Package 'Anthropometry'

December 4, 2025

```
Title Statistical Methods for Anthropometric Data
Version 1.21
Date 2025-12-04
Maintainer Guillermo Vinue <guillermo.vinue@uv.es>
Description Statistical methodologies especially developed to analyze anthropomet-
      ric data. These methods are aimed at providing effective solutions to some commons prob-
      lems related to Ergonomics and Anthropometry. They are based on clustering, the statisti-
      cal concept of data depth, statistical shape analysis and archetypal analy-
      sis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.
License GPL (>= 2)
URL https://www.R-project.org, https://www.uv.es/vivigui/
Depends R (>= 3.5.0)
Imports shapes, rgl, archetypes, nnls, ddalpha, FNN, ICGE, cluster
Suggests knitr, calibrate, mvtnorm, RColorBrewer, plotrix, abind
VignetteBuilder knitr
LazyData yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2025-12-04 16:10:02 UTC
Author Guillermo Vinue [aut, cre],
      Irene Epifanio [aut],
      Amelia Simo [aut],
      M. Victoria Ibanez [aut],
      Juan Domingo [aut],
      Guillermo Ayala [aut]
```

Type Package

2 Contents

Contents

Anthropometry-package	3
anthrCases	5
archetypesBoundary	6
archetypoids	9
array3Dlandm	12
oustSizesStandard	13
cdfDissWomenPrototypes	14
checkBranchLocalIMO	16
checkBranchLocalMO	18
computSizesHipamAnthropom	20
1	21
	22
cube8landm	23
	24
figures8landm	25
	26
getBestPamsamMO	27
getDistMatrix	29
HartiganShapes	31
nipamAnthropom	34
andmarksSampleSpaSurv	37
LloydShapes	38
nearestToArchetypes	40
rr	41
. 1	43
	44
7 T	44
. 71	46
. 1	48
	50
. 1	52
. J 1	53
qtranShapes	
sampleSpanishSurvey	
screeArchetypal	
shapes3dShapes	
skeletonsArchetypal	62
1 71	63
1 71	65
	67
v 1	69
	71
	73
	75
	77
weightsMixtureUB	78

Anthropometry-package	3
xyplotPCArchetypes	. 79
Index	81

Anthropometry-package Statistical Methods for Anthropometric Data

Description

Statistical methodologies especially developed to analyze anthropometric data. These methods are aimed at providing effective solutions to some commons problems related to Ergonomics and Anthropometry. They are based on clustering, the statistical concept of data depth, statistical shape analysis and archetypal analysis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.

Details

Package: Anthropometry

Type: Package
Version: 1.21
Date: 2025-12-04
License: GPL (>=2)
LazyLoad: yes
LazyData: yes

anthrCases: Helper generic function for obtaining the anthropometric cases.

Anthropometry-internal Archetypoids: Several internal functions to compute and represent archetypes and archetypoids.

Anthropometry-internalHipamAnthropom: Several internal functions used by both HIPAM-MO and HIPAM-IMO algorithms.

Anthropometry-internal Plot Tree: Several internal functions used to build the HIPAM plot tree.

Anthropometry-internalTDDclust: Several internal functions to clustering based on the L1 data depth.

archetypesBoundary: Archetypal analysis in multivariate accommodation problem.

archetypoids: Finding archetypoids.

array3Dlandm: Helper function for the 3D landmarks.

bustSizesStandard: Helper function for defining the bust sizes.

cdfDissWomenPrototypes: CDF for the dissimilarities between women and computed medoids and standard prototypes.

checkBranchLocalIMO: Evaluation of the candidate clustering partition in HIPAM-IMO.

checkBranchLocalMO: Evaluation of the candidate clustering partition in HIPAM-MO.

computSizesTrimowa: Computation of the trimowa elements for a given number of sizes defined by the EN.

computSizesHipamAnthropom: Computation of the hipamAnthropom elements for a given number of sizes defined by the EN.

cube8landm: Cube of 8 landmarks. cube34landm: Cube of 34 landmarks.

descrDissTrunks: Description of the dissimilarities between women's trunks.

figures8landm: Figures of 8 landmarks with labelled landmarks.

getBestPamsamIMO: Generation of the candidate clustering partition in HIPAM-IMO. getBestPamsamMO: Generation of the candidate clustering partition in HIPAM-MO.

getDistMatrix: Dissimilarity matrix between individuals and prototypes.

HartiganShapes: Hartigan-Wong k-means for 3D shapes.

hipamAnthropom: HIPAM algorithm for anthropometric data.

landmarksSampleSpaSurv: Landmarks of the sampled women of the Spanish Survey.

LloydShapes: Lloyd k-means for 3D shapes.

nearestToArchetypes: Nearest individuals to archetypes.

optraShapes: Auxiliary optra subroutine of the Hartigan-Wong k-means for 3D shapes.

parallelep8landm: Parallelepiped of 8 landmarks. parallelep34landm: Parallelepiped of 34 landmarks.

percentils Archetypoid: Helper function for computing percentiles of a certain archetypoid.

plotPrototypes: Prototypes representation. plotTreeHipamAnthropom: HIPAM dendogram.

plotTrimmOutl: Trimmed or outlier observations representation.

preprocessing: Data preprocessing before computing archetypal observations.

projShapes: Helper function for plotting the shapes.

qtranShapes: Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D shapes.

sampleSpanishSurvey: Sample database of the Spanish anthropometric survey.

screeArchetypal: Screeplot of archetypal individuals.

shapes3dShapes: 3D shapes plot.

skeletonsArchetypal: Skeleton plot of archetypal individuals. stepArchetypesRawData: Archetype algorithm to raw data. stepArchetypoids: Run the archetypoid algorithm several times.

TDDclust: Trimmed clustering based on L1 data depth. trimmedLloydShapes: Trimmed Lloyd k-means for 3D shapes.

trimmedoid: Trimmed k-medoids algorithm.

trimmOutl: Helper generic function for obtaining the trimmed and outlier observations.

trimowa: Trimmed PAM with OWA operators.

USAFSurvey: USAF 1967 survey.

weightsMixtureUB: Calculation of the weights for the OWA operators.

xyplotPCArchetypes: PC scores for archetypes.

Author(s)

Guillermo Vinue «Guillermo. Vinue @uv.es», Irene Epifanio, Amelia Simo, M. Victoria Ibanez, Juan Domingo, Guillermo Ayala

References

Vinue, G., (2017). Anthropometry: An R Package for Analysis of Anthropometric Data, *Journal of Statistical Software* **77(6)**, 1–39, doi:10.18637/jss.v077.i06.

anthrCases 5

anthrCases

Helper generic function for obtaining the anthropometric cases

Description

Because the goal of the methodologies included in this package is always to estimate a number of anthropometric cases given a data set (both central (prototypes) and boundaries (archetypoids)), this auxiliary generic function allows the user to identify the cases computed by each method in an easy way.

Usage

```
anthrCases(resMethod, nsizes)
## S3 method for class 'trimowa'
anthrCases(resMethod, nsizes)
## S3 method for class 'hipamAnthropom'
anthrCases(resMethod, nsizes)
```

Arguments

resMethod This is the object which saves the results obtained by the methodologies and

which contains the anthropometric cases to return.

nsizes Number of bust sizes. This argument is needed for the "trimowa" and "hipa-

mAnthropom" methodologies because they can compute the prototypes for any

given number of bust sizes.

Value

A vector of class anthrCases with the anthropometric cases.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., and Ibanez, M. V., (2014). *Data depth and Biclustering applied to anthropometric data. Exploring their utility in apparel design.* Technical report.

