classes)

* Covariances: When indices differ (e.g., c(1,2) forces covariance
between variables 1 and 2 to be equal across classes)

Constraints are symmetric (e.g., c(1, 2) automatically constrains c(2,1)).
All unconstrained parameters vary freely across classes while maintain-
ing positive definiteness.

Default: "VV".

Details
Parameter count breakdown:

1. Fixed components (always present):

* Profile-specific means: L x I parameters
* Independent class proportions: L — 1 parameters (since Zle m=1)

2. Covariance parameters (varies by constraint):

I =1: "UE": 1 shared variance parameter
e "UV": L profile-specific variance parameters
I >1: "E@": I shared variance parameters (no covariances)

e "V@": L x I profile-specific variance parameters (no covariances)

o "EE": I(I+) parameters for one shared full covariance matrix

e "VE": L x I diagonal variances (free per profile) + 7)

(shared across profiles)

off-diagonal covariances

e "EV": I diagonal variances (shared across profiles) + L X
ances (free per profile)

off-diagonal covari-

e "W": L X @ parameters for L distinct full covariance matrices

28

Value

get.npar.LTA

Integer representing the total number of free parameters in the model:

Note

npar =L x [+
~——

Important considerations:

(L —1) + covariance parameters
——

means class proportions depends on constraint

"UE" or "UV" respectively.

triangle).

(L — 1) x length(constraint).

Examples

Univariate examples (I=1)
get.npar.LPA(I = 1, L = 2, constraint
get.npar.LPA(I = 1, L = 3, constraint

Multivariate

get

get.
get.
get.
get.
get.

User defined

.npar.
npar.
npar.
npar.
npar.
npar.

LPA(I
LPA(I
LPA(I
LPA(I
LPA(I
LPA(I

examples
= 3’ L =
=3, L=

’

1
w w w w
| i e

’

example

get.npar.LPA(I = 3, L =

(I=3)

2, constraint

2, constraint
, constraint

, constraint =

2
2
2, constraint
2, constraint

2, constraint

For I = 1, only "UE" and "UV" are meaningful; "EE", "EQ", "VV", "V@", etc., are treated as

Covariance parameters count only free elements in symmetric matrices (diagonal + upper

If an user-defined constraint is provided, the function defaults to "VV" behavior but subtracts

"VE" and "EV" constraints require / > 1 to be meaningful (otherwise no covariances exist).

”UE”)
”UV“)

"EQ")
Vo)
"EE")
W)
"VE")
"EV")

list(c(1, 2), c(3, 3)))

get.npar.LTA

Calculate Number of Free Parameters in Latent Transition Analysis

Description

Computes the total number of free parameters in a Latent Transition Analysis (LTA) model esti-
mated via the three-step approach. The count depends on the number of latent classes, the number
of time points, the number of covariates at each time point, and whether transition coefficients are
constrained to be equal across time.

get.npar.LTA 29

Usage

get.npar.LTA(covariates.ncol, L, covariates.timeCross = FALSE)

Arguments

covariates.ncol
An integer vector of length T' (number of time points). Each element M; rep-
resents the number of covariates (columns) for time point ¢. Must include an
intercept column (all 1s) as the first covariate.

L Integer scalar. Number of latent classes (L > 2).

covariates.timeCross
Logical. If TRUE, transition coefficients are constrained to be identical across all
transitions (time-invariant effects). This requires that the number of covariates
is the same for all time points after the first (i.e., My = M3 = --- = Myp). If
FALSE (default), each transition has its own set of coefficients.

Details

Parameterization:

Initial status model (time 1): Multinomial logit model with L classes (last class is reference).
Number of free parameters: M; x (L — 1).

Transition models (time ¢ — ¢ 4+ 1): For each transition, a multinomial logit model conditioned
on previous class. For each origin class k£ and destination class [(I # L), there is a coefficient
vector of length M, 1. Total per transition: L X (L — 1) x My, parameters. The constraint
covariates. timeCross determines whether these parameters are shared across transitions.

Value

Integer representing the total number of free parameters:

Lx(L—1)x M, if T > 1 and time-invariant effects
npar = My x (L—1)+ 23:2 Lx (L—1)x M,; ifT > 1 and time-varying effects
0 ifT=1

where:

* time-invariant effects corresponds to covariates.timeCross = TRUE

* time-varying effects corresponds to covariates.timeCross = FALSE

Note
Critical assumptions:

* The last latent class (L) is always the reference category for all logits.

* When covariates.timeCross = TRUE, it is assumed that all time points after the first have
identical covariate structures (Ms = M3 = --- = My). If violated, the function uses M for
all transitions to match LTA’s internal behavior.

» For T' = 1, no transition parameters are estimated (pure latent class/profile analysis).

30 get.PZ. Xn.LCA

Examples

Example 1: 2 time points, 2 classes, time-invariant transition coefficients
Timel: 2 covariates (intercept + 1 predictor)

Time2: 3 covariates (but constrained to match Timel due to timeCross=TRUE)
covariates.ncol <- c(2, 3)

L <-2

get.npar.LTA(covariates.ncol, L, covariates.timeCross = TRUE)

Example 2: Same as above but time-varying coefficients
get.npar.LTA(covariates.ncol, L, covariates.timeCross = FALSE)

Example 3: 3 time points, 3 classes, time-invariant coefficients
covariates.ncol <- c(2, 2, 2) # All time points have identical covariates
L <-3

get.npar.LTA(covariates.ncol, L, covariates.timeCross = TRUE)

Example 4: 3 time points, 3 classes, time-varying coefficients
covariates.ncol <- c(2, 3, 4)

L <=3

get.npar.LTA(covariates.ncol, L, covariates.timeCross = FALSE)

Example 5: Single time point (equivalent to LCA)
covariates.ncol <- c(3)

L <-4

get.npar.LTA(covariates.ncol, L)

get.P.Z.Xn.LCA Compute Posterior Latent Class Probabilities Based on Fixed Param-
eters

Description

Computes posterior probabilities of latent class membership while simultaneously re-estimating
class prevalences via an EM algorithm. Unlike standard posterior computation, this function itera-
tively updates class prevalences (7;) using fixed conditional response probabilities (par).

Usage

get.P.Z.Xn.LCA(response, par, tol = 1e-10, maxiter = 2000, vis = TRUE)

Arguments
response Numeric matrix (/N x I) of categorical responses. Categories are automatically
remapped to 0-based integers via adjust.response.
par 3D array (L x I x Ky,ax) of fixed conditional response probabilities where:

e L = number of latent classes
e | = number of items

get.PZ.Xn.LCA
¢ Kihax = maximum categories across items
par[l, i, k]1=P(X; =k — 1| Z =) (0-based indexing).
tol Convergence tolerance for absolute change in log-likelihood. Default: 1e-10.
maxiter Maximum EM iterations. Default: 2000.
vis Logical: show iteration progress? Default: TRUE.
Details

1. Response categories are standardized to 0-based integers using adjust.response.
2. Class prevalences are initialized uniformly (71'1(0) =1/L).
3. Numerical stability: Small constants (1e-50) prevent division by zero.
4. Termination occurs when:
* |log LY —log L#~1| < tol (log-likelihood change)
* Maximum iterations reached

Value

31

Numeric matrix (/N x L) of posterior probabilities. Rows sum to 1. Columns named "Class.1",

"Class.2", etc.

Algorithm
The function implements an EM algorithm with:
E-step Compute posterior probabilities for observation n and class {:
) Tl P(X i = @i | Zn = 1)

PZ,=1|X,)=
Zizl 771(:) Hf:1 P(Xni = Tni | Zn =k)

M-step Update class prevalences:

N
1
1
WZ(H):NZP(Z”:”X”)

n=1

Convergence is determined by the absolute change in log-likelihood between iterations.

Examples

library(LCPA)

set.seed(123)

data.obj <- sim.LCA(N = 200, I =3, L =2, IQ = 0.85) # From LCPA

fit <- LCA(data.obj$response, L = 2, method = "EM", nrep = 5) # From LCPA

P.Z.Xn <- get.P.Z.Xn.LCA(
response = data.obj$response,
par = fit$params$par # Fixed conditional probabilities

)
head(P.Z.Xn)

32 get.PZ.Xn.LPA

get.P.Z.Xn.LPA Compute Posterior Latent Profile Probabilities Based on Fixed Param-
eters

Description

Computes posterior probabilities of latent profile membership while simultaneously re-estimating

profile prevalences via an EM algorithm. Unlike standard posterior computation, this function iter-

atively updates profile prevalences (m;) using fixed profile characteristics (means and covariances).
Usage

get.P.Z.Xn.LPA(response, means, covs, tol = 1e-10, maxiter = 2000, vis = TRUE)

Arguments
response Numeric matrix (N x [I) of continuous responses. Missing values are not al-
lowed. Data should typically be standardized prior to analysis.
means Numeric matrix (L x I) of fixed profile means where:
e L =number of latent profiles
¢ [= number of observed variables
Row [contains profile-specific means ;.
covs 3D array ({ x I x L) of fixed profile covariance matrices where:
e covs[, , 1] = profile-specific covariance matrix 3,
Each slice must be symmetric and positive definite (after jittering).
tol Convergence tolerance for absolute change in log-likelihood. Default: 1e-10.
maxiter Maximum EM iterations. Default: 2000.
vis Logical: show iteration progress? Default: TRUE.
Details

1. Numerical stability:
» Covariance matrices are jittered with tol for positive definiteness
* Log-space computation with log-sum-exp trick
» Uniform probabilities used as fallback for non-finite densities
2. Profile prevalences are initialized uniformly (wl(o) =1/L).
3. Termination occurs when:
* [log L —log L{*=Y)| < tol (log-likelihood change)
¢ Maximum iterations reached

Value

Numeric matrix (/N x L) of posterior probabilities. Rows sum to 1. Columns named "Class.1",
"Class.2", etc.

get.SE 33

Algorithm
The function implements an EM algorithm with:
E-step Compute posterior probabilities for observation n and profile I:

7N (x|,)
L
SE m N (x| g B

P(Z,=1|x%x,) =
M-step Update profile prevalences:
1
t+1
ri) — 5 2 PZn=11%)
n=1

Convergence is determined by the absolute change in log-likelihood between iterations.

Examples

library(LCPA)
set.seed(123)
data.obj <- sim.LPA(N = 300, I = 2, L = 2, constraint = "VV") # From LCPA
fit <- LPA(data.obj$response, L = 2, method = "EM", nrep = 5) # From LCPA

P.Z.Xn <- get.P.Z.Xn.LPA(

response = data.obj$response,

means = fit$params$means, # Fixed profile means

covs = fit$params$covs # Fixed profile covariances
)
head(P.Z.Xn)

get.SE Compute Standard Errors

Description

Computes approximate standard errors (SEs) for estimated parameters in Latent Class Analysis
(LCA) or Latent Profile Analysis (LPA) models using two methods:

* "Bootstrap”: Non-parametric bootstrap with label-switching correction. McLachlan & Peel
(2004) suggest that 50-100 replicates often provide adequate accuracy for practical purposes,
though more (e.g., 500-1000) may be preferred for publication-quality inference.

e "Obs": Numerical evaluation of the observed information matrix (Hessian of negative log-
likelihood)

Users should note that get. SE computes standard errors based on the observed information matrix
via numerical differentiation, which may lack precision and often yields ill-conditioned matrices.
Therefore, we recommend using method = "Bootstrap”.

34 get.SE

Usage

get.SE(object, method = "Bootstrap”, n.Bootstrap = 100, vis = TRUE)

Arguments
object An object of class "LCA" or "LPA" returned by LCA or LPA.
method Character specifying SE calculation method: "Obs” or "Bootstrap” (default).
n.Bootstrap Integer. Number of bootstrap replicates when method="Bootstrap"” (default=100).
vis Logical. If TRUE, displays progress information during estimation (default: TRUE).
Value

A list of class "SE" containing:

se Named list of SEs matching parameter structure of input model:

* LPA: means (matrix: classes x variables), covs (array: vars x vars x classes), P.Z (vector:
class prob SEs)

e LCA: par (array: classes x items X categories), P.Z (vector: class prob SEs)

¢ Critical Note for "Obs"” method: Only free parameters have non-zero SEs. Non-free
parameters (e.g., last class probability in P.Z due to sum-to-1 constraint; last category
probability in LCA items) have SE=0. Bootstrap provides SEs for all parameters.

vcov NULL for bootstrap. For "Obs": variance-covariance matrix (may be regularized). Diagonal
contains squared SEs of free parameters.

hessian NULL for bootstrap. For "Obs": observed information matrix (pre-regularization). Dimen-
sion = number of free parameters.

diagnostics Method-specific diagnostics:

* Bootstrap: n.Bootstrap.requested, n.Bootstrap.completed
* Obs: Hessian computation details, condition number, regularization status, step sizes

call Function call that generated the object

arguments List of input arguments

References

McLachlan, G.J., & Peel, D. (2004). Finite Mixture Models. Wiley. https://books.google.com.sg/books?id=c2_fAox0DQoC

Examples

library(LCPA)
set.seed(123)

LPA with Bootstrap (minimal replicates for example)

lpa_data <- sim.LPA(N = 500, I =4, L = 3)

lpa_fit <- LPA(lpa_data$response, L = 3)

se_boot <- get.SE(lpa_fit, method = "Bootstrap”, n.Bootstrap = 10)

print(se_boot)

install_python_dependencies 35

extract(se_boot, "covs")

LCA with Observed Information (note zeros for constrained parameters)
lca_data <- sim.LCA(N = 500, I = 4, L = 3, poly.value = 5)

lca_fit <- LCA(lca_data$response, L = 3)

se_obs <- get.SE(lca_fit, method = "Obs")

print(se_obs)
extract(se_obs, "par")

install_python_dependencies

Install Required Python Dependencies for Neural Latent Variable
Models

Description

Checks whether five essential Python packages required to run neural latent variable models (e.g.,
LCAnet, LPAnet) are installed in the current Python environment. If any are missing, the user is
interactively prompted to install them via reticulate::py_install(). The targeted packages
are:

* numpy — Fundamental package for numerical computing in Python.

* torch — PyTorch deep learning framework (supports CPU/GPU computation).

* matplotlib — 2D plotting and visualization library.

* scikit-learn — Machine learning utilities (used here primarily for KMeans initialization).

* scipy — Scientific computing and advanced linear algebra routines.
For torch, users can choose between CPU-only or GPU-enabled versions (with CUDA support).
Available CUDA versions are filtered by OS compatibility.

This function is especially useful when deploying models that bridge R and Python via reticulate,
ensuring all backend dependencies are met before model execution.
Usage

install_python_dependencies()

Details
The function performs the following steps for each dependency:

1. Uses reticulate: :py_module_available() to test if the module is importable.
2. If not available, prints a message describing the package’s purpose.

3. Prompts the user interactively (via readline) whether to proceed with installation.

36 Kmeans.LCA

4. For torch, offers CPU/GPU choice and CUDA version selection if GPU is chosen.
5. Installs the package using reticulate: :py_install() with appropriate index URL if needed.

6. Returns a logical list indicating initial installation status of each package.

Note: This function requires reticulate to be loaded and a valid Python environment configured. It
does NOT automatically install reticulate or configure Python — that must be done separately.

Value

A named list of logical values indicating whether each package was already installed before running
this function:
numpy_installed

Logical. Was numpy already available?
torch_installed

Logical. Was torch already available?
matplotlib_installed

Logical. Was matplotlib already available?
sklearn_installed

Logical. Was scikit-learn already available?
scipy_installed

Logical. Was scipy already available?

Examples

library(reticulate)

Ensure reticulate is loaded and Python is configured
need python

Not run:

Run dependency installer

deps <- install_python_dependencies()

Check which were missing
print(deps)

End(Not run)

Kmeans.LCA Initialize LCA Parameters via K-means Clustering

Description

Performs hard clustering of observations using K-means algorithm to generate initial parameter es-
timates for Latent Class Analysis (LCA) models. This provides a data-driven initialization strategy
that often outperforms random starts when the number of observed categorical variables I is large
(i.e., I > 50).

Kmeans.LCA 37

Usage

Kmeans.LCA(response, L, nrep = 10)

Arguments
response A numeric matrix of dimension N x I, where N is the number of observa-
tions and [is the number of observed categorical variables. Each column must
contain nominal-scale discrete responses (e.g., integers representing categories).
Non-sequential category values are automatically re-encoded to sequential inte-
gers starting from 1.
L Integer specifying the number of latent classes. Mustbe 2 < L < N.
nrep Integer specifying the number of random starts for K-means algorithm (default:
10). The solution with the lowest within-cluster sum of squares is retained.
Details

The function executes the following steps:

» Data preprocessing: Automatically adjusts non-sequential category values to sequential inte-
gers (e.g., categories {1,3,5} become {1,2,3}) using internal adjustment routines.

* K-means clustering: Scales variables to mean=0 and SD=1 before clustering. Uses Lloyd’s
algorithm with Euclidean distance.

e Parameter estimation:

— For each cluster [, computes empirical response probabilities P(X; = k|Z =) for all
items ¢ and categories k.

— Handles singleton clusters by assigning near-deterministic probabilities (e.g., 1 — 10710
for observed category, 10719 for others).

* Posterior probabilities: Constructs hard-classification matrix where P(Z = [|X,,) = 1 for the
assigned cluster and 0 otherwise.

Value

A list containing:

params List of initialized parameters:

par An L x I x K.« array of initial conditional probabilities, where K, .« is the maximum
number of categories across items. Dimension order: latent classes (1:L), items (1:1),
response categories (1:K_max).

