Authors: Mo Li (mo.li@louisiana.edu), QiQi Lu (qlu2@vcu.edu), Robert Lund (rolund@ucsc.edu), Xueheng Shi (xshi11@unl.edu)
GAReg is a unified genetic algorithm framework for regression problems that require discrete optimization over model spaces with unknown or variable dimension, where gradient-based methods and exhaustive search are impractical. It provides a compact chromosome representation for tasks such as optimal spline knot placement, best-subset variable selection, and multiple changepoint detection, along with exact uniform initialization, constraint-preserving crossover and mutation, steady-state replacement, and optional island-model parallelization. In challenging high-dimensional settings, GAReg enables efficient search and delivers near-optimal solutions when alternative algorithms are not well-justified.
You can install the version of changepointGA from CRAN:
install.packages("GAReg")
or the development version from Github:
# install.packages("remotes")
remotes::install_github("mli171/GAReg", build_vignettes = TRUE, dependencies = TRUE)
browseVignettes("GAReg")
We use the simulation function below for subset selection
illustration. Here, n is the number of observations and
p is the number of predictors. For the covairates,
s0 represent number of truly active predictors, valued
range from 0 to p.
magnitudes_range specifies the range of significantly
expressed coefficients that corresponding to the truly active
predictors. If rho is specified with some values, the
autoregressive structure is introduced into the error terms. If
rho=NULL, we will have independent and identically
distributed (IID) errors. We can also specify sigma for the
error standard deviation.
sim_subset_data <- function(n = 60, p = 50, s0 = 25, sigma = 1.5,
magnitudes_range = c(0.5, 2),
rho = NULL,
seed = NULL) {
stopifnot(n > 0, p > 0, s0 >= 0, s0 <= p, sigma >= 0)
if (!is.null(seed)) set.seed(seed)
X <- matrix(rnorm(n * p), n, p)
# Active set and coefficients
true_idx <- if (s0 > 0) sort(sample.int(p, s0)) else integer(0)
signs <- if (s0 > 0) sample(c(-1, 1), s0, replace = TRUE) else numeric(0)
magnitudes <- if (s0 > 0) runif(s0, magnitudes_range[1], magnitudes_range[2]) else numeric(0)
beta_true <- numeric(p)
if (s0 > 0) beta_true[true_idx] <- magnitudes * signs
if (is.null(rho)) {
e <- rnorm(n, sd = sigma)
} else {
sd_innov <- sigma * sqrt(1 - rho^2)
burn_in <- 100
z <- rnorm(n + burn_in, sd = sd_innov)
e_full <- numeric(n + burn_in)
for (t in 2:(n + burn_in)) e_full[t] <- rho * e_full[t - 1] + z[t]
e <- e_full[(burn_in + 1):(burn_in + n)]
}
y <- as.numeric(X %*% beta_true + e)
DF <- data.frame(y = y, as.data.frame(X))
colnames(DF)[-1] <- paste0("X", seq_len(p))
list(
X = X,
y = y,
beta_true = beta_true,
true_idx = true_idx,
DF = DF,
rho = if (is.null(rho)) NULL else rho,
args = list(n = n, p = p, s0 = s0, sigma = sigma,
magnitudes_range = magnitudes_range,
rho = rho, seed = seed)
)
}
sim <- sim_subset_data(n=100, p=50, s0=25, sigma=1.5, rho=NULL, seed=123)
y <- sim$y
X <- sim$X
ga <- gareg_subset(y=y, X=X, gaMethod = "GA", monitor = FALSE,
gacontrol=list(popSize=120,
maxiter=20000,
run=4000,
pmutation=0.02))
summary(ga)
# False Discovery Rate and True Positive Rate calculation function
res <- FDRCalc(truelabel=sim$true_idx, predlabel=ga@bestsol, N=50)
# FALSE Discover Rate
res$fdr
# TRUE Positive Rate
res$tpr
The multiple changepoint detection can be conducted through
changepointGA package (Li and Lu, 2024). The BIC penalized
function is provided below for IID data. The related math details can be
found in (Li et al., 2026).
BIC.cpt = function(chromosome, Xt){
m = chromosome[1]
tau = chromosome[2:(2 + m - 1)]
N = length(Xt)
if(m==0){
mu.hat = mean(Xt)
sigma.hatsq = sum( (Xt-mu.hat)^2 )/N
BIC.obj = 0.5*N*log(sigma.hatsq)+ 2*log(N)
}
else{
tau.ext = c(1, tau, N+1)
seg.len = diff(tau.ext)
ff = rep(0:m, times=seg.len)
Xseg = split(Xt, ff)
mu.seg = unlist(lapply(Xseg,mean), use.names=F)
mu.hat = rep(mu.seg, seg.len)
sigma.hatsq = sum( (Xt-mu.hat)^2 )/N
BIC.obj = 0.5*N*log(sigma.hatsq) + (2*m + 2)*log(N)
}
return(BIC.obj)
}
# IID data
set.seed(1234)
n = 200
et = rnorm(n)
Xt = et + rep(c(0,2,0,2), each=n/4)
library(changepointGA)
GA.res <- cptga(
ObjFunc = BIC.cpt, N = n, popSize = 500,
pcrossover = 0.95, pmutation = 0.3, pchangepoint = 10/n,
Xt = Xt
)
summary(GA.res)
The classic motocycle impact dataset from MASS package
(Venables & Ripley, 2002) is used as example here.