6 archetypesBoundary

See Also

trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes, archetypoids, stepArchetypoids

Examples

```
#kmeansProcrustes:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
#shapes::plotshapes(array3D[,,1])
\#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 2; algSteps <- 1; niter <- 1; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
prototypes <- anthrCases(resLL)</pre>
```

archetypesBoundary

Archetypal analysis in multivariate accommodation problem

Description

This function allows us to reproduce the results shown in section 2.2.2 and section 3.1 of Epifanio et al. (2013). In addition, from the results provided by this function, the other results shown in section 3.2 and section 3.3 of the same paper can be also reproduced (see section *examples* below).

Usage

archetypesBoundary(data,numArch,verbose,numRep)

Arguments

data	USAF 1967 database (see USAFSurvey). Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
numArch	Number of archetypes (archetypal observations).
verbose	Logical value. If TRUE, some details of the execution progress are shown (this is the same argument as that of the stepArchetypes function (Eugster (2009))).
numRep	For each archetype run archetypes numRep times (this is the same argument as the nrep argument of stepArchetypes.

archetypesBoundary 7

Details

Before using this function, the more extreme (100 - percAcomm*100)% observations must be removed by means of the preprocessing function. To that end, it is recommended that you use the Mahalanobis distance. In this case, the depth procedure has the disadvantage that the desired percentage of accommodation is not under control of the analyst and it may not exactly coincide with that one indicated.

Value

A list with numArch elements. Each element is a list of class attribute stepArchetypes with numRep elements.

Note

We would like to note that, some time after publishing the paper Epifanio et al. (2013), we found out that the stepArchetypes function standardizes the data by default (even when the data are already standardized) and this option is not always desired. In order to avoid this way of proceeding, we have created the stepArchetypesRawData function, which is used within archetypesBoundary instead of using stepArchetypes. Therefore, the results provided by archetypesBoundary allows us to reproduce the results of Epifanio et al. (2013) but they are now slightly different.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R, *Journal of Statistical Software* **30**, 1–23, doi:10.18637/jss.v030.i08.

Zehner, G. F., Meindl, R. S., and Hudson, J. A., (1993). A multivariate anthropometric method for crew station design: abridged. Tech. rep. Ohio: Human Engineering Division, Armstrong Laboratory, Wright-Patterson Air Force Base.

See Also

archetypes, stepArchetypes, stepArchetypesRawData, USAFSurvey, nearestToArchetypes, preprocessing

```
#The following R code allows us to reproduce the results of the paper Epifanio et al. (2013).
#As a toy example, only the first 25 individuals are used.
#First,the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)</pre>
```

8 archetypesBoundary

```
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)
#Procedure and results shown in section 2.2.2 and section 3.1:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)</pre>
#To understand the warning messages, see the vignette of the
#archetypes package.
#Results shown in section 3.2 (figure 3):
screeplot(res)
#3 archetypes:
a3 <- archetypes::bestModel(res[[3]])</pre>
archetypes::parameters(a3)
#7 archetypes:
a7 <- archetypes::bestModel(res[[7]])
archetypes::parameters(a7)
#Plotting the percentiles of each archetype:
#Figure 2 (b):
barplot(a3,USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")
#Figure 2 (f):
barplot(a7,USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")
#Results shown in section 3.3 related with PCA.
pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)</pre>
#Table 3:
summary(pznueva)
pznueva
#PCA scores for 3 archetypes:
p3 <- predict(pznueva, archetypes::parameters(a3))</pre>
#PCA scores for 7 archetypes:
p7 <- predict(pznueva,archetypes::parameters(a7))</pre>
#Representing the scores:
#Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,
                    atypes.pch = 15)
#Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,
                    atypes.pch = 15)
#Percentiles for 7 archetypes (table 5):
Fn <- ecdf(USAFSurvey_preproc$data)</pre>
round(Fn(archetypes::parameters(a7)) * 100)
#Which are the nearest individuals to archetypes?:
#Example for three archetypes:
ras <- rbind(archetypes::parameters(a3),USAFSurvey_preproc$data)</pre>
dras <- dist(ras,method = "euclidean", diag = FALSE, upper = TRUE, p = 2)</pre>
mdras <- as.matrix(dras)</pre>
```

archetypoids 9

```
diag(mdras) = 1e+11
numArch <- 3
sapply(seq(length=numArch),nearestToArchetypes,numArch,mdras)

#In addition, we can turn the standardized values to the original variables.
p <- archetypes::parameters(a7)
m <- sapply(USAFSurvey_inch,mean)
s <- sapply(USAFSurvey_inch,sd)
d <- p
for(i in 1 : 6){
    d[,i] = p[,i] * s[i] + m[i]
}
#Table 7:
t(d)</pre>
```

archetypoids

Finding archetypoids

Description

Archetypoid algorithm. It is based on the PAM clustering algorithm. It is made up of two phases (a BUILD phase and a SWAP phase). In the BUILD phase, an initial set of archetypoids is determined. Unlike PAM, this collection is not derived in a stepwise format. Instead, it is suggested you choose the set made up of the nearest individuals returned by the archetypes function (Eugster et al. (2009)). This set can be defined in three different ways, see next section *arguments*. The goal of the SWAP step is the same as that of the SWAP step of PAM, but changing the objective function. The initial vector of archetypoids is attempted to be improved. This is done by exchanging selected individuals for unselected individuals and by checking whether these replacements reduce the objective function of the archetypoid analysis problem.

All details are given in Vinue et al. (2015).

Usage

```
archetypoids(numArchoid,data,huge=200,step,init,ArchObj,nearest="cand_ns",sequ,aux)
```

Number of erabetypoids (erabetypol observations)

Arguments

num A rahaid

numArchola	Number of archetypoids (archetypal observations).
data	Data matrix. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.
huge	This is a penalization added to solve the convex least squares problems regarding the minimization problem to estimate archetypoids, see Eugster et al. (2009). Default value is 200.
step	Logical value. If TRUE, the archetypoid algorithm is executed repeatedly within stepArchetypoids. Therefore, this function requires the next argument init (but neither the ArchObj nor the nearest arguments) that specifies the initial vector of archetypoids, which has already been computed within stepArchetypoids.

10 archetypoids

If FALSE, the archetypoid algorithm is executed once. In this case, the ArchObj and nearest arguments are required to compute the initial vector of archetypoids.

poids.

init Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.

It is computed within ${\tt stepArchetypoids}.$ See nearest argument below for an

explanation of how this vector is calculated.

ArchObj The list object returned by the stepArchetypesRawData function. This function

is a slight modification of the original stepArchetypes to apply the archetype algorithm to raw data. The stepArchetypes function standardizes the data by default and this option is not always desired. This list is needed to compute the

nearest individuals to archetypes. Required when step=FALSE.

nearest Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.

Required when step=FALSE. This initial vector contain the nearest individuals to the archetypes returned by the archetypes (In Vinue et al. (2015), archetypes are computed after running the archetype algorithm twenty times). This argument is a string vector with three different possibilities. The first and default option is "cand_ns" and allows us to calculate the nearest individuals by computing the Euclidean distance between the archetypes and the individuals and choosing the nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha" and allows us to calculate the nearest individuals by consecutively identifying the individual with the maximum value of alpha for each archetype, until the defined number of archetypes is reached. It is used in Eugster (2012). The third and final option is "cand_beta" and allows us to calculate the nearest individuals by identifying the individuals with the maximum beta value for each archetype,

i.e. the major contributors in the generation of the archetypes.

sequ Logical value. It indicates whether a sequence of archetypoids (TRUE) or only

a single number of them (FALSE) is computed. It is determined by the number

of archetypes computed by means of stepArchetypesRawData.

aux If sequ=FALSE, this value is equal to numArchoid-1 since for a single num-

ber of archetypoids, the list associated with the archetype object only has one

element.