P.Z Numeric vector of length L containing initial class prior probabilities derived from cluster
proportions.

P.Z.Xn An N x L matrix of posterior class probabilities. Contains hard assignments (0/1 values)
based on K-means cluster memberships.

38 LCA

Note
» Requires at least one observation per cluster. If a cluster has only one observation, probabili-
ties are set to avoid zero values (using 10~1%) for numerical stability.
 Data scaling is applied internally. Variables with zero variance are automatically excluded
from clustering.
* This function is primarily designed as an initialization method for LCA and not intended for
final model estimation.
Examples

Simulate response data
set.seed(123)
response <- matrix(sample(1:4, 200, replace = TRUE), ncol = 5)

Generate K-means initialization for 3-class LCA
init_params <- Kmeans.LCA(response, L = 3, nrep = 5)

Inspect initial class probabilities
print(init_params$params$P.Z)

LCA Fit Latent Class Analysis Models

Description

This function estimates parameters of a Latent Class Analysis (LCA; Hagenaars & McCutcheon,
2002) model using either the Expectation-Maximization (EM) algorithm or Neural Network Esti-
mation (NNE). It supports flexible initialization strategies and provides comprehensive model diag-
nostics.

Usage

LCA(
response,
L =2,
par.ini = "random",
method = "EM",
is.sort = TRUE,
nrep = 20,
starts = 100,
maxiter.wa = 20,
vis = TRUE,
control.EM = NULL,
control.Mplus = NULL,
control .NNE = NULL

LCA 39

Arguments

response A numeric matrix of dimension N x I, where N is the number of individu-
als/participants/observations and [is the number of observed categorical items/variables.
Each column must contain nominal-scale discrete responses (e.g., integers rep-
resenting categories).

L Integer specifying the number of latent classes (default: 2).
par.ini Specification for parameter initialization. Options include:

* "random"”: Completely random initialization (default).

* "kmeans": Initializes parameters via K-means clustering on observed data
(McLachlan & Peel, 2004).
* A list containing:
par An L x I x Ky, array of initial conditional probabilities for each
latent class, item, and response category (where K, ,x is the maximum
number of categories across items).

P.Z A numeric vector of length L specifying initial prior probabilities for
latent classes.
method Character string specifying estimation algorithm:

e "EM": Expectation-Maximization algorithm (default).

* "NNE": Neural Network Estimation with transformer architecture (exper-
imental; uses transformer + simulated annealing, more reliable than both
"EM" and "Mplus”). See install_python_dependencies.

* "Mplus”: Calls external Mplus software for estimation. Uses Mplus de-
faults for optimization unless overridden by control.Mplus.

is.sort A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

nrep Integer controlling replication behavior:
e If par.ini = "random”, number of random initializations.
e If par.ini = "kmeans"”, number of K-means runs for initialization.
» Formethod="Mplus", controls number of random starts in Mplus via STARTS
option.
* Best solution is selected by log-likelihood/BIC across replications.
¢ Ignored for user-provided initial parameters.
starts Number of random initializations to explore during warm-up phase (default:
100).

maxiter.wa Maximum number of training iterations allowed per warm-up run. After com-
pletion, the top nrep solutions (by log-likelihood) are promoted to final training
phase (default: 20).

vis Logical. If TRUE, displays progress information during estimation (default: TRUE).
control.EM List of control parameters for EM algorithm:

maxiter Maximum iterations (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

LCA

control.Mplus List of control parameters for Mplus estimation:

maxiter Maximum iterations for Mplus optimization (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

files.path A character string specifying the directory path where Mplus will
write its intermediate files (e.g., . inp model input, .dat data file, .out
output, and saved posterior probabilities). This argument is required —
if NULL (the default), the function throws an error. The specified directory
must exist and be writable; if it does not exist, the function attempts to cre-
ate it recursively. A unique timestamped subdirectory (e.g., "Mplus_LCA_YYYY-MM-DD_HH-MM-SS")
will be created within this path to store all run-specific files and avoid nam-
ing conflicts. If it is an empty string (""), the timestamped subdirectory
"Mplus_LCA_YYYY-MM-DD_HH-MM-SS" will be created directly under R’s
current working directory (getwd()).

files.clean Logical. If TRUE (default), all intermediate files and the tempo-
rary working directory created for this run are deleted upon successful com-
pletion or error exit (via on.exit()). If FALSE, all generated files are re-
tained in files.path (or the auto-generated temp dir) for inspection or de-
bugging. Note: when files.path = NULL, even if files.clean = FALSE,
the temporary directory may still be cleaned up by the system later — for
guaranteed persistence, specify a custom files.path.

control.NNE List of control parameters for NNE algorithm:

hidden.layers Integer vector specifying layer sizes in fully-connected net-
work (default: c(12,12)).

activation.function Activation function (e.g., "tanh"”, default: "tanh").

d.model Dimensionality of transformer encoder embeddings (default: 8).

nhead Number of attention heads in transformer (default: 2).

dim.feedforward Dimensionality of transformer feedforward network (default:
16).

eps Small constant for numerical stability (default: 1e-8).

lambda A factor for slight regularization of all parameters (default: le-5).

initial.temperature Initial temperature for simulated annealing (default: 1000).

cooling.rate Cooling rate per iteration in simulated annealing (default: 0.5).

maxiter.sa Maximum iterations for simulated annealing (default: 1000).

threshold.sa Minimum temperature threshold for annealing (default: 1e-10).

maxiter Maximum training epochs (default: 1000).

maxiter.early Patience parameter for early stopping (default: 50).

maxcycle Maximum cycles for optimization (default: 10).

1r Learning rate, controlling the step size of neural network parameter updates
(default: 0.025).

scheduler.patience Patience for learning rate decay (if the loss function does
not improve for more than patience consecutive epochs, the learning rate
will be reduced) (default: 10).

scheduler.factor Learning rate decay factor; the new learning rate equals the
original learning rate multiplied by scheduler.factor (default: 0.70).

LCA 41

plot.interval Interval (in epochs) for plotting training diagnostics (default:
100).

device Specifies the hardware device; can be "CPU" (default) or "GPU". If the
GPU is not available, it automatically falls back to CPU.

Value
An object of class "LCA" containing:

params List with estimated parameters:

par L x I x Ky,,x array of conditional response probabilities per latent class.
P.Z Vector of length L with latent class prior probabilities.

npar Number of free parameters in the model. see get.npar.LCA
Log.Lik Log-likelihood of the final model. see get.Log.Lik.LCA

AIC Akaike Information Criterion value.

BIC Bayesian Information Criterion value.

best_BIC Best BIC value across nrep runs (if applicable).

P.Z.Xn N x L matrix of posterior class probabilities for each observation.

P.Z Vector of length L containing the prior probabilities/structural parameters/proportions for each
latent class.

Z Vector of length N with MAP-classified latent class memberships.
probability Same as params$par (redundant storage for convenience).
Log.Lik.history Vector tracking log-likelihood at each EM iteration.
Log.Lik.nrep Vector of log-likelihoods from each replication run.

model The optimal neural network model object (only for method="NNE"). Contains the trained
transformer architecture corresponding to best_loss. This object can be used for further
predictions or model inspection.

arguments A list containing all input arguments

EM Algorithm

When method = "EM", parameters are estimated via the Expectation-Maximization algorithm, which
iterates between:

* E-step: Compute posterior class probabilities given current parameters:
i Hf:l P(Xpi = 2ni | Zn =1)
L T
D km1 T [Limy P(Xni = @i | Zn = k)

where x,,; is the standardized (0-based) response for person n on item ¢ (see adjust . response).

P(Z,=1|X,)=

¢ M-step: Update parameters by maximizing expected complete-data log-likelihood:

— Class probabilities: 71V = + 25:1 P(Z,=1|X,)

I — N
~ Conditional probabilities: P(X; = k | 7 = 1) = Zgzsut 720

n=1

+ Convergence: Stops when | log £L*) —log £~ | < tol or maximum iterations reached.

42 LCA

Neural Network Estimation (NNE)

When method = "NNE", parameters are estimated using a hybrid neural network architecture that
combines feedforward layers with transformer-based attention mechanisms. This approach jointly
optimizes profile parameters and posterior probabilities through stochastic optimization enhanced
with simulated annealing. See install_python_dependencies. Key components include:

Architecture:

Input Representation Observed categorical responses are converted to 0-based integer indices per
item (not one-hot encoded). For example, original responses [1, 2, 4] become [0, 1, 2].

Feature Estimator (Feedforward Network) A fully-connected neural network with layer sizes
specified by hidden.layers and activation function activation.function processes the
integer-indexed responses. This network outputs unnormalized logits for posterior class mem-
bership (N x L matrix).

Attention Refiner (Transformer Encoder) A transformer encoder with nhead attention heads that
learns latent class prior probabilities ™ = (71, 7o, . . . , 71,) directly from observed responses.
* Input: response matrix (/N x I), where IV = observations, I = continuous variables.

* Mechanism: Self-attention dynamically weighs variable importance during profile as-
signment, capturing complex multivariate interactions.

e Qutput: Class prior vector 7w computed as the mean of posteriors:

N
1
m= ,; attention(X,,)

This ensures probabilistic consistency with the mixture model framework.

Profile Parameter Estimation Global conditional probability parameters (P(X; = k | Z = 1))
are stored as learnable parameters par (an L X I X K. tensor). A masked softmax is applied
along categories to enforce:

* Probabilities sum to 1 within each item-class pair
* Non-existent categories (beyond item’s actual max response) are masked to zero proba-
bility
Optimization Strategy:

* Hybrid Training Protocol: Alternates between:

— Gradient-based phase: AdamW optimizer minimizes negative log-likelihood with weight
decay regularization:
—log £+ \||6]3

where A is controlled by lambda (default: le-5). Learning rate decays adaptively when
loss plateaus (controlled by scheduler.patience and scheduler. factor).

— Simulated annealing phase: After gradient-based early stopping (maxiter.early), pa-
rameters are perturbed with noise scaled by temperature:

T
enew = ecurrenl + N (0; ecurrenl X ?)
0
Temperature T" decays geometrically (1" <— T'xcooling.rate) from initial. temperature
until threshold. sa is reached. This escapes poor local minima.

LCA 43

Each full cycle (gradient descent + annealing) repeats up to maxcycle times.

* Model Selection: Across nrep random restarts (using Dirichlet-distributed initializations or
K-means), the solution with lowest BIC is retained.

 Diagnostics: Training loss, annealing points, and global best solution are plotted when vis=TRUE.

Mplus
When method = "Mplus”, estimation is delegated to external Mplus software. The function auto-
mates the entire workflow:
Workflow:

Temporary Directory Setup Creates inst/Mplus to store:
* Mplus input syntax (. inp)
* Data file in Mplus format (.dat)
 Posterior probabilities output (.dat)
Files are automatically deleted after estimation unless control .Mplus$clean.files = FALSE.
Syntax Generation Constructs Mplus syntax with:
* CLASSES = c1(L) specification for L latent classes
e CATEGORICAL declaration for all indicator variables
* ANALYSIS block with optimization controls:
TYPE =mixture Standard mixture modeling setup
STARTS = starts nrep Random starts and final stage optimizations
STITERATIONS = maxiter.wa max itertions during starts.
MITERATIONS = maxiter Maximum EM iterations
CONVERGENCE = tol Log-likelihood convergence tolerance
* MODEL block with %0VERALL%
Execution Calls Mplus via MplusAutomation: :mplusModeler(), which:
* Converts R data to Mplus-compatible format with automatic recoding
* Invokes Mplus executable (requires valid license and system PATH configuration)

References

Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied Latent Class Analysis. United Kingdom:
Cambridge University Press.

McLachlan, G.J., & Peel, D. (2004). Finite Mixture Models. Wiley. https://books.google.com.sg/books?id=c2_fAox0DQoC

Examples

Example with simulated data

set.seed(123)

data.obj <- sim.LCA(N = 500, I = 4, L = 2, 10=0.9)
response <- data.obj$response

Fit 2-class model with EM algorithm

44 LCPA

fit.em <- LCA(response, L = 2, method = "EM", nrep = 10)

Fit 2-profile model using Mplus
need Mplus
NOTE: 'files.path' in control.Mplus is REQUIRED — function will error if not provided.
Example creates a timestamped subfolder (e.g., "Mplus_LCA_YYYY-MM-DD_HH-MM-SS") under './'
to store all temporary Mplus files (.inp, .dat, .out, etc.).
Not run:
fit.mplus <- LCA(response, L = 2, method = "Mplus”, nrep = 3,
control.Mplus = list(files.path = ""))

End(Not run)

Fit 2-class model with neural network estimation

need Python

Not run:

fit.nne <- LCA(response, L = 2, method = "NNE", nrep = 3)

End(Not run)

LCPA Latent Class/Profile Analysis with Covariates

Description

Implements the three-step estimation method (Vermunt, 2010; Liang et al., 2023) for latent class/profile
analysis with covariates, treating latent class membership as an observed variable with measurement
error. This is mathematically equivalent to a latent transition analysis (LTA) with times=1.

Usage

LCPA(
response,
L =2,
ref.class = L,
type = "LCA",
covariate = NULL,
CEP.error = TRUE,
par.ini = "random”,
params = NULL,
is.sort = TRUE,
constraint = "VW",
method = "EM",
tol = 1e-04,
method.SE = "Bootstrap”,
n.Bootstrap = 100,
maxiter = 5000,

LCPA

nrep = 20,
starts = 100,

45

maxiter.wa = 20,

vis = TRUE,

control.EM = NULL,

control.Mplus
control .NNE =

Arguments

response

L

ref.class

type

covariate

CEP.error

par.ini

= NULL,
NULL

A matrix or data frame of observed responses. Rows of the matrix represent
individuals/participants/observations (/V), columns of the matrix represent ob-
served items/variables (I). For type = "LCA": items must be binary or categor-
ical (coded as integers starting from 0). For type = "LPA": items must be con-
tinuous (numeric), and the response matrix must be standardized using scale or
normalize prior to input.

Integer scalar. Number of latent classes/profiles. Must satisfy L > 2.

Integer L > ref.class > 1. Specifies which latent class to use as the reference
category. Default is L (last class). Coefficients for the reference class are fixed
to zero. When is.sort=TRUE, classes are first ordered by decreasing P.Z (class
1 has highest probability), then ref.class refers to the position in this sorted
order.

Character string. Specifies the type of latent variable model for Step 1:

e "LCA" — Latent Class Analysis for categorical items.
e "LPA" — Latent Profile Analysis for continuous items.

See LCA and LPA for details.

Optional. A matrix or data frame of covariates for modeling latent class mem-
bership. Must include an intercept column (all 1s) as the first column. If NULL
(default), only intercept terms are used (i.e., no covariates). Dimension is [N X p
where p is the number of covariates including intercept.

Logical. If TRUE (recommended), incorporates classification uncertainty via es-
timated Classification Error Probability (get.CEP) matrices from Step 1. If
FALSE, uses identity CEP matrices (equivalent to naive modal assignment; in-
troduces bias).

Specification for parameter initialization. Options include:

* "random”: Completely random initialization (default).
* "kmeans": Initializes parameters via K-means clustering on observed data
(McLachlan & Peel, 2004).
e A list for LCA containing:
par An L x I x K.y array of initial conditional probabilities for each
latent class, item, and response category (where K, ,x is the maximum
number of categories across items).
P.Z A numeric vector of length L specifying initial prior probabilities for
latent classes.

46

params

is.sort

constraint

method

tol
method. SE

LCPA

e A list for LPA containing:
means An L x I matrix of initial mean vectors for each profile.
covs An [x I x L array of initial covariance matrices for each profile.
P.Z A numeric vector of length L specifying initial prior probabilities for
profiles.

Optional list of pre-estimated Step 1 parameters. If NULL (default), Step 1
models are estimated internally. If provided, no LCA or LPA parameter estima-
tion will be performed; instead, the parameters provided in params will be used
as fixed values. Additionally, params must contain:
* A list for LCA containing:
par An L x I x Ky, array of initial conditional probabilities for each
latent class, item, and response category (where K, is the maximum
number of categories across items).
P.Z A numeric vector of length L specifying initial prior probabilities for
latent classes.
e A list for LPA containing:
means An L x [matrix of initial mean vectors for each profile.
covs An [x I x L array of initial covariance matrices for each profile.
P.Z A numeric vector of length L specifying initial prior probabilities for
profiles.
A logical value. If TRUE (Default), the latent classes will be ordered in descend-

ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

Character (LPA only). Specifies structure of within-class covariance matrices:

* "VV" — Class-varying variances and covariances (unconstrained; default).
* "EE" — Equal variances and covariances across all classes (homoscedas-
tic).

Character. Estimation algorithm for Step 1 models:

e "EM" — Expectation-Maximization (default; robust and widely used).
e "Mplus” — Interfaces with Mplus software (requires external installation).
* "NNE" — Neural Network Estimator (experimental; uses transformer + sim-

ulated annealing, more reliable than both "EM" and "Mplus”).
Convergence tolerance for log-likelihood difference (default: 1e-4).
Character. Method for estimating standard errors of parameter estimates:

e "Obs" — Approximates the observed information matrix via numerical dif-
ferentiation (Richardson’s method). Standard errors are obtained from the
inverse Hessian. May fail or be unreliable in small samples or with complex
likelihood surfaces.

* "Bootstrap” — Uses nonparametric bootstrap resampling to estimate em-
pirical sampling variability. More robust to model misspecification and
small-sample bias. Computationally intensive but recommended when asymp-
totic assumptions are questionable.

Default is "Bootstrap”.