library(MASS)
library(splines)
data(mcycle)
head(mcycle)
g1 <- gareg_knots(
y=mcycle$accel, x=mcycle$times,
minDist = 5,
gaMethod = "cptga",
cptgactrl = cptgaControl(popSize=200, pcrossover=0.9, pmutation=0.3),
ic_method = "BIC"
)
summary(g1)
# knots location
g1@bestsol
g2 <- gareg_knots(
y=mcycle$accel, x=mcycle$times,
minDist = 5,
gaMethod = "cptgaisl",
cptgactrl = cptgaControl(numIslands=5, popSize=200, maxMig=250,
pcrossover=0.9, pmutation=0.3),
ic_method = "BIC"
)
summary(g2)
g3 <- gareg_knots(
y=mcycle$accel, x=mcycle$times,
fixedknots = 3,
minDist = 5,
gaMethod = "cptga",
cptgactrl = cptgaControl(popSize=200, pcrossover=0.9, pmutation=0.3),
ic_method = "BIC"
)
summary(g3)
g4 <- gareg_knots(
y=mcycle$accel, x=mcycle$times,
fixedknots = 4,
minDist = 5,
gaMethod = "cptgaisl",
cptgactrl = cptgaControl(numIslands=5, popSize=200, maxMig=250,
pcrossover=0.9, pmutation=0.3),
ic_method = "BIC"
)
summary(g4)
y = mcycle$accel
x = mcycle$times
x_unique = unique(x)
tBIC.vary.ga = g1@bestsol
tBIC.vary.gaisl = g2@bestsol
tBIC.fix.3.ga = g3@bestsol
tBIC.fix.4.gaisl = g4@bestsol
bsfit.vary.ga = lm(y ~ bs(x, knots=x_unique[g1@bestsol], Boundary.knots = range(x)))
bsfit.vary.gaisl = lm(y ~ bs(x, knots=x_unique[g2@bestsol], Boundary.knots = range(x)))
bsfit.fix.3.ga = lm(y ~ bs(x, knots=x_unique[g3@bestsol], Boundary.knots = range(x)))
bsfit.fix.4.gaisl = lm(y ~ bs(x, knots=x_unique[g4@bestsol], Boundary.knots = range(x)))
plot(x, y, xlab = "Time (ms)", ylab = "Acceleration (g)")
ht = seq(min(x), max(x), length.out = 200)
lines(ht, predict(bsfit.vary.ga, data.frame(x = ht)), col="blue", lty = 5, lwd = 2)
lines(ht, predict(bsfit.vary.gaisl, data.frame(x = ht)), col="orange", lty = 4, lwd = 2)
lines(ht, predict(bsfit.fix.3.ga, data.frame(x = ht)), col="purple", lty = 3, lwd = 2)
lines(ht, predict(bsfit.fix.4.gaisl, data.frame(x = ht)), col="#D55E00", lty = 2, lwd = 2)
legend("bottomright",
legend = c("Varying knots GA",
"Varying knots island model GA",
"Fixed 3 knots GA",
"Fixed 4 knots island model GA"),
lty = 5:2, lwd = 2,
col = c("blue", "orange", "purple", "#D55E00"), bty = "n")
This section illustrates how to build spline design matrices via
splineX() for three common options:
type="ppolys": degree-d truncated power piecewise
polynomials;type="ns": degree-3 natural cubic spline (degree will
be ignored);type="bs": degree-d B-spline basis;We’ll use the motorcycle acceleration data MASS::mcycle,
create interior knots at quantiles of times, and compare
how different spline types/degrees behave. Here, we only illustrate
through Varying number and locations of knots set-up (Let
GA choose both how many knots and
where they go).
g_pp3 <- gareg_knots(
y = y, x = x,
minDist = 5,
gaMethod = "cptga",
ObjFunc = NULL, # use default varyknotsIC
type = "ppolys",
degree = 3, # degree-3 piecewise polynomial
intercept = TRUE,
ic_method = "BIC"
)
summary(g_pp3)
g_ns <- gareg_knots(
y = y, x = x,
minDist = 5,
gaMethod = "cptga",
type = "ns", # natural cubic (degree ignored)
degree = 3, # ignored for "ns"
intercept = TRUE,
ic_method = "BIC"
)
summary(g_ns)
g_bs1 <- gareg_knots(
y = y, x = x,
minDist = 5,
gaMethod = "cptga",
type = "bs",
degree = 1, # linear B-splines
intercept = TRUE,
ic_method = "BIC"
)
summary(g_bs1)
Li, M., & Lu, Q. (2024). changepointGA: An R package for Fast Changepoint Detection via Genetic Algorithm. arXiv preprint arXiv:2410.15571.
Mo Li, QiQi Lu, Robert Lund, & Xueheng Shi. (2026). Genetic Algorithms in Regression. arXiv preprint arXiv:.
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.
Before pushing changes, please run
styler::style_pkg()to ensure your code follows the tidyverse style guide.