Details

As mentioned, this algorithm is based on PAM. These types of algorithms aim to find good solutions in a short period of time, although not necessarily the best solution. Otherwise, the global minimum solution may always be obtained using as much time as it would be necessary, but this would be very inefficient computationally.

Value

A list with the following elements:

cases: Anthropometric cases (final vector of numArchoid archetypoids).

rss: Residual sum of squares corresponding to the final vector of numArchoid archetypoids.

archet_ini: Vector of initial archetypoids (cand_ns, cand_alpha or cand_beta).

alphas: Alpha coefficients for the optimal vector of archetypoids.

archetypoids 11

Note

It may be happen that archetypes does not find results for numArchoid archetypes. In this case, it is not possible to calculate the vector of nearest individuals and consequently, the vector of archetypoids. Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, *Technometrics* 36, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R, *Journal of Statistical Software* **30**, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, *International Journal of Performance Analysis in Sport* **12**, 166–187.

See Also

stepArchetypesRawData, archetypes, stepArchetypoids

```
#Note: For a sportive example, see www.uv.es/vivigui/softw/more_examples.R
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,</pre>
                              numRep = numRep, verbose = FALSE)
```

12 array3Dlandm

array3Dlandm

Helper function for the 3D landmarks

Description

This is a helper function for obtaining the array with the 3D landmarks of the sample objects

Usage

```
array3Dlandm(numLandm, numIndiv, matLandm)
```

Arguments

numLandm Number of landmarks that represent the 3D body of the individuals.

numIndiv Number of individuals to analyze.

matLandm Matrix with the numLandm landmarks for the numIndiv individuals.

Value

Array with the 3D landmarks of the sample objects.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

See Also

LloydShapes, HartiganShapes, trimmedLloydShapes

bustSizesStandard 13

Examples

```
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
landmarksNoNa_First50 <- landmarksNoNa[1:50, ]
numIndiv <- dim(landmarksNoNa_First50)[1]
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First50)</pre>
```

bustSizesStandard

Helper function for defining the bust sizes

Description

This is a helper function for defining the twelve bust sizes (from 74 cm to 131 cm) according to the sizes proposed in the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

Usage

```
bustSizesStandard(bustCirc_4, bustCirc_6)
```

Arguments

bustCirc_4 Sequence of measurements from 74 to 102 in groups of four.

bustCirc_6 Sequence of measurements from 107 to 131 in groups of six.

Value

A list with the following elements:

bustCirc: Vector of the twelve bust sizes. *nsizes*: Number of bust sizes (twelve).

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

See Also

trimowa, hipamAnthropom

Examples

```
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))</pre>
```

 ${\it cdfDissWomenPrototypes}$

CDF for the dissimilarities between women and computed medoids and standard prototypes

Description

This function allows us to calculate the Cumulative Distribution Functions for the dissimilarities between all the women and the medoids obtained with the trimowa algorithm and for the dissimilarities between all the women and the standard prototypes defined by the European standard. Part 3: Measurements and intervals. In both cases, the dissimilarities have been computed by using the dissimilarity function obtained with getDistMatrix.

These types of plots can also be used to identify the expected range of the dissimilarities, that is to say, the values between the 10 and 90th percentiles.

This function was used to obtain the Fig. 11 of Ibanez et al. (2012).

Usage

```
cdfDissWomenPrototypes(min_med,min_med_UNE,main,xlab,ylab,leg,cexLeg,...)
```

Arguments

min_med	Vector with the dissimilarities between all the women and the prototypes (medoids) obtained with trimowa.
min_med_UNE	Vector with the dissimilarities between all the women and the standard prototypes.
main	A title for the plot.
xlab	A title for the x axis.
ylab	A title for the y axis.
leg	A character vector to appear in the legend.
cexLeg	Character expansion for the legend.
	Further graphical parameters.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, trimowa, getDistMatrix

```
#Loading the data to apply the trimowa algorithm:
dataTrimowa <- sampleSpanishSurvey</pre>
dim(dataTrimowa)
#[1] 600 5
numVar <- dim(dataTrimowa)[2]</pre>
bust <- dataTrimowa$bust</pre>
chest <- dataTrimowa$chest</pre>
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))</pre>
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)</pre>
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7</pre>
ah <- c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
#numSizes <- bustSizes$nsizes - 1</pre>
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,
                                    weightsTrimowa, numClust, alpha, niter, algSteps,
                                    ah, FALSE)
#Prototypes obtained with the trimowa algorithm:
prototypes <- anthrCases(res_trimowa, numSizes)</pre>
#length(unlist(prototypes)) is (numSizes - 1) * numClust
meds <- dataTrimowa[unlist(prototypes),]</pre>
regr <- lm(chest ~ bust)</pre>
#Prototypes defined by the European standard:
hip\_UNE <- c(seq(84,112,4), seq(117,132,5))
                                                       ; hip <- rep(hip_UNE,3)</pre>
waist_UNE <- c(seq(60,88,4), seq(94,112,6))
                                                        ; waist <- rep(waist_UNE,3)</pre>
```

16 checkBranchLocalIMO

```
bust_UNE <- c(seq(76,104,4), seq(110,128,6))
                                                         ; bust <- rep(bust_UNE,3)</pre>
chest_UNE <- predict(regr, list(bust=bust_UNE))</pre>
                                                         ; chest <- rep(chest_UNE,3)</pre>
necktoground <- c(rep(130,12), rep(134,12), rep(138,12))
medsUNE <- data.frame(chest, necktoground, waist, hip, bust)</pre>
dim(medsUNE)
#[1] 36 5
dataAll <- rbind(dataTrimowa, meds, medsUNE)</pre>
dim(dataAll)
#[1] 642 5
bh <- (apply(as.matrix(log(dataAll)),2,range)[2,]</pre>
       - apply(as.matrix(log(dataAll)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(28,20,30,25,23)
al <- 3 * ah
num.persons <- dim(dataAll)[1]</pre>
dataAllm <- as.matrix(dataAll)</pre>
dataAllt <- aperm(dataAllm, c(2,1))</pre>
dim(dataAllt) <- c(1,num.persons * numVar)</pre>
rm(dataAllm)
D <- getDistMatrix(dataAllt, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)
sequen <- (dim(dataTrimowa)[1] + 1) : (dim(dataTrimowa)[1] + length(unlist(prototypes)))</pre>
f <- function(i, D){</pre>
r <- min(D[i, sequen])</pre>
min_med <- sapply(1:dim(dataTrimowa)[1], f, D)</pre>
sequen1 <- (dim(dataTrimowa)[1] + length(unlist(prototypes)) + 1) : dim(D)[1]</pre>
f1 <- function(i, D){</pre>
r <- min(D[i, 619:636])
min_med_UNE <- sapply(1:dim(dataTrimowa)[1], f1, D)</pre>
#CDF plot:
main <- "Comparison between sizing methods"
xlab <- "Dissimilarity"</pre>
ylab <- "Cumulative distribution function"
leg <- c("Dissimilarity between women and computed medoids",</pre>
          "Dissimilarity between women and standard prototypes")
cdfDissWomenPrototypes(min_med, min_med_UNE, main, xlab, ylab, leg,cexLeg = 0.7)
```

checkBranchLocalIMO Evaluation of the candidate clustering partition in HIPAM-IMO

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further into new (child) clusters, or stop (in this case, P would be a terminal node).

checkBranchLocalIMO 17

In this version of HIPAM, called HIPAM-IMO, there are three different stopping criteria: First, if \$IPI leq 2\$, then P is a terminal node. If not, the second stopping refers to the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)): if \$INCA_k leq 0.2\$ for all k, then P is a terminal node. Finally, the third stopping criteria uses the Mean Split Silhouette. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

Arguments

tree	The clustering tree being defined.
data	Data to be clustered.
i	A specific cluster of the clustering partition in a certain level of the tree.
maxsplit	The maximum number of clusters that any cluster can be divided when searching for the best clustering.
asw.tol	If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0 , respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.
local.const	If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.
orness	Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.
type	Option 'IMO' for using HIPAM-IMO.
ah	Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
verbose	Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
	Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the HIPAM-IMO algorithm and it is not solely used. That is why there is no section of *examples* in this help page. See hipamAnthropom.