LCPA

n.Bootstrap

maxiter

nrep

starts

maxiter.wa

vis

control .EM

control .Mplus

control .NNE

47

Integer. Number of bootstrap replicates used when method. SE = "Bootstrap”.
Default is 100. McLachlan & Peel (2004) suggest that 50-100 replicates often
provide adequate accuracy for practical purposes, though more (e.g., 500-1000)
may be preferred for publication-quality inference. Each replicate involves re-
estimating the full three-step LTA model on a resampled dataset.

Maximum number of iterations for optimizing the regression coefficients. De-
fault: 5000.

Integer controlling replication behavior:

e If par.ini = "random”, number of random initializations.

e If par.ini = "kmeans", number of K-means runs for initialization.

* Formethod="Mplus"”, controls number of random starts in Mplus via STARTS
option.

* Best solution is selected by log-likelihood/BIC across replications.

* Ignored for user-provided initial parameters.

Number of random initializations to explore during warm-up phase (default:
100).

Maximum number of training iterations allowed per warm-up run. After com-
pletion, the top nrep solutions (by log-likelihood) are promoted to final training
phase (default: 20).

Logical. If TRUE, displays progress information during estimation (default: TRUE).
List of control parameters for EM algorithm:

maxiter Maximum iterations (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

List of control parameters for Mplus estimation:

maxiter Maximum iterations for Mplus optimization (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

files.path Character string specifying the directory path where Mplus will
write its intermediate files (e.g., . inp model input, .dat data file, .out
output, and saved posterior probabilities). This argument is required — if
NULL (default), the function throws an error. The specified directory must
exist and be writable; if it does not exist, the function attempts to create it re-
cursively. A unique timestamped subdirectory (e.g., "Mplus_LPA_YYYY-MM-DD_HH-MM-SS"
or "Mplus_LCA_YYYY-MM-DD_HH-MM-SS") will be created within this path
to store all run-specific files and avoid naming conflicts. See in LCA and
LPA.

files.clean Logical. If TRUE (default), all intermediate files and the tempo-
rary working directory created for this run are deleted upon successful com-
pletion or error exit (via on.exit()). If FALSE, all generated files are re-
tained in files.path (or the auto-generated temp dir) for inspection or de-
bugging. Note: when files.path = NULL, even if files.clean = FALSE,
the temporary directory may still be cleaned up by the system later — for
guaranteed persistence, specify a custom files.path.

List of control parameters for NNE algorithm:

48 LCPA

hidden.layers Integer vector specifying layer sizes in fully-connected net-
work (default: c(12,12)).

activation.function Activation function (e.g., "tanh", default: "tanh").

d.model Dimensionality of transformer encoder embeddings (default: 8).

nhead Number of attention heads in transformer (default: 2).

dim.feedforward Dimensionality of transformer feedforward network (default:
16).

eps Small constant for numerical stability (default: 1e-8).

lambda A factor for slight regularization of all parameters (default: le-5).

initial.temperature Initial temperature for simulated annealing (default: 1000).

cooling.rate Cooling rate per iteration in simulated annealing (default: 0.5).

maxiter.sa Maximum iterations for simulated annealing (default: 1000).

threshold.sa Minimum temperature threshold for annealing (default: le-10).

maxiter Maximum training epochs (default: 1000).

maxiter.early Patience parameter for early stopping (default: 50).

maxcycle Maximum cycles for optimization (default: 10).

1r Learning rate, controlling the step size of neural network parameter updates
(default: 0.025).

scheduler.patience Patience for learning rate decay (if the loss function does

not improve for more than patience consecutive epochs, the learning rate
will be reduced) (default: 10).

scheduler.factor Learning rate decay factor; the new learning rate equals the
original learning rate multiplied by scheduler. factor (default: 0.70).

plot.interval Interval (in epochs) for plotting training diagnostics (default:
100).

device Specifies the hardware device; can be "CPU" (default) or "GPU". If the
GPU is not available, it automatically falls back to CPU.

Value
An object of class LCPA, a named list containing:
beta Matrix of size p x L. Coefficients for class membership multinomial logit model. Columns
1 to L — 1 are free parameters; column L (reference class) is constrained to 3; = 0.

beta.se Standard errors for beta (if Hessian is invertible). Same dimensions as beta. May contain
NA if variance-covariance matrix is not positive definite.

beta.Z.sta Z-statistics for testing null hypothesis that each beta coefficient equals zero. Com-
puted as beta / beta. se. Same structure as beta.

beta.p.value.taill One-tailed p-values based on standard normal distribution: P(Z < —|z|).
Useful for directional hypotheses. Same structure as beta.

beta.p.value.tail2 Two-tailed p-values: 2 X P(Z < —|z|). Standard test for non-zero effect.
Same structure as beta.

P.Z.Xn Matrix of size N x L of posterior class probabilities P(Z, = [| X,,) for each individual
n and class [.

P.Z Vector of length L containing prior class proportions P(Z = [) estimated at Step 1.

LCPA 49

Z Vector of length N containing modal class assignments (MAP classifications) 2,, for each indi-
vidual.

npar Number of free parameters in the model (depends on covariates).
Log.Lik Observed-data log-likelihood value at convergence.
Log.Lik.history Vector tracking log-likelihood at each iteration.
AIC Akaike Information Criterion value.

BIC Bayesian Information Criterion value.

iterations Integer. Number of optimization iterations in Step 3.

coveraged Logical. TRUE if optimization terminated before reaching maxiter (suggesting con-
vergence). Note: This is a heuristic indicator; formal convergence diagnostics should check
Hessian properties.

params List. Step 1 model parameters (output from LCA() or LPA()).
call The matched function call.

arguments List of all input arguments passed to the function (useful for reproducibility).

Methodology Overview

The three-step procedure follows the same principles as LTA but for a single time point:

Step 1 — Unconditional Latent Class/Profile Model: Fit an unconditional LCA or LPA model
(ignoring covariates). Obtain posterior class membership probabilities P(Z,, = I | X,,) for each
individual n and class [using Bayes’ theorem.

Step 2 — Classification Error Probabilities (equal to get.CEP): Compute the L x L CEP matrix
where element (k,) estimates:

CEP(k,l) = P(Z,=1|Z, =k)
using a non-parametric approximation:

SN L2, =1) P(Zy =k | X,)
SN P(Zn = k| X,)

CEP(k,1) =

where Z,, is the modal class assignment.

Step 3 — Class Membership Model with Measurement Error Correction: Estimate the multinomial
logit model for class membership:

Tx
Zk 1 eXp(ﬁk n)

where X,, = (1, Wp1,..., W, M)T is the covariate vector for individual n (with intercept as first

column), and B, = (B0, Bi1,---,Bim) " contains intercept and regression coefficients. Class L is

the reference category (3; = 0).

The observed-data likelihood integrates over latent classes:

N L
log £(8) = Y log | Y CEP(l,2,) - P(Z, = 1] X,,)
= =1

Parameters 3 are estimated via maximum likelihood using the BOBYQA algorithm.

50 LCPA

Important Implementation Details

» Reference Class: Coefficients for the reference class (ref.class) are ALWAYS fixed to zero
(Bref.ciass = 0) in the multinomial logit model.

* CEP Matrices: When CEP.error = TRUE, misclassification probabilities are estimated non-
parametrically using Step 1 posterior probabilities. This corrects for classification uncertainty.
See in get.CEP.

* Covariate Requirements: Covariate matrix MUST include an intercept column (all 1s) as the
first column. Dimensions must be N x (M + 1), where M represents the number of covariate
and 1 is the Intercept.

e Optimization & Standard Errors:
— Step 3 uses BOBYQA algorithm (nloptr::nloptr) for stable optimization with box
constraints.

— For method.SE = "Obs": Standard errors derived from inverse Hessian (hessian). If
Hessian is singular:

* Uses Moore-Penrose pseudoinverse (ginv)
* Sets negative variances to NA

— For method.SE = "Bootstrap”: Each replicate independently re-estimates Steps 1-3.
Failed bootstrap runs yield NA in SEs and derived statistics. Progress messages include
replicate index and optimization diagnostics.

* Computational Notes:
— Step 1 complexity increases with L and 1.
— Bootstrap is computationally intensive: 100 replicates = 100 full re-estimations of Steps
1-3.

* Bootstrap Reproducibility: Always set a seed (e.g., set.seed(123)) before calling LCPA()
when using method. SE = "Bootstrap"”. Monitor convergence in bootstrap runs via progress
messages.

References
Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches.
Political Analysis, 18(4), 450-469. https://doi.org/10.1093/pan/mpq025

Liang, Q., la Torre, J. d., & Law, N. (2023). Latent Transition Cognitive Diagnosis Model With
Covariates: A Three-Step Approach. Journal of Educational and Behavioral Statistics, 48(6), 690-
718. https://doi.org/10.3102/10769986231163320

Examples

library(LCPA)

set.seed(123)

N <- 2000 # Sample size

L <-3 # Number of latent classes
I<-6 # Number of items

Create covariates (intercept + 2 covariates + 1 interaction)
Intercept = rep(1, N)

logit 51

X1 <= rnorm(N)

X2 <- rbinom(N, 1, 0.5)

X1.X2 <= X1 % X2

covariate <- cbind(Intercept, X1, X2, X1.X2)

Simulate data for LPA
sim_data <- sim.LTA(
N=N, I=1I,L=0L, times =1, type = "LPA",
covariates = list(covariate), is.sort=TRUE,
beta = matrix(c(
-0.2, 0.0, -0.1, ## fix reference class to class 2
0.2, 0.0, -0.3,
0.8, 0.0, -0.6,
-0.1, 0.0, 0.3
), ncol = L, byrow = TRUE)
)

response <- sim_data$responses[[1]]

It is strongly recommended to perform the following

standardization to obtain more stable results when LPA.
Standardization is not performed here in order to

compare estimated values with true values.

response <- normalize(response)

Fit cross-sectional LPA with covariates
fix reference class to class 2
need Mplus
Not run:
fit <- LCPA(
response = response,
L =L, ref.class = 2,
type = "LPA", is.sort=TRUE,
covariate = covariate,
method.SE = "Obs",
CEP.error = TRUE,
method = "Mplus”,
control.Mplus = list(files.path = ""),
vis = TRUE
)
print(fit)

End(Not run)

logit Compute the Logistic (Sigmoid) Function

Description

This function computes the logistic (also known as sigmoid) transformation of the input. The lo-
gistic function maps real-valued numbers to the open interval (0, 1), and is widely used in machine

52 logit

learning, statistical modeling (e.g., logistic regression), and neural networks as an activation func-
tion or link function.

Usage
logit(x)
Arguments
X A numeric vector, matrix, or array. Accepts any real number, including Inf and
-Inf. Missing values (NA) are preserved.
Details

The logistic function is defined as:

1
logit ™" (z) = ———
ogit™ (v) = 7=

Note: Despite the name "logit", this function actually computes the inverse logit (i.e., the logis-
tic function). The true logit function is the inverse: log(p/(1 — p)). However, in many applied
contexts—especially in software—the term "logit" is sometimes informally used to refer to the sig-
moid. For clarity, this implementation follows the conventional definition of the logistic/sigmoid
function.

Value

A numeric object of the same dimension as x, where each element is the logistic transformation of
the corresponding input:

e If x =0, returns 0.5

* As x -> Inf, output approaches 1

* As x —> -Inf, output approaches @

¢ NA values remain NA

Examples

logit (@) # 0.5
logit(c(-Inf, @, Inf)) # c(0@, 0.5, 1)
logit(c(-2, -1, 0, 1, 2))

LPA 53

LPA Fit Latent Profile Analysis

Description

This function estimates parameters of a Latent Profile Analysis (LPA) model for continuous ob-
served variables using one of three methods: Expectation-Maximization (EM) algorithm, Neural
Network Estimation (NNE), or external Mplus software. It supports flexible covariance structures
and initialization strategies.

Usage

LPA(
response,
L =2,
par.ini = "random”,
constraint = "VV",
method = "EM",
is.sort = TRUE,
nrep = 20,
starts = 100,
maxiter.wa = 20,
vis = TRUE,
control.EM = NULL,
control.Mplus = NULL,
control .NNE = NULL

)
Arguments

response A numeric matrix of dimension N x I, where N is the number of individu-
als/participants/observations and [is the number of continuous observed items/variables.
Missing values are not allowed. Note that response must be standardized using
scale or normalize before input.

L Integer specifying the number of latent profiles (default: 2).

par.ini Specification for parameter initialization. Options include:

¢ "random”: Random initialization of means and covariances (default).

* "kmeans": Initializes parameters via K-means clustering on observed data
(McLachlan & Peel, 2004).

* A list containing exactly three elements:
means An L x I matrix of initial mean vectors for each profile.
covs An [x I x L array of initial covariance matrices for each profile.
P.Z A numeric vector of length L specifying initial prior probabilities for
profiles.

constraint Character string specifying covariance structure constraints:

54

method

is.sort

nrep

starts

maxiter.wa

vis

control .EM

LPA

"VV" Varying variances and varying covariances across profiles (heterogeneous
full covariance; Default).

"VE" Varying variances but equal correlations across profiles.

"EV" Equal variances but varying covariances across profiles.

"EE" Equal variances and equal covariances across profiles (homogeneous full
covariance).

"E@" Equal variances across profiles, zero covariances (diagonal with shared
variances).

"V@" Varying variances across profiles, zero covariances (diagonal with free
variances).

list Custom constraints. Each element is a 2-element integer vector specify-
ing variables whose covariance parameters are constrained equal across all
classes. The constraint applies to:

* Variances: When both indices are identical (e.g., c(3, 3) forces vari-
ance of variable 3 to be equal across classes).
* Covariances: When indices differ (e.g., c(1,2) forces covariance be-
tween variables 1 and 2 to be equal across classes).

Constraints are symmetric (e.g., c(1,2) automatically constrains c(2,1)).
All unconstrained parameters vary freely across classes while maintaining
positive definiteness.

Character string specifying estimation algorithm:

* "EM": Expectation-Maximization algorithm (Default).

* "NNE": Neural Network Estimation with transformer architecture (exper-
imental; uses transformer + simulated annealing, more reliable than both
"EM" and "Mplus"). See install_python_dependencies.

e "Mplus”: Calls external Mplus software for estimation. Uses Mplus de-
faults for optimization unless overridden by control.Mplus.

A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

Integer controlling replication behavior:

e If par.ini = "random”, number of random initializations.

e If par.ini = "kmeans"”, number of K-means runs for initialization.

* Formethod="Mplus"”, controls number of random starts in Mplus via STARTS

option.

* Best solution is selected by log-likelihood/BIC across replications.

* Ignored for user-provided initial parameters.
Number of random initializations to explore during warm-up phase (default:
100).

Maximum number of training iterations allowed per warm-up run. After com-
pletion, the top nrep solutions (by log-likelihood) are promoted to final training
phase (default: 20).

Logical. If TRUE, displays progress information during estimation (default: TRUE).

List of control parameters for EM algorithm:

LPA

control .Mplus

control .NNE

55

maxiter Maximum iterations (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

List of control parameters for Mplus estimation:

maxiter Maximum iterations for Mplus optimization (default: 2000).
tol Convergence tolerance for log-likelihood difference (default: 1e-4).

files.path Character string specifying the directory path where Mplus will
write its intermediate files (e.g., .inp model input, .dat data file, .out
output, and saved posterior probabilities). This argument is required — if
NULL (default), the function throws an error. The specified directory must
exist and be writable; if it does not exist, the function attempts to create it re-
cursively. A unique timestamped subdirectory (e.g., "Mplus_LPA_YYYY-MM-DD_HH-MM-SS")
will be created within this path to store all run-specific files and avoid nam-
ing conflicts.

files.clean Logical. If TRUE (default), all intermediate files and the tempo-
rary working directory created for this run are deleted upon successful com-
pletion or error exit (via on.exit()). If FALSE, all generated files are re-
tained in files.path (or the auto-generated temp dir) for inspection or de-
bugging. Note: when files.path =NULL, even if files.clean = FALSE,
the temporary directory may still be cleaned up by the system later — for
guaranteed persistence, specify a custom files.path.

List of control parameters for NNE algorithm:

hidden.layers Integer vector specifying layer sizes in fully-connected net-
work (default: c(12,12)).

activation.function Activation function (e.g., "tanh", default: "tanh").

d.model Dimensionality of transformer encoder embeddings (default: 8).

nhead Number of attention heads in transformer (default: 2).

dim. feedforward Dimensionality of transformer feedforward network (default:
16).

eps Small constant for numerical stability (default: 1e-8).

lambda A factor for slight regularization of all parameters (default: le-5).

initial.temperature Initial temperature for simulated annealing (default: 1000).

cooling.rate Cooling rate per iteration in simulated annealing (default: 0.5).

maxiter.sa Maximum iterations for simulated annealing (default: 1000).

threshold.sa Minimum temperature threshold for annealing (default: 1e-10).

maxiter Maximum training epochs (default: 1000).

maxiter.early Patience parameter for early stopping (default: 50).

maxcycle Maximum cycles for optimization (default: 10).

1r Learning rate, controlling the step size of neural network parameter updates
(default: 0.025).

scheduler.patience Patience for learning rate decay (if the loss function does

not improve for more than patience consecutive epochs, the learning rate
will be reduced) (default: 10).

scheduler.factor Learning rate decay factor; the new learning rate equals the
original learning rate multiplied by scheduler.factor (default: 0.70).

56 LPA

plot.interval Interval (in epochs) for plotting training diagnostics (default:
100).

device Specifies the hardware device; can be "CPU" (default) or "GPU". If the
GPU is not available, it automatically falls back to CPU.

Value
An object of class "LPA" containing:

params List with estimated profile parameters:

means L x I matrix of estimated mean vectors for each profile.
covs I x I x L array of estimated covariance matrices for each profile.
P.Z Vector of length L with profile prior probabilities.

npar Number of free parameters in the model (depends on constraint).
Log.Lik Log-likelihood of the final model.

AIC Akaike Information Criterion value.

BIC Bayesian Information Criterion value.

best_BIC Best BIC value across nrep runs (if applicable).

P.Z.Xn N x L matrix of posterior profile probabilities for each observation.

P.Z Vector of length L containing the prior probabilities/structural parameters/proportions for each
latent class.

Z Vector of length N with MAP-classified profile memberships.

Log.Lik.history Vector tracking log-likelihood at each EM iteration (only for method="EM").
Log.Lik.nrep Vector of log-likelihoods from each replication run.

model The optimal model object:

¢ For method="NNE": Trained neural network model.
* For method="Mplus": Estimated Mplus model.

EM Algorithm

When method = "EM", parameter estimation uses the Expectation-Maximization (EM) algorithm to
maximize the observed-data log-likelihood:

N L
log £="> log | Y m - N(xn |, %1)
n=1 =1

The algorithm iterates between two steps until convergence (change in log-likelihood < tol or max
iterations reached):

E-step: Compute posterior class probabilities (responsibilities) for observation n and class I:

_ WI'N(Xn|Nz»Ez)
i T N (% | e Zi)

where N/ (-) is the multivariate normal density, 7; is the prior class probability, and ,, 3; are
current parameters. Numerical stability is ensured via the log-sum-exp trick.

Tnl

LPA 57

M-step: Update parameters using responsibilities 7,,;:

e N
¢ Class probabilities: 7] = + >°" | 7
N
« Class means: g = ZatToiXn
Nl Zf,,vzl Tnl
* Class covariances: Updated under constraints:
N new new\ T
ny\ " new > one1 Tl (Xn—p1™) (Xn—™)
W' s — Zun=1 i i
! 22;1 Tnl
L N _, new o new\ T
"EE" Shared covariance: X" = 2=t 2n=y Tt (n i) (0 —pi™)
121 2n=1 Tnl
"VE" (default) / "EV" Hybrid constraints (e.g., "VE": varying variances, equal correla-
tions). Off-diagonal elements use weighted averages across classes; diagonals retain
class-specific values.

Custom constraints User-specified variances/covariances (e.g., list(c(1,2), c(2, 2)),
meaning the covariates of observed variable 1 and observed variable 2 are equal
across latent classes, and the variance of observed variable 2 is equal across classes)
are forced equal across classes via weighted averaging.

Covariance matrices are regularized to ensure positive definiteness:
» Figenvalues < jitter (le-10) are replaced with jitter

* Failed Cholesky decompositions trigger diagonal jittering or perturbation of non-constrained
elements

Edge Handling:

* Empty classes (3", 7, < 1075) are reinitialized by redistributing responsibilities.
» Non-finite likelihoods trigger fallback to previous valid parameters or covariance perturbation.

 Univariate cases (I = 1) bypass Cholesky decomposition for direct variance updates.

Neural Network Estimation (NNE)

When method = "NNE", parameters are estimated using a hybrid neural network architecture com-
bining fully-connected layers with transformer-based attention mechanisms. This approach jointly
optimizes profile parameters and posterior probabilities through stochastic optimization with simu-
lated annealing. See install_python_dependencies. Key components include:

Architecture:

Input Representation: Continuous observed variables x,, € R are standardized (mean-centered,
unit-variance) internally during training to improve numerical stability. No encoding is needed
— raw values are fed directly.

Feature Encoder (Feedforward Network): A multi-layer perceptron with architecture defined by
hidden.layers and activation.function maps the continuous input vector into a latent

space of dimension d.model. This layer learns non-linear feature combinations predictive of
latent profile membership.

Attention Refiner (Transformer Encoder) A transformer encoder with nhead attention heads that
learns latent class prior probabilities # = (71, 7o, . .., 71,) directly from observed responses.
* Input: response matrix (/N x I), where IV = observations, I = continuous variables.

e Mechanism: Self-attention dynamically weighs variable importance during profile as-
signment, capturing complex multivariate interactions.

58 LPA

e Qutput: Class prior vector 7w computed as the mean of posteriors:

N
1
= ,; attention(X,,)

This ensures probabilistic consistency with the mixture model framework.

Parameter Head (Means & Covariances): Two separate projection heads branch from the trans-
former output:
* Means Head: Linear projection to L x I matrix p;.

» Covariance Head: Outputs lower-triangular elements of Cholesky factors L; for each pro-
file. Diagonal elements are passed through softplus to ensure positivity; off-diagonals
use tanh scaled by 1.2 to bound magnitude and promote stability. The full covariance is
reconstructed via 33; = LlLlT.

After reconstruction, covariance constraints (e.g., "EE", "V@", or custom lists) are applied by
averaging constrained elements across profiles and re-symmetrizing.

Optimization Strategy:

* Hybrid Training Protocol: Alternates between:

— Gradient-based phase: AdamW optimizer minimizes negative log-likelihood with weight
decay regularization:
—log L+ \||6]3
where A is controlled by lambda (default: le-5). Learning rate decays adaptively when
loss plateaus (controlled by scheduler.patience and scheduler.factor).

— Simulated annealing phase: After gradient-based early stopping (maxiter.early), pa-
rameters are perturbed with noise scaled by temperature:

T
enew = ecurrem + N(O; chrrem X f)
0

Temperature T' decays geometrically (1" <— T'xcooling.rate) from initial. temperature
until threshold. sa is reached. This escapes poor local minima.
Each full cycle (gradient descent + annealing) repeats up to maxcycle times.

* Model Selection: Across nrep random restarts (using Dirichlet-distributed initializations or
K-means), the solution with lowest BIC is retained.

 Diagnostics: Training loss, annealing points, and global best solution are plotted when vis=TRUE.
Constraint Handling:

* Covariance constraints (constraint) are enforced after activation via:
— Shared Parameters: Variances/covariances marked for equality are replaced by their av-
erage across profiles.
— Positive Definiteness: Non-positive definite matrices are corrected via eigenvalue clamp-
ing, diagonal jittering, or adaptive Cholesky decomposition.

e Custom constraints: e.g., list(c(1,2), c(3,3)), force equality of specific covariance ele-
ments across profiles, with symmetry (o12 = 021) automatically enforced.

LPA 59

Mplus
When method = "Mplus”, estimation is delegated to external Mplus software. The function auto-
mates the entire workflow:
Workflow:

Temporary Directory Setup Creates inst/Mplus to store:
* Mplus input syntax (.inp)
 Data file in Mplus format (.dat)
* Posterior probabilities output (. dat)
Files are automatically deleted after estimation unless control .Mplus$clean.files = FALSE.
Syntax Generation Constructs Mplus syntax with:
e CLASSES = c1(L) specification for L latent classes
e ANALYSIS block with optimization controls:
TYPE = mixture Standard mixture modeling setup
STARTS = starts nrep Random starts and final stage optimizations
STITERATIONS = maxiter.wa max itertions during starts.
MITERATIONS = maxiter Maximum EM iterations
CONVERGENCE = tol Log-likelihood convergence tolerance
* MODEL block reflecting the specified constraint structure
Execution Calls Mplus via MplusAutomation: :mplusModeler(), which:
» Writes data to disk in Mplus-compatible format
* Invokes the Mplus executable (requires valid license)
» Captures convergence status and output

Constraint Handling:

¢ Covariance constraints (constraint) are enforced after activation via:

— Shared Parameters: Variances/covariances marked for equality are replaced by their av-
erage across profiles.

— Positive Definiteness: Non-positive definite matrices are corrected via eigenvalue clamp-
ing, diagonal jittering, or adaptive Cholesky decomposition.

* Custom constraints: e.g., list(c(1,2), c(3,3)), force equality of specific covariance ele-
ments across profiles, with symmetry (o712 = 021) automatically enforced.

References

McLachlan, G.J., & Peel, D. (2004). Finite Mixture Models. Wiley. https://books.google.com.sg/books?id=c2_fAox0DQoC

Examples

Simulate bivariate continuous data for 2 profiles
set.seed(123)

data.obj <- sim.LPA(N = 500, I = 3, L = 2, constraint = "VV")
response <- data.obj$response

60 LRT.test

It is strongly recommended to perform the following
standardization to obtain more stable results.

Standardization is not performed here in order to
compare estimated values with true values.

response <- normalize(response)

Fit 2-profile model with VV constraint (default)
fit_vv <- LPA(response, L = 2, constraint = "VV")

Fit 2-profile model with E@ constraint using neural network estimation

need Python

Not run:

fit_e@_nne <- LPA(response, L = 2, constraint = "E@", method = "NNE", nrep = 2)

End(Not run)

Fit 2-profile model using Mplus

Requires Mplus to be installed and available in system PATH.

NOTE: 'files.path' in control.Mplus is REQUIRED — the function will

throw an error if not provided.

This example creates a timestamped subdirectory

(e.g., "Mplus_LPA_YYYY-MM-DD_HH-MM-SS") under './inst'

to store all temporary Mplus files (.inp, .dat, .out, etc.).

The 'inst' directory will be created if it does not exist.

Setting files.clean=FALSE means temporary files will be preserved after execution.
Not run:

fit_mplus <- LPA(response, L = 2, method = "Mplus”, constraint = list(c(1, 2), c(3, 3)),
control .Mplus = list(files.path = "inst", files.clean=FALSE))

% T O H O o W

End(Not run)

LRT. test Likelihood Ratio Test

Description

Conducts a likelihood ratio test to compare the fit of two models. The test evaluates whether a
model with more parameters provides a significantly better fit than a model with fewer parameters.

Usage

LRT.test(objectl, object2)

Arguments

objectl Fitted model object with fewer parameters (i.e., fewer npar, small model).

object?2 Fitted model object with more parameters (i.e., more npar, large model).

LRTtest.Bootstrap 61

Details

Note that since the small model may be nested within the large model, the result of LRT. test
may not be accurate and is provided for reference only. More reliable conclusions should be
based on a combination of fit indices (i.e., get.fit.index), classification accuracy measures (i.e.,
get.entropy, get.AvePP), and a bootstrapped likelihood-ratio test (i.e., BLRT, LRT. test.Bootstrap,
which is very time-consuming). Above all and the most important criterion, is that the better model

is the one that aligns with theoretical expectations and offers clear interpretability.

The LRT. test test statistic is defined as:

* The models must be nested (i.e., the model with fewer parameters is a constrained version of
the more one).

* Both models must be fit on the identical dataset with the same response variables.

* The test statistic asymptotically follows a chi-square distribution.

LRT = —2 x (LogLik, — LogLik,)
where:
* LogLik,: Log-likelihood of the smaller model (fewer parameters).

* LogLik,: Log-likelihood of the larger model (more parameters).

Under the null hypothesis (H_@: small model is true), LRT asymptotically follows a chi-square
distribution with df degrees of freedom.

Value
An object of class "htest"” containing:

* statistic: VLMR adjusted test statistic

* parameter: Degrees of freedom (df = npare — npary)
* p.value: P-value from X?l f distribution

* method: Name of the test

* data.name: Model comparison description

LRT.test.Bootstrap Bootstrap Likelihood Ratio Test

Description

Conducts a bootstrap likelihood ratio test to compare the fit of two nested models. This test evaluates
whether a model with more parameters provides a significantly better fit than a model with fewer
parameters by approximating the null distribution through parametric bootstrapping.

Usage
LRT. test.Bootstrap(objectl, object2, n.Bootstrap = 100, vis = TRUE)

62 LRTtest.Bootstrap
Arguments
objectl Fitted model object with fewer parameters (i.e., fewer npar, small model).
object2 Fitted model object with more parameters (i.e., more npar, large model).
n.Bootstrap Number of bootstrap replicates (default = 100). Higher values increase accuracy
but computation time (we suggest that n.Bootstrap = 1000).
vis Logical. If TRUE, displays progress information during bootstrap (default: TRUE).
Details

Note that even the result of LRT. test.Bootstrap should not be taken as the sole criterion; fit in-
dices (e.g., get.fit.index) and classification accuracy measures (e.g., get.entropy, get.AvePP)
must be considered together. Above all and the most important criterion, is that the better model is
the one that aligns with theoretical expectations and offers clear interpretability.

The LRT. test.Bootstrap statistic is calculated as:
LRT = —2 x (LogLik, — LogLik,)
where:

* LogLik,: Log-likelihood of the smaller model (fewer parameters).

* LogLik,: Log-likelihood of the larger model (more parameters).

The LRT. test.Bootstrap function employs a parametric bootstrap procedure to empirically es-
timate the distribution of the LRT statistic under the null hypothesis (that the smaller model is
sufficient). The specific steps are as follows:

1. Parameter Extraction: The estimated parameters (params) from the smaller model (object1)
are treated as the true population values (ground truth).

2. Data Simulation: The function invokes sim.LCA or sim.LPA to generate n.Bootstrap inde-
pendent datasets. Each dataset maintains the same sample size (N) and number of indicators
(I) as the original empirical data.

3. Model Re-fitting: For each simulated dataset, both the small model and the large model are re-
fitted. To ensure consistency, the estimation settings (e.g., convergence criteria, iterations) are
identical to those used for the original models, with the exception that LRT. test.Bootstrap
forces par.ini = "random"” to avoid local maxima.

4. Distribution Generation: This process generates n.Bootstrap pairs of LogLik, ;,,, and LogLik, ;..
which are used to compute a collection of bootstrap LRT statistics: LRThoot = —2x (LogLiky 0, —

LOgLik2,boot)'

5. P-value Calculation: The bootstrap p-value is calculated as the proportion of simulated L RT ¢
values that are greater than or equal to the observed L RT statistic from the original data.

This method is particularly recommended for Latent Class and Latent Profile Analysis because
the traditional Chi-square distribution for LRT often fails to hold due to parameters being on the
boundary of the parameter space (e.g., probabilities near 0 or 1).

LRT:test. VLMR 63

Value
An object of class "htest"” containing:

* statistic: Observed likelihood ratio test statistic

* parameter: Degrees of freedom (reported as NA since p-value is bootstrap-derived)
* p.value: Bootstrap p-value

* method: Name of the test ("Bootstrap Likelihood Ratio Test")

* data.name: Model comparison description

LRT.test.VLMR Lo-Mendell-Rubin likelihood ratio test

Description

Implements the ad-hoc adjusted likelihood ratio test (LRT) described in Formula 15 of Lo, Mendell,
& Rubin (2001), also known as VLMR LRT (Vuong-Lo-Mendell-Rubin Adjusted LRT). This
method is typically used to compare models with L-1 and L classes. If the difference in the number
of classes exceeds 1, conclusions should be interpreted with extreme caution.

Usage
LRT.test.VLMR(object1, object2)

Arguments
objectl Fitted model object with fewer parameters (i.e., fewer npar, small model).
object2 Fitted model object with more parameters (i.e., more npar, large model).
Details

Note that since the small model may be nested within the large model, the result of LRT. test.VLMR
may not be accurate and is provided for reference only. More reliable conclusions should be
based on a combination of fit indices (i.e., get.fit.index), classification accuracy measures (i.e.,
get.entropy, get.AvePP), and a bootstrapped likelihood-ratio test (i.e., BLRT, LRT. test.Bootstrap,
which is very time-consuming). Above all and the most important criterion, is that the better model

is the one that aligns with theoretical expectations and offers clear interpretability.

The LRT. test.VLMR statistic is defined as:

LRT 1
VLMR=—— h =14 —
c where ¢ +df-10g(N)

where:

* LRT is the standard likelihood ratio statistic. see LRT. test
* df = npars — npary is the difference in number of free parameters between models.
e N is the sample size.

Under the null hypothesis (H_0: small model is true), VLMR asymptotically follows a chi-square
distribution with df degrees of freedom.

64 LTA

Value

An object of class "htest"” containing:

* statistic: VLMR adjusted test statistic

* parameter: Degrees of freedom (df = npars — npary)
* p.value: P-value from 2 f distribution

* method: Name of the test

* data.name: Model comparison description

References

Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal
mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88.3.767

Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analy-
sis. Translational Issues in Psychological Science, 4(4), 440-461. https://doi.org/10.1037/tps0000176

LTA Latent Transition Analysis (LTA)

Description

Implements the three-step estimation method (Vermunt, 2010; Liang et al., 2023) for Latent Transi-
tion Analysis (LTA), treating latent class memberships at each time point as observed variables with
measurement error. Classification uncertainty from Step 1 (latent class/profile analysis) is explic-
itly incorporated into the transition model estimation in Step 3, ensuring asymptotically unbiased
estimates of transition probabilities and covariate effects. This avoids the bias introduced by "hard"
modal-class assignment.

Usage

LTA(
responses,
L =2,
ref.class = L,
type = "LCA",
covariates = NULL,
CEP.timeCross = FALSE,
CEP.error = TRUE,
covariates.timeCross = FALSE,
par.ini = "random",
params = NULL,
is.sort = TRUE,
constraint = "VV",
method = "EM",
tol = 1e-04,

LTA

65

method.SE = "Bootstrap”,

n.Bootstrap =

100,

maxiter = 5000,

nrep = 20,
starts = 100,

maxiter.wa = 20,

vis = TRUE,

control.EM = NULL,

control.Mplus
control .NNE =

Arguments

responses

ref.class

type

covariates

CEP.timeCross

CEP.error

= NULL,
NULL

A list of response matrices or data frames. Each matrix corresponds to one
time point. Rows of each matrix represent individuals/participants/observations
(IN), columns of each matrix represent observed items/variables (/). For type
= "LCA": items must be binary or categorical (coded as integers starting from
0). For type = "LPA": items must be continuous (numeric), and each response
matrix must be standardized using scale or normalize prior to input.