18 checkBranchLocalMO

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the second stopping criterion related to INCA.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. *Vol. II of SCI2002 Proceedings*, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and identifying atypical units, *Statistics in Medicine* **27**, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters and atypical units in gene expression, *BMC Bioinformatics* **13** 1–29.

See Also

hipamAnthropom

checkBranchLocalMO

Evaluation of the candidate clustering partition in HIPAM-MO

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further into new (child) clusters, or stop (in this case, P would be a terminal node).

In this version of HIPAM, called HIPAM-MO, there are two different stopping criteria: First, if \$|P| leq 2\$, then P is a terminal node. If not, the second stopping criteria uses the Mean Split Silhouette. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

checkBranchLocalMO 19

Arguments

tree	The clustering tree being defined.
data	Data to be clustered.
i	A specific cluster of the clustering partition in a certain level of the tree.
maxsplit	The maximum number of clusters that any cluster can be divided when searching for the best clustering.
asw.tol	If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0 , respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.
local.const	If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.
orness	Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.
type	Option 'MO' for using HIPAM-MO.
ah	Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
verbose	Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
	Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the HIPAM-MO algorithm and it is not solely used. That is why there is no section of *examples* in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. *Vol. II of SCI2002 Proceedings*, 318–325.

See Also

hipamAnthropom

computSizesHipamAnthropom

Computation of the hipamAnthropom elements for a given number of sizes defined by the EN

Description

This is a helper function for computing the hipamAnthropom elements provided by the hipamAnthropom algorithm for a number of bust sizes defined by the European Normative (EN). Therefore, the hipamAnthropom is used inside this function.

Usage

Arguments

dataHip Data frame.

bust Bust column of the data frame.

bustMeasur Sequence vector of bust measurements (bust sizes) provided by the bustSizesStandard

function.

nsizes Number of sizes defined by the European Normative to apply the hipamAnthropom

function.

maxsplit, orness, type, ah, verbose

Same arguments as those of the hipamAnthropom function.

Value

A list with the same elements as the hipamAnthropom function.

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

computSizesTrimowa 21

See Also

hipamAnthropom, bustSizesStandard

Examples

computSizesTrimowa

Computation of the trimowa elements for a given number of sizes defined by the EN

Description

This is a helper function for computing the trimowa elements provided by the trimowa algorithm for a number of bust sizes defined by the European Normative (EN). Therefore, the trimowa is used inside this function. The number of sizes must be bigger than one. For a single size use directly trimowa.

Usage

Arguments

dataTrim Data frame.

bust Bust column of the data frame.

bustMeasur Sequence vector of bust measurements (bust sizes) provided by the bustSizesStandard

function.

nsizes Number of sizes defined by the European Normative to apply the trimowa func-

tion.

w, numClust, alpha, niter, algSteps, ah, verbose

Same arguments as those of the trimowa function.

22 cube34landm

Value

A list with the same elements as the trimowa function.

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

See Also

```
trimowa, bustSizesStandard
```

Examples

```
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3; alpha <- 0.01; niter <- 10; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes, weightsTrimowa, numClust, alpha, niter, algSteps, ah, verbose = FALSE)</pre>
```

cube34landm

Cube of 34 landmarks

Description

This is a cube made up of 34 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

cube8landm 23

Usage

cube34landm

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10(1)**, 103–132.

cube8landm

Cube of 8 landmarks

Description

This is a cube made up of 8 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

cube8landm

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10(1)**, 103–132.

24 descrDissTrunks

descrDissTrunks

Description of the dissimilarities between women's trunks

Description

Unlike archetypes, archetypoids can be computed when features are unavailable. Given a dissimilarity matrix, the classical multidimensional scaling (cMDS) can be applied to obtain a description of the dissimilarities.

In Vinue et al. (2015), the dissimilarity matrix represents the dissimilarities between women's trunks. After applying the cMDS, the database described here is obtained. Then, the archetypoid algorithm can be applied to this database, see section *examples*.

Usage

descrDissTrunks

Format

A matrix with 470 rows and 4 columns.

Source

Anthropometric survey of the Spanish female population.

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthropometric survey of the Spanish female population aimed at the apparel industry. *Proceedings of the 2010 Intl. Conference on 3D Body scanning Technologies*, 307–315.

```
#Database:
#As a toy example, only the first 25 individuals are used.
X <- descrDissTrunks[1:25,]
X <- as.matrix(X)

#Computation of archetypes and archetypoids:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5; nrep <- 2
lass <- stepArchetypesRawData(data = X, numArch = 1:numArch, numRep = nrep, verbose = FALSE)
#To understand the warning messages, see the vignette of the</pre>
```

figures8landm 25

figures8landm

Figures of 8 landmarks with labelled landmarks

Description

This function allows us to represent the two geometric figures (a cube and a parallelepiped) of 8 landmarks, with the landmark labels. Both appear in the paper Vinue et al. (2016), referred below.

Usage

```
figures8landm(figure,data)
```

Arguments

figure A character vector, two values are admitted: if figure="cube", the cube is repre-

sented. If figure="paral", the parallelepiped is represented.

data The data with the landmarks of the corresponding figure.

Value

A plot of the cube or the parallelepiped with the landmark labels.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

```
## Not run:
figures8landm("cube", cube8landm)
figures8landm("paral", parallelep8landm)
## End(Not run)
```

26 getBestPamsamIMO

getBestPamsamIMO Generation of the candidate clustering partition in HIPAM-IMO

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is partitioned using PAM.

In this version of HIPAM, called HIPAM-IMO, the number k of (child) clusters is obtained by using the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)) in the following way: at each node P, if there is k such that $INCA_k > 0.2$, then the k prior to the first largest slope decrease is selected. However, this procedure does not apply either to the top node or to the generation of the new partitions from which the Mean Split Silhouette is calculated. In these cases, even when all $INCA_k < 0.2$, k = 3 is fixed as the number of groups to divide and proceed. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

getBestPamsamIMO(data,maxsplit,orness=0.7,type,ah,verbose,...)

Arguments

data	Data to be clustered.
maxsplit	The maximum number of clusters that any cluster can be divided when searching for the best clustering.
orness	Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.
type	Option 'IMO' for using HIPAM-IMO.
ah	Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
verbose	Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
	Other arguments that may be supplied.

Value

A list with the following elements:

medoids: The cluster medoids.

clustering: The clustering partition obtained.

asw: The asw of the clustering.

num.of.clusters: Number of clusters in the final clustering.

info: List that informs about the progress of the clustering algorithm.

getBestPamsamMO 27

profiles: List that contains the asw and sesw (stardard error of the silhouette widths) profiles at each stage of the search.

metric: Dissimilarity used (called 'McCulloch' because the dissimilarity function used is that explained in McCulloch et al. (1998)).

Note

This function belongs to the HIPAM-IMO algorithm and it is not solely used. That is why there is no section of *examples* in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the INCA criterion.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. *Vol. II of SCI2002 Proceedings*, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and identifying atypical units, *Statistics in Medicine* **27**, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters and atypical units in gene expression, *BMC Bioinformatics* **13** 1–29.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing, *Journal of the Operational Research Society* **49**, 492–499.

See Also

hipamAnthropom

getBestPamsamMO

Generation of the candidate clustering partition in HIPAM-MO

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is partitioned using PAM.

In this version of HIPAM, called HIPAM-MO, the number k of (child) clusters is obtained by maximizing the silhouette width (asw). See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

28 getBestPamsamMO

Usage

```
getBestPamsamMO(data,maxsplit,orness=0.7,type,ah,verbose,...)
```

Arguments

data Data to be clustered.

maxsplit The maximum number of clusters that any cluster can be divided when searching

for the best clustering.

orness Quantity to measure the degree to which the aggregation is like a min or max

operation. See weightsMixtureUB and getDistMatrix.

type Option 'MO' for using HIPAM-MO.

ah Constants that define the ah slopes of the distance function in getDistMatrix.

Given the five variables considered, this vector is c(23,28,20,25,25). This vector

would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information

on progress.

... Other arguments that may be supplied.

Value

A list with the following elements:

medoids: The cluster medoids.

clustering: The clustering partition obtained.

asw: The asw of the clustering.

num.of.clusters: Number of clusters in the final clustering.

info: List that informs about the progress of the clustering algorithm.

profiles: List that contains the asw and sesw (stardard error of the silhouette widths) profiles at each stage of the search.

metric: Dissimilarity used (called 'McCulloch' because the dissimilarity function used is that explained in McCulloch et al. (1998)).

Note

This function belongs to the HIPAM-MO algorithm and it is not solely used. That is why there is no section of *examples* in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html.

getDistMatrix 29

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. *Vol. II of SCI2002 Proceedings*, 318–325.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing, *Journal of the Operational Research Society* **49**, 492–499.

See Also

hipamAnthropom

getDistMatrix

Dissimilarity matrix between individuals and prototypes

Description

In the definition of a sizing system, a distance function allows us to represent mathematically the idea of garment fit and it is a key element to quantify the misfit between an individual and the prototype.

This function computes the dissimilarity defined in McCulloch et al. (1998), which is used in trimowa and hipamAnthropom. For more details, see also Ibanez et al. (2012) and Vinue et al. (2014).

Usage

getDistMatrix(data,np,nv,w,bl,bh,al,ah,verbose)

Arguments

data	Data vector.
np	Number of observations in the database.
nv	Number of variables in the database.
W	Weights for the OWA operator computed by means of weightsMixtureUB.
bl, bh, al, ah	Constants required to specify the distance function.
verbose	Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.

30 getDistMatrix

Details

At the computational level, it is assummed that all the bh values are negative, all the bl values are positive and all the all and ah slopes are positive (the sign of all is changed within the function when computing the dissimilarities).

Value

A symmetric np x np matrix of dissimilarities.

Note

This function requires a C code called cast.c. In order to use getDistMatrix outside the package, the dynamic-link library is called by means of the sentence dyn.load("cast.so") (In Windows, it would be dyn.load("cast.dll")).

Author(s)

Juan Domingo

References

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing, *Journal of the Operational Research Society* **49**, 492–499.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Leon, T., Zuccarello, P., Ayala, G., de Ves, E., and Domingo, J., (2007), Applying logistic regression to relevance feedback in image retrieval systems, *Pattern Recognition* **40**, 2621–2632.

See Also

trimowa, hipamAnthropom

```
#Data loading:
dataTrimowa <- sampleSpanishSurvey
bust <- dataTrimowa$bust
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78), ]
numVar <- dim(dataTrimowa)[2]

#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

#Constants required to specify the distance function:</pre>
```

HartiganShapes 31

HartiganShapes

Hartigan-Wong k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)). However, in many texts, the term k-means algorithm is used for certain similar sequential clustering algorithms. Hartigan and Wong (1979) use the term k-means for an algorithm that searches for the locally optimal k-partition by moving points from one cluster to another.

This function allows us to use the Hartigan-Wong version of k-means adapted to deal with 3D shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an

observation, and each column corresponds to a dimension (x,y,z).

numClust Number of clusters.

32 HartiganShapes

Number of steps per initialization. Default value is 10. algSteps Number of random initializations (iterations). Default value is 10. niter Relative stopping criteria. Default value is 0.0001. stopCr simul Logical value. If TRUE, this function is used for a simulation study. initLl Logical value. If TRUE, see next argument initials. If FALSE, they are new random initial values. initials If initLl=TRUE, they are the same random initial values used in each iteration of LloydShapes. If initLl=FALSE this argument must be passed simply as an empty vector. verbose A logical specifying whether to provide descriptive output about the running

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010), Georgescu (2009)). In Vinue, G. et al. (2014), it is demonstrated that the Lloyd k-means represents a noticeable reduction in the computation involved when the sample size increases, compared with the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis context only for very small samples.

Value

A list with the following elements:

ic1: Optimal clustering.

cases: Anthropometric cases (optimal centers).

process.

vopt: Optimal objective function.

If a simulation study is carried out, the following elements are returned:

ic1: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.compTime: Computational time.

AllRate: Allocation rate.

Note

This function is based on the kmns.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136

Author(s)

Guillermo Vinue

HartiganShapes 33

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, *Applied Statistics*, 100–108.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, *IEEE Transactions on Information Theory* **28**, 129–137.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical Shape Analysis, *Communications in Statistics - Simulation and Computation* **39(5)**, 1016–1026.

Georgescu, V., (2009). Clustering of Fuzzy Shapes by Integrating Procrustean Metrics and Full Mean Shape Estimation into K-Means Algorithm. *In IFSA-EUSFLAT Conference*.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

LloydShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm, cube34landm, parallelep34landm, optraShapes, qtranShapes

```
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 20 individuals are used.
landmarksNoNa_First20 <- landmarksNoNa[1:20, ]</pre>
(numIndiv <- dim(landmarksNoNa_First20)[1])</pre>
#[1] 20
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First20)</pre>
#array3D <- array3D[1:10,,] #to reduce computational times.</pre>
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 3 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
#resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE, c(), FALSE)</pre>
initials \leftarrow list(c(15,10,1))
resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, TRUE, initials, TRUE)
if (!is.null(resHA)) {
 asig <- resHA$ic1 #table(asig) shows the clustering results.
 prototypes <- anthrCases(resHA)</pre>
#Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R
```

34 hipamAnthropom

hipamAnthropom	HIPAM algorithm for anthropometric data
----------------	---

Description

The HIerarchical Partitioning Around Medoids clustering method (HIPAM) was originally created to gene clustering (Wit et al. (2004)). The HIPAM algorithm is a divisive hierarchical clustering method based on the PAM algorithm.

This function is a HIPAM algorithm adapted to deal with anthropometric data. To that end, a different dissimilarity function is incorporated. This function is that explained in McCulloch et al. (1998) and it is implemented in getDistMatrix. We call it d-MO. In addition, a different method to obtain a classification tree is also incorporated.

Two HIPAM algorithms are proposed. The first one, called HIPAM-MO, is a HIPAM that uses d-MO. The second one, HIPAM-IMO, is a HIPAM algorithm that uses d-MO and the INCA (Index Number Clusters Atypical) statistic criterion (Irigoien et al. (2008)) to decide the number of child clusters and as a stopping rule.