Integer scalar. Number of latent classes/profiles at each time point. Must satisfy
L>2.

Integer L > ref.class > 1. Specifies which latent class to use as the reference
category. Default is L (last class). Coefficients for the reference class are fixed
to zero. When is.sort=TRUE, classes are first ordered by decreasing P.Z (class
1 has highest probability), then ref.class refers to the position in this sorted
order.

Character string. Specifies the type of latent variable model for Step 1:

e "LCA" — Latent Class Analysis for categorical items.
e "LPA" — Latent Profile Analysis for continuous items.

See LCA and LPA for details.

Optional. A list of matrices/data frames (length = number of time points).
Each matrix contains covariates for modeling transitions or initial status. Must
include an intercept column (all 1s) as the first column. If NULL (default), only
intercept terms are used (i.e., no covariates). For time ¢, dimension is N X p;.
Covariates can vary across time.

Logical. If TRUE, assumes measurement invariance and uses the same Clas-
sification Error Probability (get.CEP) matrix across all time points. Requires
that item parameters are invariant over time (not checked internally). Default is
FALSE.

Logical. If TRUE (recommended), incorporates classification uncertainty via es-
timated CEP matrices from Step 1. If FALSE, uses identity CEP matrices (equiv-
alent to naive modal assignment; introduces bias and not recommended).

covariates.timeCross

Logical. If TRUE, forces the use of identical v parameters across all time points
(i.e., a time-invariant probability transition matrix). In this case, users should

66

par.ini

params

is.sort

constraint

method

LTA

ensure that the covariate matrices at different time points have the same dimen-
sions (values may differ) to match the fixed form of the v;x; coefficients. Default
is FALSE, allowing for potentially different probability transition matrices across
time points.

Specification for parameter initialization. Options include:

* "random”: Completely random initialization (default).

* "kmeans": Initializes parameters via K-means clustering on observed data
(McLachlan & Peel, 2004).

* A list for LCA containing:

par An L x I x Ky, array of initial conditional probabilities for each
latent class, item, and response category (where K.« is the maximum
number of categories across items).

P.Z A numeric vector of length L specifying initial prior probabilities for
latent classes.

* A list for LPA containing:
means An L x [matrix of initial mean vectors for each profile.
covs An I x I x L array of initial covariance matrices for each profile.
P.Z A numeric vector of length L specifying initial prior probabilities for
profiles.

Optional list of pre-estimated Step 1 parameters. If NULL (default), Step 1
models are estimated internally. If provided, no LCA or LPA parameter estima-
tion will be performed; instead, the parameters provided in params will be used
as fixed values. Additionally, params must contain:

e A list for LCA containing:

par An L x I x Ky, array of initial conditional probabilities for each
latent class, item, and response category (where K, ,x is the maximum
number of categories across items).

P.Z A numeric vector of length L specifying initial prior probabilities for
latent classes.

* A list for LPA containing:
means An L x I matrix of initial mean vectors for each profile.
covs An [x I x L array of initial covariance matrices for each profile.
P.Z A numeric vector of length L specifying initial prior probabilities for
profiles.

A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

Character (LPA only). Specifies structure of within-class covariance matrices:

e "VV" — Class-varying variances and covariances (unconstrained; default).
» "EE" — Equal variances and covariances across all classes (homoscedas-
tic).

Character. Estimation algorithm for Step 1 models:

* "EM" — Expectation-Maximization (default; robust and widely used).

LTA

tol
method. SE

n.Bootstrap

maxiter

nrep

starts

maxiter.wa

vis

control .EM

control .Mplus

67
e "Mplus” — Interfaces with Mplus software (requires external installation).
* "NNE" — Neural Network Estimator (experimental; uses transformer + sim-

ulated annealing, more reliable than both "EM" and "Mplus").
Convergence tolerance for log-likelihood difference (default: 1e-4).
Character. Method for estimating standard errors of parameter estimates:

* "Obs" — Approximates the observed information matrix via numerical dif-
ferentiation (Richardson’s method). Standard errors are obtained from the
inverse Hessian. May fail or be unreliable in small samples or with complex
likelihood surfaces.

* "Bootstrap” — Uses nonparametric bootstrap resampling to estimate em-
pirical sampling variability. More robust to model misspecification and
small-sample bias. Computationally intensive but recommended when asymp-
totic assumptions are questionable.

Default is "Bootstrap”.

Integer. Number of bootstrap replicates used when method. SE = "Bootstrap”.
Default is 100. McLachlan & Peel (2004) suggest that 50-100 replicates often
provide adequate accuracy for practical purposes, though more (e.g., 500—1000)
may be preferred for publication-quality inference. Each replicate involves re-
estimating the full three-step LTA model on a resampled dataset.

Maximum number of iterations for optimizing the regression coefficients. De-
fault: 5000.

Integer controlling replication behavior:
e If par.ini = "random”, number of random initializations.

e If par.ini = "kmeans"”, number of K-means runs for initialization.

» Formethod="Mplus", controls number of random starts in Mplus via STARTS
option.

* Best solution is selected by log-likelihood/BIC across replications.

* Ignored for user-provided initial parameters.

Number of random initializations to explore during warm-up phase (default:
100).

Maximum number of training iterations allowed per warm-up run. After com-
pletion, the top nrep solutions (by log-likelihood) are promoted to final training
phase (default: 20).

Logical. If TRUE, displays progress information during estimation (default: TRUE).
List of control parameters for EM algorithm:

maxiter Maximum iterations (default: 2000).

tol Convergence tolerance for log-likelihood difference (default: 1e-4).
List of control parameters for Mplus estimation:

maxiter Maximum iterations for Mplus optimization (default: 2000).

tol Convergence tolerance for log-likelihood difference (default: 1e-4).

LTA

files.path Character string specifying the directory path where Mplus will
write its intermediate files (e.g., . inp model input, .dat data file, .out
output, and saved posterior probabilities). This argument is required — if
NULL (default), the function throws an error. The specified directory must
exist and be writable; if it does not exist, the function attempts to create it re-
cursively. A unique timestamped subdirectory (e.g., "Mplus_LPA_YYYY-MM-DD_HH-MM-SS"
or "Mplus_LCA_YYYY-MM-DD_HH-MM-SS") will be created within this path
to store all run-specific files and avoid naming conflicts. See in LCA and
LPA.

files.clean Logical. If TRUE (default), all intermediate files and the tempo-
rary working directory created for this run are deleted upon successful com-
pletion or error exit (via on.exit()). If FALSE, all generated files are re-
tained in files.path (or the auto-generated temp dir) for inspection or de-
bugging. Note: when files.path = NULL, even if files.clean = FALSE,
the temporary directory may still be cleaned up by the system later — for
guaranteed persistence, specify a custom files.path.

control.NNE List of control parameters for NNE algorithm:

hidden.layers Integer vector specifying layer sizes in fully-connected net-
work (default: c(12,12)).

activation.function Activation function (e.g., "tanh"”, default: "tanh").

d.model Dimensionality of transformer encoder embeddings (default: 8).

nhead Number of attention heads in transformer (default: 2).

dim.feedforward Dimensionality of transformer feedforward network (default:
16).

eps Small constant for numerical stability (default: 1e-8).

lambda A factor for slight regularization of all parameters (default: le-5).

initial.temperature Initial temperature for simulated annealing (default: 1000).

cooling.rate Cooling rate per iteration in simulated annealing (default: 0.5).

maxiter.sa Maximum iterations for simulated annealing (default: 1000).

threshold.sa Minimum temperature threshold for annealing (default: 1e-10).

maxiter Maximum training epochs (default: 1000).

maxiter.early Patience parameter for early stopping (default: 50).

maxcycle Maximum cycles for optimization (default: 10).

1r Learning rate, controlling the step size of neural network parameter updates
(default: 0.025).

scheduler.patience Patience for learning rate decay (if the loss function does
not improve for more than patience consecutive epochs, the learning rate
will be reduced) (default: 10).

scheduler. factor Learning rate decay factor; the new learning rate equals the
original learning rate multiplied by scheduler. factor (default: 0.70).

plot.interval Interval (in epochs) for plotting training diagnostics (default:
100).

device Specifies the hardware device; can be "CPU" (default) or "GPU". If the
GPU is not available, it automatically falls back to CPU.

LTA 69

Value
An object of class LTA, a named list containing:
beta Matrix of size p; x L. Coefficients for initial class membership multinomial logit model.
Columns 1 to L — 1 are free parameters; column L (reference class) is constrained to 3; = 0.

gamma List of length 7' — 1. Each element gamma[[t]] (for transition from time ¢ to ¢ + 1) is a
nested list: gammal[[t]][[from_class]]1[[to_class]] returns coefficient vector of length
pi+1. The last class (L) is reference — coefficients fixed to vy, ;. = O for all £.

beta.se Standard errors for beta (if Hessian is invertible). Same dimensions as beta. May contain
NA if variance-covariance matrix is not positive definite.

gamma.se Standard errors for gamma, same nested structure. May contain NAs.

beta.Z.sta Z-statistics for testing null hypothesis that each beta coefficient equals zero. Com-
puted as beta / beta. se. Same structure as beta.

gamma.Z.sta Z-statistics for gamma coefficients. Same nested structure as gamma. Used for testing
significance of transition effects.

beta.p.value.taill One-tailed p-values based on standard normal distribution: P(Z < —|z|).
Useful for directional hypotheses. Same structure as beta.

gamma.p.value.taill One-tailed p-values for gamma coefficients. Same nested structure as
gamma.

beta.p.value.tail2 Two-tailed p-values: 2 x P(Z < —|z|). Standard test for non-zero effect.
Same structure as beta.

gamma.p.value.tail2 Two-tailed p-values for gamma coefficients. Same nested structure as
gamma.

P.Z.Xns Listoflength T. Each element is an N x L matrix of posterior class probabilities P(Z,,; =
| X,,+) for each individual n at time ¢.

P.Zs List of length 7. Each element is a vector of length L containing prior class proportions
P(Z, =) estimated at Step 1 for time ¢.

Zs List of length 7. Each element is a vector of length N containing modal class assignments
(MAP classifications) Z,,; for each individual at time ¢.

npar Number of free parameters in the model (depends on covariates).
Log.Lik Observed-data log-likelihood value at convergence.
Log.Lik.history Vector tracking log-likelihood at each iteration.

AIC Akaike Information Criterion value.

BIC Bayesian Information Criterion value.

iterations Integer. Number of optimization iterations in Step 3.

coveraged Logical. TRUE if optimization terminated before reaching maxiter (suggesting con-
vergence). Note: This is a heuristic indicator; formal convergence diagnostics should check
Hessian properties.

params List. Step 1 model parameters (output from LCA() or LPA()).
call The matched function call.

arguments List of all input arguments passed to the function (useful for reproducibility).

70 LTA

Methodology Overview

The three-step LTA proceeds as follows:

Step 1 — Unconditional Latent Class/Profile Model: At each time point ¢, fit an unconditional LCA
or LPA model (ignoring transitions and covariates). Obtain posterior class membership probabilities
P(Z,s = 1| X,) for each individual n and class [using Bayes’ theorem.

Step 2 — Classification Error Probabilities (equal to get . CEP): Compute the L x L CEP matrix for
each time point ¢, where element (&,) estimates:

CEP,(k,l) = P(Zns = 1| Zny = k)
using a non-parametric approximation based on posterior weights:

EnN:I [(Zy = 1) P(Znt = k | Xput)
SN P(Zne =k | Xout)

n=1

CEP,(k,1) =

where 2, is the modal (most likely) class assignment for individual n at time ¢.

Step 3 — Transition Model with Measurement Error Correction: Estimate the multinomial logit
models for:

exp(B) Xn1)
Zﬁ:l eXp(:BkTan)

"
e Transitions (time t > 1): P(Zyy =1 | Zp—1 =k, X)) = Xﬁﬁg—(%
i= cjt ot

* Initial class membership (time 1): P(Z,; =1 | X,,1) =

where X,,1 = (Xpn10, Xni1,---, Xn1as) | is the covariate vector for observation/participant n at
time 1, with X,,19 = 1 (intercept term) and X,,1,,, (m = 1,..., M) representing the value of the m-
th covariate. The coefficient vector 3, = (B0, i1, - -, Bimr) T corresponds element-wise to X1,
where (3 is the intercept and (3, (m > 1) are regression coefficients for covariates. Class L is the
reference class (3;, = 0). Xt = (X0, Xnt1, - - - ,XmM)T is the covariate vector at time ¢, with
Xnto = 1 (intercept) and X4, (m = 1,. .., M) as the m-th covariate value. The coefficient vector
Yier = (Viktos Vikt1s - -« Vikt M)T corresponds element-wise to X,,;, where ;x40 is the intercept
and it (M > 1) are regression coefficients. Class L is the reference class (v;;, = 0 for all [).

The full observed-data likelihood integrates over all possible latent class paths z,, = (2,1, . . ., Zn7):

N T
log £(0) = Z log [Z (H CEP;(znt, 2nt))
n=1

z,€{1,...,L}T t=1
P(an = Zn1 |Xn1>

T
HP(ZmS = Znt | Zn,t—l - Zn,t—lvxnt)]
t=2

Parameters @ = {3, v} are estimated via maximum likelihood using the BOBYQA algorithm (box-
constrained derivative-free optimization). Reference class L satisfies 3; = 0 and ~;,;, = 0 for all
kwhen! = L.

Bootstrap Standard Error Estimation

When method. SE = "Bootstrap”, standard errors are estimated using a nonparametric bootstrap
procedure:

LTA 71

1. Draw B (=n.Bootstrap) independent samples of size N with replacement from the original
data.

2. For each bootstrap sample b = 1,..., B, re-estimate the full three-step LTA model (Steps
~ (b
1-3), yielding parameter vector 0().

3. Compute the bootstrap standard error for each parameter as the sample standard deviation
across replicates:

_ . 1 &S - \2
SEpoot (6;) = ﬁZ((a;Loj) :
b=1

where 0; = L S°7 é§-b).

This approach does not rely on large-sample normality or correct specification of the information
matrix, making it particularly suitable for complex models like LTA where analytic derivatives are
difficult or unstable. However, it increases computational cost linearly with B.

Important Implementation Details

» Reference Class: The last latent class (L) is always treated as the reference category. All
corresponding coefficients in beta and gamma are fixed to zero (3; = 0, v;;, = 0 forl = L).

» CEP Matrices: When CEP.error = TRUE, misclassification probabilities are estimated non-
parametrically using Step 1 posterior probabilities. This corrects for classification uncertainty.
Setting CEP. timeCross = TRUE assumes these error structures are identical across time (mea-
surement invariance). See in get . CEP.

* Covariate Handling: Covariates for initial status (time 1) and transitions (time ¢ > 2) can
differ. For transitions to time ¢, the covariate matrix must have dimensions N x (M; + 1), i.e.,
an intercept column of all 1 plus M, columns of covariates in time ¢.

* Optimization: Step 3 uses L-BFGS-B via nloptr to ensure numerical stability. Standard
errors are derived from the inverse Hessian (via hessian). If singular, Moore-Penrose pseu-
doinverse (ginv) is used, and negative variances are set to NA.

 Computational Complexity: Likelihood evaluation requires enumerating LT possible latent
paths.

* Bootstrap Computation: Each bootstrap iteration re-fits Steps 1-3 independently, including re-
estimation of P.Z.Xns, CEP matrices and transition parameters. To ensure reproducibility, set
a seed before calling LTA() when using method. SE = "Bootstrap”. Progress messages dur-
ing bootstrapping include current replicate index and optimization diagnostics. Users should
monitor convergence in each bootstrap run; failed runs will result in NA entries in SEs and
derived statistics.

References

Liang, Q., la Torre, J. d., & Law, N. (2023). Latent Transition Cognitive Diagnosis Model With
Covariates: A Three-Step Approach. Journal of Educational and Behavioral Statistics, 48(6), 690-
718. https://doi.org/10.3102/10769986231163320

McLachlan, G. J., & Peel, D. (2004). Finite Mixture Models. Wiley. https://books.google.com.sg/books?id=c2_fAox0DQoC

Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches.
Political Analysis, 18(4), 450—-469. https://doi.org/10.1093/pan/mpq025

72 LTA

Examples

library(LCPA)

set.seed(123)

N <- 2000 ## sample size

L <- 3 ## number of latent class

I <- 6 ## number of variables/items

Covariates at time point T1

covariates.inter <- rep(1, N) # Intercept term is always 1 for each individual
covariates.X11 <- rnorm(N) # Covariate X1 is a continuous variable

Combine into covariates at T1

covariates.T1 <- cbind(Intercept=covariates.inter, Xl=covariates.X11)

Covariates at time point T2

covariates.inter <- rep(1, N) # Intercept term is always 1 for each individual
covariates.X21 <- rnorm(N) # Covariate X1 is a continuous variable

Combine into covariates at T1

covariates.T2 <- cbind(Intercept=covariates.inter, Xl=covariates.X21)

Combine into final covariates list
covariates <- list(tl=covariates.T1, t2=covariates.T2)

Simulate beta coefficients
last column is zero because the last category is used as reference
fix reference class to class 2
beta <- matrix(c(0.8, 0.0, 0.1,
-0.3, 0.0, -0.5), ncol=L, byrow=TRUE)

Simulate gamma coefficients
gamma <- list(
lapply(1:L, function(l) {
lapply(1:L, function(k) if(k < L)
runif(2, -2.0, 2.0) else c(@, 0)) # Last class as reference
b))
)

Simulate the data
sim_custom <- sim.LTA(
N=N, I=I, L=L, times=2, type="LCA", IQ=0.9,
covariates=covariates,
beta=beta,
gamma=gamma
)
summary (sim_custom)
responses <- sim_custom$responses
covariates <- sim_custom$covariates

fix reference class to class 2
LTA.obj <- LTA(responses, L=L, ref.class=2, type="LCA",
covariates=covariates,

normalize 73

method.SE="Bootstrap”, n.Bootstrap=10,
CEP.timeCross=FALSE, CEP.error=TRUE, covariates.timeCross=FALSE,
par.ini = "random”, method="EM", vis = TRUE)

print(LTA.obj)

normalize Column-wise Z-Score Standardization

Description

Standardizes each column of a numeric matrix or data frame to have mean zero and standard devi-
ation one. This transformation is essential for many multivariate techniques that assume standard-
ized inputs. The function preserves all dimension names and returns a pure numeric matrix with
attributes storing original column means and standard deviations.

Usage
normalize(response)
Arguments
response A numeric matrix or data frame of dimension N x I, where:
e N = number of observations (rows)
e [= number of variables (columns)
Non-numeric columns will be coerced to numeric with a warning. Missing val-
ues are not allowed and will cause the function to fail. Constant columns (zero
variance) will produce NaN values.
Value

A standardized numeric matrix of dimension N x [with attributes:

* scaled:center: Vector of original column means (u;)

* scaled:scale: Vector of original column standard deviations (o;)

* Row names: Preserved from original input’s row names or row indices
e Column names: Preserved from original input’s column names

 Values: Z-scores calculated as z,,; = Zri—t

o

where:

* x,; = original value for observation n and variable ¢

. : N
* p; = sample mean of variable i: j1; = & >, _| Tni

* o0; = sample standard deviation of variable i: o; = \/ ﬁ 25:1 (i — pi)?

The denominator N — 1 provides an unbiased estimator of population variance.

74 normalize

Mathematical Details

For each column ¢ in the input matrix X, the standardization is performed as:

Xi—X,

7=
Sx

where:

e X, is the ¢-th column vector of X
+ X, is the sample mean of column i

» Sx, is the sample standard deviation of column ¢

The resulting matrix Z has the properties:

foralli=1,...,1.

Examples

Basic usage with matrix
set.seed(123)
mat <- matrix(rnorm(30, mean = 5:7, sd = 1:3), ncol = 3,
dimnames = list(paste@("”Obs”, 1:10), paste@("Var"”, 1:3)))
norm_mat <- normalize(mat)

Verify attributes
attr(norm_mat, "scaled:center”) # Original column means
attr(norm_mat, "scaled:scale") # Original column standard deviations

Verify properties
apply(norm_mat, 2, mean) # Should be near zero
apply(norm_mat, 2, sd) # Should be exactly 1

With data frame input
df <- as.data.frame(mat)
norm_df <- normalize(df)
all.equal(norm_mat, norm_df, check.attributes = FALSE) # Should be identical

Handling constant columns (produces NaN)
const_mat <- cbind(mat, Constant = rep(4.2, 10))
normalize(const_mat)

plotResponse 75

plotResponse Visualize Response Distributions with Density Plots

Description

Creates a publication-quality density plot showing the distribution of responses across multiple
items/variables. Automatically handles variable ordering, color scaling, and legend layout based on
the number of variables.

Usage

plotResponse(response)

Arguments
response A matrix or data frame containing response data where:
* Rows represent respondents, samples or observations
* Columns represent variables, items or questions (must have numeric suf-
fixes, e.g., "item1", "Q2")
¢ Cell values contain numeric responses
Non-numeric columns (except row identifiers) will cause errors.
Value

A ggplot object containing:

* Density curves for each variable colored by item
* Adaptive color schemes based on number of variables
* Optimized legend layout for large numbers of items

* Publication-ready theme with grid lines and clean styling

The plot can be further customized using standard ggplot2 syntax.

Theming Details

The plot uses a minimal theme with:

 Light grey grid lines for readability

* Black axis lines and ticks (0.8pt thickness)

* White background with no panel border

» Optimized font sizes (13pt axis titles, 11pt tick labels)

* Legend positioned on right with adaptive sizing

76 print

Examples

Simulate response data for 5 items
set.seed(42)
resp_data <- data.frame(
iteml = rnorm(100, mean = 3, sd = 1),
item2 = rnorm(100, mean = 2, sd = 0.8),
item3 = rnorm(100, mean = 4, sd = 1.2),
item4 = rnorm(100, mean = 3.5, sd = 0.9),
item5 = rnorm(100, mean = 2.5, sd = 1.1)
)

library(LCPA)

Generate and display plot
p <- plotResponse(resp_data)
print(p)

For data with many items (18 items example)

many_items <- as.data.frame(replicate(18, rnorm(5@, mean = runif(1, 1, 5), sd = 1)))
names(many_items) <- paste@("”Q", 1:18)

p_large <- plotResponse(many_items)

print(p_large)

print S3 Methods: print

Description

Provides user-friendly, formatted console output for objects generated by the LCPA package. This
generic function dispatches to class-specific methods that display concise summaries of model re-
sults, simulated datasets, fit indices, model comparisons, and standard errors. Designed for interac-
tive use and quick diagnostic inspection.

Usage

S3 method for class 'LCA'
print(x, ...)

S3 method for class 'summary.LCA'
print(x, ...)

S3 method for class 'LPA'
print(x, ...)

S3 method for class 'summary.LPA'
print(x, ...)

S3 method for class 'LTA'

print

print(x, ...)

S3 method for class 'summary.LTA'
print(x, ...)

S3 method for class 'LCPA'
print(x, ...)

S3 method for class 'summary.LCPA'
print(x, ...)

S3 method for class 'sim.LCA'
print(x, ...)

S3 method for class 'summary.sim.LCA'
print(x, ...)

S3 method for class 'sim.LPA'
print(x, ...)

S3 method for class 'summary.sim.LPA'
print(x, ...)

S3 method for class 'sim.LTA'
print(x, ...)

S3 method for class 'summary.sim.LTA'
print(x, ...)

S3 method for class 'fit.index'
print(x, ...)

S3 method for class 'summary.fit.index'
print(x, ...)

S3 method for class 'compare.model'
print(x, ...)

S3 method for class 'summary.compare.model'
print(x, ...)

S3 method for class 'SE'
print(x, digits = 4, I.max = 5, L.max = 3,

S3 method for class 'summary.SE'
print(x, ...)

78 print

Arguments

X An object of one of the following classes:

* Model objects: LCA, LPA, LCPA, LTA

* Simulation objects: sim.LCA, sim.LPA, sim.LTA

* Fit/comparison objects: get.fit.index, compare.model
 Standard error objects: get.SE

e Summary objects: summary.LCA, summary.LPA, summary.LCPA, summary.LTA,
summary.sim.LCA, summary.sim.LPA, summary.sim.LTA, summary.fit.index,
summary . compare.model, summary.SE

Additional arguments passed to methods (currently ignored in most cases).

digits Number of decimal places for numeric output (default: varies by method, often
4). Used by: print.SE,print.summary.fit.index, print.summary.sim.LCA/LPA/LTA,
print.summary.SE.

I.max Maximum number of variables/items to display before truncation (default: varies,
e.g.,5). Used by: print.SE, print.summary.sim.LCA/LPA/LTA.

L. max Maximum number of latent classes/profiles to display before truncation (default:
varies, e.g., 3). Used by: print.SE, print.summary.sim.LTA.

Details

Each method produces a structured, human-readable summary optimized for its object type:

Model Objects (LCA/LPA/LCPA/LTA) Invokes summary() internally and prints comprehensive out-
put including:
* Model call and configuration (method, constraints, reference class)
» Data characteristics (N, I, time points, distribution)
« Fit statistics (LogLik, AIC, BIC, entropy, npar)
* Class/profile prior probabilities and frequencies
* Item-response probabilities (LCA) or profile means (LPA)
» For LCPA/LTA: regression coefficients with significance markers and 95% Cls
» Convergence diagnostics (iterations, tolerance, hardware)
* Replication details (if nrep > 1)
Simulation Objects (sim.LCA/sim.LPA/sim.LTA) Displays simulation design and true parameter
structure:
* Configuration (N, I, L, times, constraint, distribution)
* True class/profile proportions and observed frequencies
* For sim.LCA: item category structure and conditional probabilities
* For sim.LPA: covariance constraint description and mean ranges
e For sim.LTA: transition mode (fixed/covariate), initial/transition coefficients

Output is truncated for high-dimensional structures using I.max and L .max.
Fit Index Objects (fit.index) Presents a clean table of model fit criteria:

* Header with dimensions (N, I, L, npar)

print 79

¢ Formatted table: AIC, BIC, SABIC, CAIC, AWE, -2LL, SIC
¢ Interpretation note: “Lower values preferred for ICs”
* Values rounded to digits decimal places

Model Comparison Objects (compare.model) Compares two nested models with statistical tests:

» Comparative fit table (npar, LogLik, AIC, BIC, entropy)

* Classification quality (AvePP per class, overall entropy)

* Bayes Factor with interpretive guidance

* Likelihood ratio tests (standard, VLMR, Bootstrap) with p-values and significance codes
* Clear section headers and visual separators

Standard Error Objects (SE) Displays uncertainty estimates for model parameters:

* Class probability SEs (always fully shown)

* Profile means SEs (LPA) or item-response SEs (LCA), truncated by L .max/I.max

* Covariance SE summary (non-zero count only; full access via extract())

* Diagnostics: Bootstrap completion % or Hessian condition number with stability warn-

ings
Summary Objects All summary.* methods are called internally by their corresponding print.*

methods. They pre-compute and structure output for consistent formatting. Direct calls are
also supported.

Value

Invisibly returns the input object x. No data is modified.

Methods (by class)

e print(LCA): Print method for LCA objects

e print(summary.LCA): Print method for summary.LCA objects

e print(LPA): Print method for LPA objects

* print(summary.LPA): Print method for summary.LPA objects

* print(LTA): Print method for LTA objects

e print(summary.LTA): Print method for summary.LTA objects

e print(LCPA): Print method for LCPA objects

e print(summary.LCPA): Print method for summary.LCPA objects

* print(sim.LCA): Print method for sim.LCA objects

e print(summary.sim.LCA): Print method for summary.sim.LCA objects
e print(sim.LPA): Print method for sim.LPA objects

e print(summary.sim.LPA): Print method for summary.sim.LPA objects
e print(sim.LTA): Print method for sim.LTA objects

e print(summary.sim.LTA): Print method for summary.sim.LTA objects
* print(fit.index): Print method for fit.index objects

e print(summary.fit.index): Print method for summary.fit.index objects

80 rdirichlet

e print(compare.model): Print method for compare.model objects

* print(summary.compare.model): Print method for summary.compare.model objects
* print(SE): Print method for SE objects

* print(summary.SE): Print method for summary.SE objects

Output Conventions

* Numeric values are typically rounded to 4 decimal places unless overridden by digits.

* Large matrices (e.g., item parameters, transition coefficients) are truncated with clear mes-
sages.

 Significance markers: *** (<0.001), ** (<0.01), * (<0.05), . (<0.1).
* 95% confidence intervals computed as: Estimate + 1.96 x Std_Error.
» Reference classes (for multinomial models) are explicitly stated.

* Warnings appear for unstable SEs (high condition number) or incomplete Bootstrap runs.

rdirichlet Generate Random Samples from the Dirichlet Distribution

Description

rdirichlet generates n random observations from a Dirichlet distribution with a specified concen-
tration parameter vector alpha.

Usage
rdirichlet(n, alpha)

Arguments
n Integer. The number of random vectors to generate.
alpha Numeric vector. The concentration parameters (must be positive). The length of
this vector determines the number of dimensions K.
Details

The Dirichlet distribution is a family of continuous multivariate probability distributions parame-
terized by a vector « of positive reals. It is the multivariate generalization of the beta distribution
and is commonly used as a conjugate prior to the multinomial distribution in Bayesian statistics.

Probability Density Function:

For a vector x = (z1,...,2f) on the unit simplex (where > x; = 1 and x; > 0), the density is
given by:

1 K
f(xl,...,xK;al,...,aK): 7HI?171

sim.correlation 81

where the normalizing constant B(«) is the multivariate beta function:

[T, D)

PO = 1R o

Simulation Method:

The function utilizes the property thatif Y7, . . ., Yk are independent Gamma random variables such
that Y; ~ Gamma(shape = a;, rate = 1), then:

Y;
Xi=
> =1 Y
The resulting vector (X7, ..., Xk) follows a Dirichlet distribution with parameters c.

Value

A matrix with n rows and length(alpha) columns. Each row sums to 1, representing a single
sample from the Dirichlet distribution.

Examples

Generate 5 samples from a 3-dimensional Dirichlet distribution
set.seed(123)

alpha_params <- c(1, 2, 5)

result <- rdirichlet(n = 5, alpha = alpha_params)

print(result)

Check that rows sum to 1

rowSums (result)
sim.correlation Generate a Random Correlation Matrix via C-Vine Partial Correla-
tions
Description

This function generates a random I X [correlation matrix using the C-vine partial correlation pa-
rameterization described in Joe & Kurowicka (2026). The method constructs the matrix recursively
using partial correlations organized in a C-vine structure, with distributional properties controlled
by LKIJ concentration and skewness parameters.

82 sim.correlation

Usage
sim.correlation(
I,
eta =1,
skew = 0,

positive = FALSE,
permute = TRUE,

maxiter = 10
)
Arguments
I Dimension of the correlation matrix (must be 1 > 1).
eta LKIJ concentration parameter (n > 0). When n = 1 and skew = 0, the distribu-

tion is uniform over correlation matrices. Larger n values concentrate mass near
the identity matrix. Critical for positive definiteness: Requires n > (I — 2)/2
to theoretically guarantee positive definiteness (Theorem 1, Joe & Kurowicka
2026). Default is 1.

skew Skewness parameter (—1 < skew < 1). Controls asymmetry in the partial
correlation distribution:
» skew > 0: Biased toward positive partial correlations
» skew < 0: Biased toward negative partial correlations
* skew = 0: Symmetric distribution (default)

positive Logical. If TRUE, restricts partial correlations to (0,1) and enforces positive
definiteness. Default is FALSE.

permute Logical. If TRUE, applies a random permutation to rows/columns to ensure ex-
changeability (invariance to variable ordering). Default is TRUE.

maxiter Integer. Maximum number of generation attempts before numerical adjustment
when positive = TRUE. Default is 10.

Details
The algorithm follows four key steps:

1. Partial correlation sampling: For tree level k = 1,..., I —1landnode j = k+1,..., I, partial
correlations py, j1.(x—1) are sampled as:

I—-k-1

5 , ar = ag(1+skew), br = ag(1 — skew)

ap =1+
e If positive = FALSE:
Pr,j ~ 2 - Beta(ag, bx) — 1

e If positive = TRUE:
pr,j ~ Beta(ax, b)

2. Recursive matrix construction (C-vine): The correlation matrix R is built without matrix in-
version using backward recursion:

sim.correlation 83

* Tree 1 (raw correlations): Ry; = py ;forj=2,...,1
* Trees | > 2: For pairs (I, j) wherel =2,...,] —landj=1+1,...,1I:

¢ prjjq-nfork=1-1downtol: ¢« c-\/(l = pe) (L= %) +praprjRij < c
This implements the dynamic programming approach from Joe & Kurowicka (2026, Section
2.1).
3. Positive definiteness enforcement (when positive = TRUE):

* Attempt up to maxiter generations

* On failure, project to nearest positive definite correlation matrix using nearPD with corr
= TRUE

* Final matrix has minimum eigenvalue > le-8

4. Exchangeability (optional): If permute = TRUE, rows/columns are randomly permuted before
returning the matrix.
Value

An I x I positive definite correlation matrix with unit diagonal.

Note

When positive = TRUE, the function guarantees positive definiteness either through direct genera-
tion (with retries) or numerical projection. The theoretical guarantee > (I —2)/2 is recommended
for high dimensions.

References

Joe, H., & Kurowicka, D. (2026). Random correlation matrices generated via partial correlation C-
vines. Journal of Multivariate Analysis, 211, 105519. https://doi.org/10.1016/j.jmva.2025.105519

Examples

Default 3x3 correlation matrix
sim.correlation(3)

5x5 matrix concentrated near identity (eta=3)
sim.correlation(5, eta = 3)

Skewed toward positive correlations (no permutation)
sim.correlation(4, skew = 0.7, permute = FALSE)

Positive partial correlations (enforced positive definiteness)
R <- sim.correlation(6, positive = TRUE)
min(eigen(R, symmetric = TRUE, only.values = TRUE)$values) # > 1e-8

High-dimensional case (I=20) with theoretical guarantee
R <- sim.correlation(20, eta = 10) # eta=10 > (20-2)/2=9
min(eigen(R, symmetric = TRUE, only.values = TRUE)$values)

84

sim.LCA

sim.LCA

Simulate Data for Latent Class Analysis

Description

Generates synthetic multivariate categorical data from a latent class model with L latent classes.
Each observed variable follows a multinomial distribution within classes, with flexible control over
class separation via the IQ parameter and class size distributions.