See Vinue et al. (2014) for more details.

Usage

```
hipamAnthropom(data,asw.tol=0,maxsplit=5,local.const=NULL,
orness=0.7,type,ah=c(23,28,20,25,25),verbose,...)
```

Arguments

data	Data frame. In our approach, this is each of the subframes originated after segmenting the whole anthropometric Spanish survey into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
asw.tol	If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0 , respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.
maxsplit	The maximum number of clusters that any cluster can be divided into when searching for the best clustering.
local.const	If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.
orness	Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.
type	Type of HIPAM algorithm to be used. The possible options are 'MO' (for HIPAM-MO) and 'IMO' (for HIPAM-IMO).

hipamAnthropom 35

ah Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is c(23,28,20,25,25). This vector

would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information

on progress.

... Other arguments that may be supplied to the internal functions of the HIPAM

algorithms.

Details

The HIPAM-MO algorithm uses the getBestPamsamMO and checkBranchLocalMO functions, while the HIPAM-IMO algorithm uses the getBestPamsamIMO and checkBranchLocalIMO functions.

For more details of HIPAM, see van der Laan et al. (2003), Wit et al. (2004) and the manual of the **smida** R package.

Value

A list with the following elements:

clustering: Final clustering that corresponds to the last level of the tree.

asw: The asw of the final clustering.

n.levels: Number of levels in the tree.

cases: Anthropometric cases (medoids of all of the clusters in the tree).

active: Activity status of each cluster (FALSE for every cluster of the final partition).

development: Matrix that indicates the ancestors of the final clusters.

num.of.clusters: Number of clusters in the final clustering.

metric: Dissimilarity used (called 'McCulloch' because the dissimilarity function used is that explained in McCulloch et al. (1998)).

Note

All the functions related to the HIPAM algorithm were originally created by E. Wit et al., and they are available freely on https://www.math.rug.nl/~ernst/book/smida.html. In order to develop the HIPAM-MO and HIPAM-IMO algorithms, we have used and adapted them.

Author(s)

Guillermo Vinue

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

36 hipamAnthropom

van der Laan, M. J., and Pollard, K. S., (2003). A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap, *Journal of Statistical Planning and Inference* **117**, 275–303.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene expression data. *Vol. II of SCI2002 Proceedings*, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and identifying atypical units, *Statistics in Medicine* **27**, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters and atypical units in gene expression, *BMC Bioinformatics* **13**, 1–29.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing, *Journal of the Operational Research Society* **49**, 492–499.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthropometric survey of the Spanish female population aimed at the apparel industry. *Proceedings of the 2010 Intl. Conference on 3D Body scanning Technologies*, 307–315.

See Also

getBestPamsamMO, getBestPamsamIMO, checkBranchLocalMO, checkBranchLocalIMO, plotTreeHipamAnthropom,

```
#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataHipam <- sampleSpanishSurvey</pre>
bust <- dataHipam$bust</pre>
bustSizes <- bustSizesStandard(seg(74, 102, 4), seg(107, 131, 6))
type <- "IMO"
maxsplit <- 5; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,</pre>
                                         maxsplit, orness, type, ah, FALSE)
fitmodels <- anthrCases(res_hipam, numSizes)</pre>
outliers <- trimmOutl(res_hipam, numSizes)</pre>
#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]</pre>
numVar <- dim(dataComp)[2]</pre>
```

landmarksSampleSpaSurv

Landmarks of the sampled women of the Spanish Survey

Description

The body shape of the women who belong to sampleSpanishSurvey is represented by a set of anatomical correspondence points, called landmarks.

This database collects the set of landmarks of each woman.

The landmarks considered were placed in three different ways:

- Automatic landmarks: automatically calculated with scanner program algorithms, based on geometrical features of the body.
- Manual landmarks: points which are not reflected on the external body geometry; they were located through palpation by expert personnel and identified by a physical marker.
- Digital landmarks: detected on the computer screen in the 3D scanned image. They are not robust on the automatic calculation but are easy to detect on the screen.

Usage

landmarksSampleSpaSurv

Format

A data frame with 600 observations and 198 variables (66 landmarks times 3 dimensions).

Source

Anthropometric survey of the Spanish female population.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10(1)**, 103–132.

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthropometric survey of the Spanish female population aimed at the apparel industry. *Proceedings of the 2010 Intl. Conference on 3D Body scanning Technologies*, 307–315.

LloydShapes

Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)).

This function allows us to use the Lloyd version of k-means adapted to deal with 3D shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section *arguments*.

Usage

LloydShapes(array3D,numClust,algSteps=10,niter=10,stopCr=0.0001,simul,verbose)

Arguments

array3D	Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).
numClust	Number of clusters.
algSteps	Number of steps of the algorithm per initialization. Default value is 10.
niter	Number of random initializations (iterations). Default value is 10.
stopCr	Relative stopping criteria. Default value is 0.0001.
simul	Logical value. If TRUE, this function is used for a simulation study.
verbose	A logical specifying whether to provide descriptive output about the running process.

LloydShapes 39

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010), Georgescu (2009)). In Vinue et al. (2014), it is demonstrated that the Lloyd k-means represents a noticeable reduction in the computation involved when the sample size increases, compared with the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis context only for very small samples.

Value

A list with the following elements:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

If a simulation study is carried out, the following elements are returned:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

compTime: Computational time.

AllRate: Allocation rate.

initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

Author(s)

Amelia Simo

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, *IEEE Transactions on Information Theory* **28**, 129–137.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm, cube34landm, parallelep34landm, optraShapes, qtranShapes

Examples

```
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#F17 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 2; algSteps <- 1; niter <- 1; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
asig <- resLL$asig
table(resLL$asig)
prototypes <- anthrCases(resLL)</pre>
#Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R
```

nearestToArchetypes

Nearest individuals to archetypes

Description

The nearest individual to each archetype can be obtained by simply computing the distance between the archetypes and the individuals and choosing the nearest. This is the procedure to obtain what is called the *cand_ns* vector, see Vinue et al. (2015). It is used within archetypoids and stepArchetypoids.

Usage

nearestToArchetypes(indivs,numArch,mdras)

Arguments

indivs Vector from 1 to numArch of individuals nearest to archetypes.

numArch Number of archetypes computed.

mdras Distance matrix between the archetypes and the individuals.

Value

A vector with the nearest individuals to archetypes.

optraShapes 41

Author(s)

Irene Epifanio

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

See Also

archetypoids, stepArchetypoids, archetypesBoundary

Examples

```
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
res <- archetypesBoundary(USAFSurvey_preproc$data, 5, FALSE, 3)</pre>
#To understand the warning messages, see the vignette of the
#archetypes package.
numArch <- 3
a3 <- archetypes::bestModel(res[[numArch]])</pre>
ras <- rbind(archetypes::parameters(a3), USAFSurvey_preproc$data)</pre>
dras <- dist(ras, method = "euclidean", diag = FALSE, upper = TRUE, p = 2)</pre>
mdras <- as.matrix(dras)</pre>
diag(mdras) <- 1e+11</pre>
sapply(seq(length=numArch), nearestToArchetypes, numArch, mdras)
```

optraShapes

Auxiliary optra subroutine of the Hartigan-Wong k-means for 3D shapes

42 optraShapes

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal transfer stage (optra) and the quick transfer stage (qtran).

This function is the optra subroutine adapted to the shape analysis context. It is used within HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm and Amaral et al. (2010) for details about its adaptation to shape analysis.