Usage

sim.LCA(
N = 1000,
I =10,
L =3,
poly.value = 5,
IQ = "random”,
distribution

= "random",

params = NULL,
is.sort = TRUE

Arguments

N
I
L
poly.value

1Q

distribution

params

is.sort

Integer; total number of observations to simulate. Must be > L. Default: 1000.
Integer; number of categorical observed variables. Must be > 1. Default: 10.
Integer; number of latent classes. Must be > 2 when IQ is numeric. Default: 3.

Integer or integer vector; number of categories (levels) for each observed vari-
able. If scalar, all variables share the same number of categories. If vector, must
have length I. Minimum valid value is 2 when IQ is numeric. Default: 5.

Character or numeric; controls category probability distributions:

"random” (default) Dirichlet-distributed probabilities (o = 3).

Numeric in (0.5,1). Forces high discriminative power (see details in section
below).

Character; distribution of class sizes. Options: "random” (default) or "uniform”.

List with fixed parameters for simulation:

par L x I x Kyax array of conditional response probabilities per latent class.

P.Z Vector of length L with latent class prior probabilities.

Z Vector of length N containing the latent classes of observations. A fixed
observation classes Z is applied directly to simulate data only when P.Z is
NULL and Z is a N length vector.

A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

sim.LCA 85

Details
Probability Generation:
¢ Dirichlet Sampling (IQ="random"): For each variable-class combination, probabilities are
drawn from Dirichlet(c; = 3, ..., a = 3) where k = poly.value][s].
* High-Discrimination Mode (IQ=numeric): For each variable i:

1. Generate special probabilities par.special of length L containing: IQ, 1 — IQ, and
L — 2 values uniformly sampled from [1 — IQ, IQ)].

2. For each class 1, assign par.special[1l] to one category, distribute remaining probabil-
ity 1 — par.special[l] uniformly (via Dirichlet) across other categories.

3. Shuffle category assignments to avoid position bias.

Data Generation:

* Class assignments Z are generated first according to distribution.
¢ For each observation p and variable i:

1. Retrieve cumulative probabilities for class Z[p]
2. Draw uniform random number v ~ Uniform(0, 1)
3. Assign category k where P(category < k — 1) < u < P(category < k)

« Entire dataset is regenerated if any category of any variable has zero observations.
Critical Constraints:

* When IQ is numeric: 0.5 < IQ) < 1 and min(poly.value) >=2

* N must be sufficiently large to observe all categories, especially when IQ is high or poly.value
is large. Simulation may fail for small N.

* For distribution="uniform”, empty classes possible when NV < L.

Value
A list containing:

response Integer matrix (N x I) of simulated observations. Rows are observations (named "01",
"02", ...), columns are variables named "I1", "I2", ... Values range from @ to poly.value[i]-1.

par Array (L x I x K) of true class-specific category probabilities, where K = max(poly.value)
(i.e., the maximum number of categories across variables). Dimensions: classes x variables
x categories. Note: For variables with poly.value[i] <K, unused category dimensions con-
tain NA. Dimension names: "L1", "L2", ... (classes); "I1", "I2", ... (variables); "poly@",
"poly1”, ... (categories).

Z Integer vector (length V) of true class assignments (1 to L). Named with observation IDs (e.g.,
"01").

P.Z Numeric vector (length L) of true class proportions. Named with class labels (e.g., "L1").
poly.value Integer vector (length I) specifying number of categories per variable.

P.Z.Xn Binary matrix (N x L) of true class membership indicators (one-hot encoded). Row i,

column 1 = 1 if observation i belongs to class 1, else 0. Row/column names match Z and class
labels.

arguments A list containing all input arguments.

86 sim.LCA

Item Quality (IQ) Parameter

Controls the discriminative power of observed variables:

IQ = "random” (Default) Category probabilities for each variable-class combination are drawn from
a symmetric Dirichlet distribution (o = 3), resulting in moderate class separation.

IQ = numeric (0.5 <1Q < 1) Forces high discriminative power for each variable:

1. For each variable, two categories per class are assigned extreme probabilities: one cate-
gory gets probability 7@, another gets 1 — 1Q).

2. Remaining categories share the residual probability 1 — IQ — (1 — IQ) = 0. Note: This
requires poly.value >= 2 for all variables.

3. Category assignments are randomized within classes to avoid structural patterns.

Higher IQ values (closer to 1) yield stronger class separation but increase simulation failure
risk.

Class Size Distribution

"random” (Default) Class proportions drawn from Dirichlet distribution (o = 3 for all classes),
ensuring no empty classes. Sizes are rounded to integers with adjustment for exact N.

"uniform” Equal probability of class membership (1/L per class), sampled with replacement.
May produce empty classes if N is small relative to L.

Response Validation

The simulation enforces a critical constraint: every category of every observed variable must appear
at least once in the dataset. If initial generation violates this (e.g., a rare category is missing),
parameters and responses are regenerated until satisfied. This ensures compatibility with standard
LCA estimation.

Examples

Example 1: Default settings (moderate separation, random class sizes)
sim_data <- sim.LCA(N =30, I =5, L = 3)

Example 2: High-discrimination items (IQ=0.85), uniform class sizes
sim_high_disc <- sim.LCA(

N = 30,

I =4,

L =2,

poly.value = c¢(3,4,3,5), # Variable category counts
IQ = 0.85,

distribution = "uniform”

)

Example 3: Binary items (poly.value=2) with high separation
sim_binary <- sim.LCA(N = 300, I = 10, L = 2, poly.value = 2, IQ = 0.9)

sim.LPA 87

sim.LPA Simulate Data for Latent Profile Analysis

Description

Generates synthetic multivariate continuous data from a latent profile model with L latent classes.
Supports flexible covariance structure constraints (including custom equality constraints) and class
size distributions. All covariance matrices are ensured to be positive definite.

Usage

sim.LPA(
N = 1000,
I=25,
L =2,
constraint = "VV",
distribution = "random”,
mean.range = c(-2, 2),
covs.range = c(0.01, 4),
params = NULL,
is.sort = TRUE

)

Arguments
N Integer; total number of observations to simulate. Must be > L (Default = 1000).
I Integer; number of continuous observed variables. Must be > 1 (Default = 5).
L Integer; number of latent profiles (classes). Must be > 1 (Default = 2).
constraint Character string or list specifying covariance constraints. See detailed descrip-

tion below. Default is "VV" (fully heterogeneous covariances).

distribution Character; distribution of class sizes. Options: "random” (default) or "uniform”.

mean.range Numeric vector of length 2; range for sampling class-specific means. Each vari-
able’s means are sampled uniformly from mean.range[1] to mean.range[2].
Default: c(-4, 4).

covs.range Numeric vector of length 2; range for sampling variance parameters (diagonal
elements). Must satisfy covs.range[1] > @ and covs.range[2] > covs.range[1].
Off-diagonal covariances are derived from correlations scaled by these vari-
ances. Default: c(0.01, 4).

params List with fixed parameters for simulation:

par L x I x K,,x array of conditional response probabilities per latent class.
P.Z Vector of length L with latent class prior probabilities.

Z Vector of length N containing the latent classes of observations. A fixed
observation classes Z is applied directly to simulate data only when P.Z is
NULL and Z is a N length vector.

88 sim.LPA

is.sort A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

Details

Mean Generation: For each variable, 3L candidate means are sampled uniformly from mean. range.
L distinct means are selected without replacement to ensure separation between classes.

Covariance Generation:
* Positive Definiteness: All covariance matrices are adjusted using Matrix: :nearPD and eigen-
value thresholds (> 10~8) to guarantee validity. Failed attempts trigger explicit errors.

» Univariate Case (I=1): Constraints "UE"” and "UV" are enforced automatically. Predefined
constraints like "EQ" map to "UE".

* VE Constraint: Requires special handling—base off-diagonal elements are fixed, and diag-
onals are sampled above a minimum threshold to maintain positive definiteness. May fail if
covs.range is too narrow.

Class Assignment:
* "random”: Uses Dirichlet distribution (o« = 3) to avoid extremely small classes. Sizes are
rounded and adjusted to sum exactly to N.
e "uniform”: Simple random sampling with equal probability. May produce empty classes if N

is small.

Data Generation: Observations are simulated using mvtnorm: : rmvnorm per class. Final data and
class labels are shuffled to remove ordering artifacts.

Value

A list containing:
response Numeric matrix (N x I) of simulated observations. Rows are observations, columns are
variables named "V1", "V2", ..., or "UV" for univariate data.

means Numeric matrix (L x I) of true class-specific means. Row names: "Class1”, "Class2”,
...; column names match response.

covs Array (I x I x L) of true class-specific covariance matrices. Dimensions: variables x variables
x classes. Constrained parameters have identical values across class slices. Dimension names
match response and class labels.

P.Z.Xn Numeric matrix (N x L) of true class membership probabilities (one-hot encoded). Row i,
column 1 =1 if observation i belongs to class 1, else 0. Row names: "01", 02", ...; column
names: "Class1”, "Class2”, ...

P.Z Numeric vector (length L) of true class proportions. Named with class labels (e.g., "Class1").

Z Integer vector (length N) of true class assignments (1 to L). Named with observation IDs (e.g.,
1101 H)‘

constraint Original constraint specification (character string or list) passed to the function.

sim.LPA 89

Covariance Constraints

The constraint parameter controls equality constraints on covariance parameters across classes:

Predefined Constraints (Character Strings): "UE" (Univariate only) Equal variance across all
classes.

"UV" (Univariate only) Varying variances across classes.

"EQ" Equal variances across classes, zero covariances (diagonal matrix with shared vari-
ances).

"V@" Varying variances across classes, zero covariances (diagonal matrix with free variances).
"EE" Equal full covariance matrix across all classes (homogeneous).
"EV" Equal variances but varying covariances (equal diagonal, free off-diagonal).
"VE" Varying variances but equal correlations (free diagonal, equal correlation structure).
"VV" Varying full covariance matrices across classes (heterogeneous; default).

Custom Constraints (List of integer vectors): Each element specifies a pair of variables whose
covariance parameters are constrained equal across classes:
c(i,i) Constrains variance of variable i to be equal across all classes.
c(i,j) Constrains covariance between variables i and j to be equal across all classes (sym-

metric: automatically includes c(j,1)).

Unconstrained parameters vary freely. The algorithm ensures positive definiteness by:

1. Generating a base positive definite matrix S@.
2. Applying constraints via a logical mask.
3. Adjusting unconstrained variances to maintain positive definiteness.

Critical requirements for custom constraints:

At least one variance must be unconstrained if any off-diagonal covariance is unconstrained.

All indices must be between 1 and I.
For univariate data (I=1), only list(c(1,1)) is valid.

Class Size Distribution

"random” (Default) Class proportions drawn from Dirichlet distribution (o = 3 for all classes),
ensuring no empty classes. Sizes are rounded to integers with adjustment for exact N.

"uniform” Equal probability of class membership (1/L per class), sampled with replacement.

Examples

Example 1: Bivariate data, 3 classes, heterogeneous covariances (default)
sim_data <- sim.LPA(N = 500, I = 2, L = 3, constraint = "VW")

Example 2: Univariate data, equal variances
'EQ' automatically maps to 'UE' for I=2
sim_uni <- sim.LPA(N = 200, I = 2, L = 2, constraint = "EQ")

Example 3: Custom constraints
- Equal covariance between V1 and V2 across classes

90

sim.LTA

- Equal variance for V3 across classes
sim_custom <- sim.LPA(

N = 300,
I=3,
L = 4,
constraint = list(c(1, 2), c(3, 3))

)

Example 4: VE constraint (varying variances, equal correlations)
sim_ve <- sim.LPA(N = 400, I = 3, L = 3, constraint = "VE")

Example 5: Uniform class sizes
sim_uniform <- sim.LPA(N = 300, I = 4, L =5, distribution = "uniform”)

sim.LTA Simulate Data for Latent Transition Analysis (LTA)

Description

Simulates longitudinal latent class/profile data where initial class membership and transition prob-
abilities may be influenced by time-varying covariates. Supports both Latent Class Analysis (LCA)
for categorical outcomes and Latent Profile Analysis (LPA) for continuous outcomes. Measurement
invariance is assumed by default (identical item parameters across time).

Usage

sim.LTA(
N = 500,
I =5,
L =3,
distribution = "random”,
times = 2,
type = "LCA",
rate = NULL,
constraint = "wW",

mean.range = c(-2, 2),
covs.range = c(0.01, 4),
poly.value = 5,

IQ = "random”,

params = NULL,

is.sort = TRUE,
covariates = NULL,

beta = NULL,

gamma = NULL

sim.LTA

Arguments

N
I
L

distribution

times

type

rate

constraint

mean.range

covs.range

poly.value
IQ

params

is.sort

covariates

beta

gamma

Details

91

Integer; sample size.
Integer; number of observed items/indicators per time point.
Integer; number of latent classes/profiles.

Character; distribution of initial class probabilities when not using covariates
or params. Options: "uniform” (equal probabilities) or "random” (Dirichlet-
distributed, default).

Integer; number of time points (must be > 1).

Character; type of latent model. "LCA" for categorical indicators (default),
"LPA" for continuous indicators.

List of matrices or NULL; transition probability matrices for non-covariate mode.
Each matrix is L x L with rows summing to 1. If NULL (default), matrices are
generated with 0.7 diagonal probability and uniform off-diagonals. Ignored
when times=1.

Character; covariance structure for LPA (type="LPA" only). Options: "VV"
(unstructured, default), "VE" (diagonal variance), "EE" (equal variance).

Numeric vector; range for randomly generated class means in LPA (default:
c(-2, 2)).

Numeric vector; range for covariance matrix diagonals in LPA (default: c(0.01,
4)).

Integer; number of categories for polytomous LCA items (default: 5).

Character; method for generating item discrimination in LCA. "random” (de-
fault) or fixed values.

List or NULL,; pre-specified parameters for reproducibility (see Details).

A logical value. If TRUE (Default), the latent classes will be ordered in descend-
ing order according to P.Z. All other parameters will be adjusted accordingly
based on the reordered latent classes.

List of matrices or NULL; covariate matrices for each time point. Each matrix
must have dimensions N X p; and include an intercept column (first column
must be all 1s). If NULL, covariate mode is disabled. See Details for automatic
coefficient generation.

Matrix or NULL,; initial state regression coefficients of dimension p; x L. Columns
correspond to classes 1 to L (last class L is reference and must be zero). If NULL
and covariates are used, coefficients are randomly generated from Uniform(—1, 1).

List or NULL; transition regression coefficients. Must be a list of length times-1.
Each element ¢ is a list of length L (previous state). Each sub-list contains L

vectors (next state), where the last vector (reference class) is always 0. Ignored

when times=1. If NULL and covariates are used with times>=2, coefficients are

randomly generated from Uniform(—1, 1) for non-reference classes.

Covariate Requirements:

92 sim.LTA

* Covariate matrices must include an intercept (first column = 1). If omitted, the function adds
an intercept and issues a warning.

* When covariates is provided but beta or gamma is NULL, coefficients are randomly generated
from Uniform(—1, 1) (non-reference classes only).

* The reference class (L) always has zero coefficients (31, = 0, v, 1, = 0).
Parameter Compatibility:
* Use params to fix item parameters (LCA) or class means/covariances (LPA) across simula-

tions.

* In non-covariate mode, rate must be a list of (times — 1) valid transition matrices (ignored
when times=1).

¢ In covariate mode with times>=2, all three (covariates, beta, gamma) must be consistent in
dimensions.

Value
A list of class "sim.LTA" containing:

responses List of length times; observed data matrices (N x I).

Zs List of length times; true latent class memberships (/N x 1 vectors).

P.Zs List of length times; marginal class probabilities at each time.

par Item parameters for LCA (if type="LCA").

means Class means for LPA (if type="LPA").

covs Class covariance matrices for LPA (if type="LPA").

rate True transition matrices (non-covariate mode only; NULL when times=1).
covariates List of covariate matrices used (covariate mode only).

beta True initial state coefficients (covariate mode only).

gamma True transition coefficients (covariate mode only; NULL when times=1).
call Function call.

arguments Input arguments.

Model Specification

Initial Class Probabilities (with covariates): For observation/participant n at time 1, the proba-
bility of belonging to latent class [is:

-
exp(B; X1
P(Zn =1|Xn1) = — (8, ;‘)
Zk:l exp(IBk an)
where X,,1 = (Xn10, Xn11s-- - Xn1 M)T is the covariate vector for observation/participant
n at time 1, with X,,;9 = 1 (intercept term) and X1, (m = 1,..., M) representing the
value of the m-th covariate. The coefficient vector 3; = (B0, Bi1,---,Bimr) | corresponds

element-wise to X,,1, where (3¢ is the intercept and [3;,,, (m > 1) are regression coefficients
for covariates. Class L is the reference class (3; = 0).

sim.LTA 93

Transition Probabilities (with covariates and times>=2): For observation/participant n transition-
ing from class [at time ¢ — 1 to class k at time ¢ (t > 2):

exp (Y Xnt)
i
Zj:l eXp('Yl—;tXnt)

P(Znt =k | Zn,tfl = lyxnt) =

where X,y = (Xyn:0, Xnt1,- .-, Xneas) | is the covariate vector at time ¢, with X0 = 1
(intercept) and X1, (m = 1,..., M) as the m-th covariate value. The coefficient vector
Yier = (Vikto, Vikt1s - - - ,’nktM)T corresponds element-wise to X,,;, where ;¢ is the inter-
cept and ey (M > 1) are regression coefficients. Class L is the reference class (y;;; = 0
for all [).