Usage

```
optraShapes(array3D,n,c,numClust,ic1,ic2,nc,an1,an2,ncp,d,itran,live,indx)
```

Arguments

array3D	Array with the 3D landmarks of the sample objects.
n	Number of sample objects.
С	Array of centroids.
numClust	Number of clusters.
ic1	The cluster to each object belongs.
ic2	This vector is used to remember the cluster which each object is most likely to be transferred to at each step.
nc	Number of objects in each cluster.
an1	an1(l) = nc(l) / (nc(l) - 1), l=1,,numClust.
an2	an2(1) = nc(1) / (nc(1) + 1), l=1,,numClust.
ncp	In the optimal transfer stage, $ncp(l)$ stores the step at which cluster l is last updated, $l=1,\ldots,numClust$. In the quick transfer stage, $ncp(l)$ stores the step at which cluster l is last updated plus n , $l=1,\ldots,numClust$.
d	Vector of distances from each object to every centroid.
itran	$itran(l) = 1$ if cluster 1 is updated in the quick-transfer stage (0 otherwise), $l=1,\ldots,n$ umClust\$.
live	Vector that indicates whether a cluster is included in the live set or not.
indx	Number of steps since a transfer took place.

Value

A list with the following elements: c,ic1,ic2,nc,an1,an2,ncp,d,itran,live,indx, updated after the optimal transfer stage.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section of examples in this help page.

parallelep34landm 43

Note

This function is based on the optra.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, *Applied Statistics*, 100–108.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical Shape Analysis, *Communications in Statistics - Simulation and Computation* **39(5)**, 1016–1026.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes

parallelep34landm

Parallelepiped of 34 landmarks

Description

This is a parallelepiped made up of 34 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

parallelep34landm

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

parallelep8landm	
nai attetenotaiinii	

Parallelepiped of 8 landmarks

Description

This is a parallelepiped made up of 8 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

parallelep8landm

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

percentilsArchetypoid Helper function for computing percentiles of a certain archetypoid

Description

This helper function computes the percentiles of an archetypoid for a given variable. Once these percentile values have been calculated, they can be represented by means of a barplot.

Usage

percentilsArchetypoid(column,indiv,data,digits)

Arguments

column	Numeric variable (column of a data frame).
indiv	A certain archetypoid.
data	Data frame that contains the columns and archetypoids to be analyzed.
digits	Argument of the round function (it is a integer indicating the number of decimal places to be used).

percentilsArchetypoid 45

Value

Numerical vector with the percentile values of an archetypoid.

Author(s)

Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

See Also

archetypoids

```
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)</pre>
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,</pre>
                              numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
#screeplot(lass)
#Three archetypoids:
numArchoid <- 3
res_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data, huge = 200, step = FALSE,
                                ArchObj = lass, nearest = "cand_ns" , sequ = TRUE)
percentilsArchetypoid(1, res_ns$archet[1], USAFSurvey_preproc$data, 0)
```

plotPrototypes

plotPrototypes Prototypes representation
--

Description

This function represents the scatter plots of bust circumference against other selected variable (chest, hip, neck to ground or waist) jointly with the prototypes obtained for each bust class provided by either trimowa or hipamAnthropom. In addition, the prototypes defined by the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals can be also displayed.

Usage

Arguments

data	Data frame. It should contain the chest, neck to ground, waist, hip and bust measurements of the individuals. In order to be able to represent them, the name of the columns of the database must be 'chest', 'necktoground', 'waist', 'hip' and 'bust' respectively, see <pre>sampleSpanishSurvey</pre> . Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
prototypes	Prototypes (medoids) i.e., typical persons within the sample, obtained with $\verb trimowa $ or $\verb hipamAnthropom $.
nsizes	Number of subsets (classes), into the database is segmented. In our approach, the whole anthropometric Spanish survey is segmented into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.
bustVariable	Bust variable.
variable	Anthropometric variable to be plotted. It can be 'chest', 'necktoground', 'waist' and 'hip'.
col	A specification for the medoids color in each bust class.
xlim	Axis lenght of the x axis according to the range of the bust variable.
ylim	Axis lenght of the y axis according to the range of the selected variable among chest, hip, neck to ground and waist.
main	Main title of the plot.
EN	A logical value. If TRUE, the prototypes defined by the European standard for each variable are represented. See section <i>Details</i> for more details.

plotPrototypes 47

Details

Ir order to check the goodness of trimowa, the sizes defined by the prototypes can be compared with those defined by the European standard to sizing system. This standard establishes 12 sizes according to the combinations of the bust, waist and hip measurements and does not fix neither chest nor height standard measurements. We can approximate the chest measurements through a linear regression analysis, taking the bust measurements detailed in the standard as independent variable. Besides, we take as neck to ground measurements for the standard sizing system, the values 132, 136 and 140 cm because those are the most repeated values and they are those which best cover our data set. See Ibanez et al. (2012) for a complete explanation.

Value

A device with the desired plot.

Note

As mentioned, this function is especially defined for the sizes established by the European standard on sizing systems. Part 3: Measurements and intervals. In order to use this function with other standard, this function must be adapted.

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, trimowa, getDistMatrix, trimmedoid, hipamAnthropom

```
#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)</pre>
```

```
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,</pre>
                                    weightsTrimowa, numClust, alpha, niter, algSteps,
                                    ah, FALSE)
prototypes <- anthrCases(res_trimowa, numSizes)</pre>
bustVariable <- "bust"</pre>
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",</pre>
            "deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")
variable <- "chest"</pre>
range(dataTrimowa[,variable])
#[1] 76.7755 135.8580
ylim <- c(70,140)
title <- "Prototypes \n bust vs chest"
\verb|plotPrototypes| (data Trimowa, prototypes, num Sizes, bust Variable, \\
               variable, color, xlim, ylim, title, FALSE)
plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,
               variable, color, xlim, ylim, title, TRUE)
#For other plots and an example for the hipam algorithm,
#see www.uv.es/vivigui/softw/more_examples.R
```

plotTreeHipamAnthropom

HIPAM dendogram

Description

This function represents a dendrogram for the clustering results provided by a HIPAM algorithm. It is a small modification of the original plot.tree function of the **smida** R package, available from https://www.math.rug.nl/~ernst/book/smida.html.

Usage

```
plotTreeHipamAnthropom(x,main,...)
```

Arguments

```
x The HIPAM object to be plotted.main Title of the plot.... Other arguments that may be supplied.
```

Value

A device with the desired plot.

Note

This function only represents the 'tree' option of the original plot. tree function of **smida**, because we believe that this option displays better the clustering results provided by HIPAM than the option '2d'.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have slightly modified.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Wit, E., and McClure, J., (2004). *Statistics for Microarrays: Design, Analysis and Inference*. John Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

See Also

hipamAnthropom

50 plotTrimmOutl

plotTrimmOutl	Trimmed or outlier observations representation	

Description

This function represents the scatter plots of bust circumference against other selected variable (chest,hip,neck to ground or waist) jointly with the trimmed individuals discarded in each bust class provided by trimowa or with the outlier individuals provided by hipamAnthropom.