Without Covariates or When times=1: Initial probabilities follow a multinomial distribution with
probabilities 7w = (7, ..., 7). When times > 2, transitions follow a Markov process with

fixed probabilities Tl(,f) =P(Z, =k | Zi—1 =), where ZkL-=1 Tl(,f) = 1for each [and ¢.

Examples

HHHHEHHAHEAA AR Example 1: Single time point (times=1) #iHHHHHHHHHHEHHHEHHAHE
library(LCPA)

set.seed(123)

sim_single <- sim.LTA(N = 200, I = 4, L = 3, times = 1, type = "LCA")
print(sim_single)

HIHHEHHHAEHA A Example 2: LPA without covariates #Ht#HHEHHHHHHHEHHHEHHAE
set.seed(123)

sim_lta <- sim.LTA(N = 200, I = 3, L = 3, times = 3, type = "LPA", constraint = "VE")
print(sim_lta)

AR Example 3: With custom covariates (times>=2) #Ht#HHHHHHHEHHEHEHHEHE
set.seed(123)
N <- 200 ## sample size

Covariates at time point T1
covariates.inter <- rep(1, N) # Intercept term is always 1 for each n
covariates.X1 <- rnorm(N) # Covariate X1 is a continuous variable
covariates.X2 <- rbinom(N, 1, ©0.5) # Covariate X2 is a binary variable
covariates.X1.X2 <- covariates.X1 * covariates.X2 # Interaction between covariates X1 and X2
covariates.T1 <- cbind(inter=covariates.inter, Xl=covariates.X1,
X2=covariates.X2, X1.X2=covariates.X1.X2) # Combine into covariates at T1

Covariates at time point T2
covariates.inter <- rep(1, N) # Intercept term is always 1 for each n
covariates.X1 <- rnorm(N) # Covariate X1 is a continuous variable
covariates.X2 <- rbinom(N, 1, @.5) # Covariate X2 is a binary variable
covariates.X1.X2 <- covariates.X1 * covariates.X2 # Interaction between covariates X1 and X2
covariates.T2 <- cbhind(inter=covariates.inter, X1=covariates.X1,
X2=covariates.X2, X1.X2=covariates.X1.X2) # Combine into covariates at T2

covariates <- list(tl1=covariates.T1, t2=covariates.T2) # Combine into final covariates list

Simulate beta coefficients

94 summary

3x3 matrix (last column is zero because the last category is used as reference)

beta <- matrix(c(0.8, -0.5, 0.0,
-0.3, -0.4, 0.0,
0.2, 0.8, 0.0,
-0.1, 0.2, 0.9), ncol=3, byrow=TRUE)

Simulate gamma coefficients (only needed when times>=2)
gamma <- list(
lapply(1:3, function(l) {
lapply(1:3, function(k) if(k < 3)
runif(4, -1.0, 1.0) else c(@, @, @, 0)) # Last class as reference
i)
)

Simulate the data
sim_custom <- sim.LTA(
N=N, I=4, L=3, times=2, type="LPA",
covariates=covariates,
beta=beta,
gamma=gamma

)

summary (sim_custom)

summary S3 Methods: summary

Description

Generates structured, comprehensive summaries of objects produced by the LCPA package. This
generic function dispatches to class-specific methods that extract and organize key information in-
cluding model configurations, fit statistics, parameter estimates, simulation truths, and diagnostics.
Designed for programmatic access and downstream reporting.

Usage
S3 method for class 'LCA'

summary(object, digits = 4, I.max =5, ...)

S3 method for class 'LPA'
summary(object, digits = 4, I.max = 5, ...)

S3 method for class 'LTA'
summary(object, digits = 4, I.max =5, ...)

S3 method for class 'LCPA'
summary(object, digits = 4, I.max =5, ...)

summary 95

S3 method for class 'sim.LCA'
summary(object, digits = 4, I.max =5, ...)

S3 method for class 'sim.LPA'

summary(object, digits = 4, I.max = 5,)
S3 method for class 'sim.LTA'
summary(object, digits = 4, I.max = 5, L.max = 5, ...)

S3 method for class 'fit.index'
summary(object, digits = 4, ...)

S3 method for class 'compare.model'
summary(object, digits =4, ...)

S3 method for class 'SE'

summary (object, ...)
Arguments
object An object of one of the following classes:

* Model objects: LCA, LPA, LCPA, LTA

» Simulation objects: sim.LCA, sim.LPA, sim.LTA

» Fit/comparison objects: get.fit.index, compare.model
 Standard error objects: get.SE

digits Number of decimal places for numeric output (default: 4). Applied universally
across all methods.

I.max Maximum number of variables/items to display (LCA, LPA, sim.LCA, sim.LPA,
sim.LTA, LCPA, LTA, and compare.model only; default: 5). Controls verbosity
for high-dimensional outputs.

Additional arguments passed to or from other methods (currently ignored).

L. max Maximum number of latent classes/profiles to display before truncation (sim.LTA
only; default: 5). Useful when models have many latent groups. Ignored for
other classes.

Details

Each method returns a named list with class-specific components optimized for structured access:

LCA Returns a summary.LCA object with components:

call Original function call.

model.config List: latent_classes, method.

data.info List: N, I, poly.value, uniform_categories.

fit.stats List: LoglLik, AIC, BIC, entropy, npar.

class.probs Data frame: Class, Count, Proportion.

item.probs Listof matrices (first I.max items) with conditional probabilities per class/category.

96

sumimary

convergence List: algorithm, iterations, tolerance, loglik change, hardware (if applicable).
replication List: nrep, best_BIC (if multiple replications performed).
digits, I.max.shown, total.items Metadata for printing/formatting.

LPA Returns a summary.LPA object with components:

call Original function call.

model.config List: latent_profiles, constraint, cov_structure, method.
data.info List: N, I, distribution.

fit.stats List: LoglLik, AIC, BIC, entropy, npar.

class.probs Data frame: Profile, Count, Proportion.

class.means Matrix (first I.max variables) of profile-specific means.

convergence List: algorithm, iterations, tolerance, loglik change, hardware (if applicable).
replication List: nrep, best_BIC (if multiple replications performed).

digits, I.max.shown, total.vars Metadata for printing/formatting.

LCPA Returns a summary . LCPA object with components:

call Original function call.

model.config List: latent_classes, model_type, reference_class, covariates_mode,
CEP_handling.

data.info List: sample_size, variables.
fit.stats List: LoglLik, AIC, BIC, npar.
class.probs Data frame: Class, Probability, Proportion, Frequency.

coefficients Data frame: regression coefficients for non-reference classes (Estimate, Std_Error,
z_value, p_value, 95% CI).

reference_class Integer: reference class for multinomial logit.

convergence List: iterations, coveraged, converg_note.

digits, I.max.shown, total.vars, has.covariates Metadata for printing/formatting.
LTA Returns a summary.LTA object with components:

call Original function call.

model.config List: time_points, latent_classes, model_type, reference_class, covariates_mode,
CEP_handling, transition_mode.

data.info List: sample_size, variables, time_points.

fit.stats List: LogLik, AIC, BIC, npar.

class.probs Listof data frames (per time point): Class, Probability, Proportion, Frequency.
initial_model List: coefficients (data frame), covariate_names, reference_class.

transition_models Named list of data frames: transition coefficients per time interval (From_Class,
To_Class, Estimate, Std_Error, etc.).

reference_class Integer: reference destination class for transitions.

convergence List: iterations, coveraged, converg_note.

digits, I.max.shown, total.vars, covariates.timeCross Metadata for printing/formatting.
sim.LCA Returns a summary.sim.LCA object with components:

call Original simulation call.
config List: N, I, L, poly.value, uniform_categories, IQ, distribution.

summary 97

class.probs Data frame: Class, Probability, Frequency.
item.probs List of matrices (first I.max items) with true conditional probabilities per class/category.
digits, I.max.shown, total.vars Metadata for printing/formatting.

sim.LPA Returns a summary.sim.LPA object with components:

call Original simulation call.
config List: N, I, L, constraint, constraint_desc, distribution.
class.probs Data frame: Profile, Probability, Frequency.
class.means Matrix (first I.max variables) of true profile-specific means.
cov_structure Character: detailed description of covariance constraints.
digits, I.max.shown, total.vars Metadata for printing/formatting.

sim.LTA Returns a summary.sim.LTA object with components:
call Original simulation call.
config List: N, I, L, times, type, distribution, constraint (if LPA).
class.probs List of data frames (per time point): Class, Probability, Frequency.
item.probs Nested list (by time/item) of true conditional probabilities (if type="LCA").
class.means List of matrices (by time) of true profile means (if type="LPA").
transition List: mode ("fixed" or "covariate"), rate or beta/gamma coefficients, time_points.

covariates Listof data frames (per time point) with covariate summaries (Min, Max, Mean),
if present.

digits, I.max.shown,L.max.shown, total.vars, total.classes Metadata for printing/formatting.
fit.index Returns a summary.fit.index object with components:

call Function call that generated the fit indices.
data.info List: N.

fit.table Data frame: Statistic, Value, Description for -2LL, AIC, BIC, SIC, CAIC,
AWE, SABIC.

digits Numeric: precision used for formatting.
compare.model Returns a summary.compare.model object with components:

call Function call that generated the comparison.
data.info List: N, I, L (named vector for two models).
fit.table Data frame comparing fit indices for both models.
model_comparison Data frame: Classes, npar, AvePP, Entropy.
BF Numeric: Bayes Factor value (if computed).
BF_interpretation Character: interpretive guidance for Bayes Factor.
lrt_table Data frame: Test, Statistic, DF, p-value, Sig (significance markers).
lrt_objects List: raw hypothesis test objects for further inspection.
digits Numeric: precision used for formatting.

SE Returns a summary . SE object with components:
call Original function call.
method Character: "Obs" or "Bootstrap".

diagnostics List: method-specific diagnostic info (e.g., n.Bootstrap, hessian_cond_number).
model_type Character: "LCA" or "LPA".

98

Value

update

L Integer: number of latent classes/profiles.

I Integer: number of variables/items (NA if unknown).

nonzero_counts List: counts of non-zero SEs by parameter type (P.Z, means/par, covs).
total_PZ Integer: total number of class probability parameters.

Invisibly returns a structured list containing summary components. The exact structure depends
on the class of object. All returned objects carry an appropriate S3 class (e.g., summary.LCA,
summary . LPA) for use with corresponding print methods.

Methods (by class)

summary (LCA): Summary method for LCA objects

summary (LPA): Summary method for LPA objects

summary (LTA): Summary method for LTA objects

summary (LCPA): Summary method for LCPA objects

summary (sim.LCA): Summary method for sim.LCA objects

summary (sim.LPA): Summary method for sim.LPA objects

summary (sim.LTA): Summary method for sim.LTA objects

summary (fit.index): Summary method for fit.index objects

summary (compare.model): Summary method for compare.model objects

summary (SE): Summary method for summary . SE objects

update

S3 Methods: update

Description

The update function provides a unified and convenient interface to refresh or modify existing ob-
jects generated by the LCPA package. It allows users to re-run model fitting or data simulation
with new parameter settings while preserving all other original configurations. Supported classes
include: LCA, LPA, LCPA, LTA, sim.LCA, sim.LPA, and sim.LTA.

Usage

update(x, ...)

S3 method for class 'LCA'
update(x, ...)

S3 method for class 'LPA'
update(x, ...)

update

99

S3 method for class 'LCPA'

update(x,

S3 method for class 'LTA'

update(x,

S3 method for class 'sim.LCA'

update(x,

S3 method for class 'sim.LPA'

update(x,

S3 method for class 'sim.LTA'

update(x,

Arguments

X

An object of one of the following classes:

* LCA — Latent Class Analysis model.

e LPA — Latent Profile Analysis model.

e LCPA — Latent Class Prediction Analysis (with covariates).
e LTA — Latent Transition Analysis model.

e sim.LCA — Simulated LCA dataset.

e sim.LPA — Simulated LPA dataset.

* sim.LTA — Simulated LTA dataset.

Additional named arguments passed to override or extend the original call. Valid
arguments depend on the class of x:

LCA response,L,par.ini,method, is.sort, nrep, vis, control.EM, control.Mplus,
control.NNE

LPA response, L, par.ini, constraint, method, is.sort, nrep, vis, control.EM,
control.Mplus, control .NNE

LCPA response, L, ref.class, type, covariates, CEP.error, par.ini, params,
is.sort, constraint, method, tol, maxiter, nrep, starts, maxiter.wa,
vis, control.EM, control.Mplus, control.NNE

LTA responses,L, ref.class, type, covariates, CEP.timeCross, CEP.error,
covariates.timeCross, par.ini, params, is.sort, constraint, method,
tol, maxiter, nrep, starts, maxiter.wa, vis, control.EM, control.Mplus,
control .NNE

sim.LCA N, I, L, poly.value, IQ, distribution, params, is.sort

sim.LPA N, I, L, constraint,distribution, mean.range, covs.range, params,
is.sort

sim.LTA N,I,L, times, type, rate, constraint, distribution, mean.range,
covs.range, poly.value, IQ, covariates, beta, gamma, params, is.sort

100 update

Details

Internally, each method extracts the stored arguments list from the input object x, merges it with
user-provided . . . using modifyList, then re-invokes the corresponding constructor function (LCA(),
LPA(), LCPA(), LTA(), sim.LCA(), etc.) with the merged argument list.

This ensures that:

* Only explicitly overridden parameters are changed.
* Default values from the original call remain intact.
* Complex nested structures (e.g., control lists) can be partially updated.

Note: If an invalid argument is passed (e.g., constraint to LCA), it will be silently ignored unless
the underlying constructor validates inputs.

Value

An object of the same class as x, reconstructed using the original arguments updated with any
provided in All unchanged parameters are preserved from the original call.

Methods (by class)

* update(LCA): Update method for LCA objects

* update(LPA): Update method for LPA objects

* update(LCPA): Update method for LCPA objects

* update(LTA): Update method for LTA objects

* update(sim.LCA): Update method for sim.LCA objects
* update(sim.LPA): Update method for sim.LPA objects
* update(sim.LTA): Update method for sim.LTA objects

Examples

library(LCPA)

--- Update LCA ---

data <- sim.LCA(N=500, I=5, L=3)

lca.obj <- LCA(data$response, L=3)

lca.updated <- update(lca.obj, method="EM", nrep=5)

--- Update LPA ---

data2 <- sim.LPA(N=300, I=4, L=2)

lpa.obj <- LPA(data2$response, L=2, constraint="VE")
lpa.updated <- update(lpa.obj, constraint="VV")

--- Update Simulation Objects ---
sim.obj1 <- sim.LCA(N=1000)
sim.obj1_updated <- update(sim.obj1, N=2000, IQ=0.8)

sim.obj2 <- sim.LPA(I=6)
sim.obj2_updated <- update(sim.obj2, I=8, mean.range=c(-2,2))

update 101

sim.obj3 <- sim.LTA(N=200, I=5, L=2, times=3)
sim.obj3_updated <- update(sim.obj3, N=300, times=4, constraint="ER")

Index

adjust.response, 3, 20, 30, 31, 41 modifyList, 100
check.response, 4 nearPD, 83
compare.model, 5, 8, 78, 95 nloptr, 71

normalize, 45, 53, 65, 73
extract, 6,7

plotResponse, 75
get.AvePP, 13, 61-63 print, 76
get.CEP, 15, 25, 45,49, 50, 65, 70, 71
get.entropy, 16, 61-63
get.fit.index, 6,8, 11, 18,61-63,78, 95
get.Log.Lik.LCA, 19, 41
get.Log.Lik.LPA, 21
get.Log.Lik.LTA, 23
get.npar.LCA, 25, 41
get.npar.LPA, 26
get.npar.LTA, 28
get.P.Z.Xn.LCA, 30 update, 98
get.P.Z.Xn.LPA, 32
get.SE, 8, 33,33,78, 95
getwd, 40
ginv, 50, 71

rdirichlet, 80

scale, 45, 53, 65
sim.correlation, 81

sim.LCA, 8, 10, 62, 78, 84, 95, 98, 99
sim.LPA, 8, 11, 62,78, 817, 95, 98, 99
sim.LTA, 8, 78, 90, 95, 98, 99
summary, 94

hessian, 50, 71

install_python_dependencies, 35, 39, 42,
54,57

Kmeans.LCA, 36

LCA, 6,8, 13,17, 18, 34, 38, 38, 45,47, 65, 68,
78, 95, 98, 99

LCPA, 8, 44, 78, 95, 98, 99

logit, 51

LPA, 6,8, 13,17, 18, 34,45,47,53, 65, 68,78,
95, 98, 99

LRT.test, 6,60, 61, 63

LRT.test.Bootstrap, 6, 61, 61, 62, 63

LRT.test.VLMR, 6, 63, 63

LTA, 8, 23, 25, 29, 44, 64, 78, 95, 98, 99

102

	adjust.response
	check.response
	compare.model
	extract
	get.AvePP
	get.CEP
	get.entropy
	get.fit.index
	get.Log.Lik.LCA
	get.Log.Lik.LPA
	get.Log.Lik.LTA
	get.npar.LCA
	get.npar.LPA
	get.npar.LTA
	get.P.Z.Xn.LCA
	get.P.Z.Xn.LPA
	get.SE
	install_python_dependencies
	Kmeans.LCA
	LCA
	LCPA
	logit
	LPA
	LRT.test
	LRT.test.Bootstrap
	LRT.test.VLMR
	LTA
	normalize
	plotResponse
	print
	rdirichlet
	sim.correlation
	sim.LCA
	sim.LPA
	sim.LTA
	summary
	update
	Index