Usage

plotTrimmOutl(data,trimmOutl,nsizes,bustVariable,variable,col,xlim,ylim,main)

Arguments

data	Data frame. It should contain the chest, neck to ground, waist, hip and bust measurements of the individuals. In order to be able to represent them, the name of the columns of the database must be 'chest', 'necktoground', 'waist', 'hip' and 'bust' respectively, see sampleSpanishSurvey. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
trimmOutl	Trimmed women (if trimowa) or outlier women (if hipamAnthropom).
nsizes	Number of subsets (classes), into the database is segmented. In our approach, the whole anthropometric Spanish survey is segmented into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.
bustVariable	Bust variable.
variable	Anthropometric variable to be plotted. It can be 'chest', 'necktoground', 'waist' and 'hip'.
col	A specification for the trimmed or outlier women color in each bust class.
	11 Speciment of the animals of causal women color in cast class.
xlim	Axis lenght of the x axis according to the range of the bust variable.
xlim ylim	-
	Axis lenght of the x axis according to the range of the bust variable. Axis lenght of the y axis according to the range of the selected variable among

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

plotTrimmOutl 51

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

See Also

sampleSpanishSurvey, hipamAnthropom, trimowa

```
#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey</pre>
numVar <- dim(dataTrimowa)[2]</pre>
bust <- dataTrimowa$bust</pre>
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))</pre>
weightsTrimowa <- weightsMixtureUB(orness, numVar)</pre>
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah \leftarrow c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,</pre>
                                    weightsTrimowa, numClust, alpha, niter, algSteps,
                                    ah, FALSE)
prototypes <- anthrCases(res_trimowa, numSizes)</pre>
trimmed <- trimmOutl(res_trimowa, numSizes)</pre>
bustVariable <- "bust"</pre>
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",</pre>
            "deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")
variable <- "chest"
range(dataTrimowa[,variable])
#[1] 76.7755 135.8580
ylim <- c(70,140)
main <- "Trimmed women \n bust vs chest"</pre>
plotTrimmOutl(dataTrimowa, trimmed, numSizes, bustVariable, variable, color,
               xlim, ylim, main)
#For other plots and an example for the hipam algorithm,
```

52 preprocessing

#see www.uv.es/vivigui/softw/more_examples.R

Description

This function allows us to fix the accommodated data before computing archetypes and archetypoids. First, depending on the problem, it is possible to standardize the data or not. Second, it is possible to use the Mahalanobis distance or a depth procedure to select the accommodated subsample of data.

Usage

preprocessing(data,stand,percAccomm,mahal=TRUE)

Arguments

8		
data	Raw data. It must be a data frame. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.	
stand	A logical value. If TRUE (FALSE) the data are (not) standardized. This option will depend on the problem.	
percAccomm	Percentage of the population to accommodate (value between 0 and 1). When this percentage is equal to 1 all the individuals will be accommodated.	
mahal	If percAccom is different from 1, then mahal=TRUE (mahal=FALSE) indicates that the Mahalanobis distance (a depth procedure) will be used to select the accommodated subsample of data.	

Details

In somes cases, the depth procedure has the disadvantage that the desired percentage of accommodation is not under control of the analyst and it could not coincide exactly with percAccomm.

Value

A list with the following elements if percAccomm is different from 1:

data: Database after preprocessing, with the 1-percAccomm percentage of individuals removed.

indivYes: Individuals who belong to data.

indivNo: Individuals discarded in the accommodation procedure.

A list with the following elements if percAccomm is equals to 1:

data: Initial database with the same number of observations, which has been standarized depending on the value of stand.

projShapes 53

Author(s)

Irene Epifanio and Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

Genest, M., Masse, J.-C., and Plante, J.-F., (2012). **depth**: Depth functions tools for multivariate analysis. R package version 2.0-0.

Examples

```
#As a toy example, only the first 25 individuals are used.
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)
#Data preprocessing:
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, FALSE)</pre>
```

projShapes

Helper function for plotting the shapes

Description

Helper function for plotting the projections of the shapes. It displays the projection on the xy plane of the recorded points and mean shape for a given cluster. To that end, first it is needed to carry out a generalized Procrustes analysis in the cluster to obtain the full Procrustes rotated data.

Usage

```
projShapes(clust,array3D,asig,prototypes)
```

Arguments

clust Cluster for which represent its mean shape together with the recorded points.

Array with the 3D landmarks of the sample points. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).

asig Clustering optimal results.

prototypes Vector of optimal prototypes.

Value

Numerical vector with the percentile values of an archetypoid.

54 qtranShapes

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

See Also

```
LloydShapes, HartiganShapes, trimmedLloydShapes
```

Examples

```
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 15 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 2; algSteps <- 1; niter <- 1; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
clust_kmeansProc <- resLL$asig</pre>
prototypes <- anthrCases(resLL)</pre>
projShapes(1, array3D, clust_kmeansProc, prototypes)
#legend("topleft", c("Registrated data", "Mean shape"), pch = 1, col = 1:2, text.col = 1:2)
#title("Procrustes registrated data for cluster 1 \n with its mean shape superimposed",
       sub = "Plane xy")
```

qtranShapes

Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D shapes

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal transfer stage (optra) and the quick transfer stage (qtran).

This function is the qtran subroutine adapted to the shape analysis context. It is used within HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm and Amaral et al. (2010) for details about its adaptation to shape analysis.

qtranShapes 55

Usage

```
qtranShapes(array3D,n,c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx)
```

Arguments

array3D	Array with the 3D landmarks of the sample objects.
n	Number of sample objects.
С	Array of centroids.
ic1	The cluster to each object belongs.
ic2	This vector is used to remember the cluster which each object is most likely to be transferred to at each step.
nc	Number of objects in each cluster.
an1	an1(1) = nc(1) / (nc(1) - 1), l=1,,numClust, where numClust is the number of clusters.
an2	an2(1) = nc(1) / (nc(1) + 1), l=1,,numClust.
ncp	In the optimal transfer stage, ncp(l) stores the step at which cluster l is last updated, \$l=1,,numClust\$.
	In the quick transfer stage, $ncp(l)$ stores the step at which cluster l is last updated plus n , $l=1,\ldots,numClust$.
d	Vector of distances from each object to every centroid.
itran	$itran(l) = 1$ if cluster l is updated in the quick-transfer stage (0 otherwise), $l=1,\ldots,k$.
indx	Number of steps since a transfer took place.

Value

A list with the following elements:: c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx,icoun, updated after the optimal transfer stage. Note that icoun counts the steps where a re-allocation took place.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section of *examples* in this help page.

Note

This function is based on the qtran.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, *Applied Statistics*, 100–108.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical Shape Analysis, *Communications in Statistics - Simulation and Computation* **39(5)**, 1016–1026.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes

sampleSpanishSurvey

Sample database of the Spanish anthropometric survey

Description

This a database for academic and training purposes. It is oriented to exemplify the use of trimowa, hipamAnthropom and TDDclust.

It is made up of 600 women selected randomly from the Spanish anthropometric survey and five anthropometric variables: chest circumference, neck to ground length, waist circumference, hip circumference and bust circumference. These variables have been chosen following the recommendations of experts. In addition, they are commonly used in the literature about sizing system design and they appear in the European standard to sizing system.

Usage

sampleSpanishSurvey

Format

A matrix with 600 rows and 5 columns. Each row corresponds to an observation, and each column corresponds to a variable.

Source

Anthropometric survey of the Spanish female population.

References

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthropometric survey of the Spanish female population aimed at the apparel industry. *Proceedings of the 2010 Intl. Conference on 3D Body scanning Technologies*, 307–315.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* 87, 102–115.

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10(1)**, 103–132.

Vinue, G., and Ibanez, M. V., (2014). *Data depth and Biclustering applied to anthropometric data. Exploring their utility in apparel design.* Technical report.

European Committee for Standardization. Size designation of clothes. Part 2: Primary and secondary dimensions. (2002).

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

See Also

trimowa, hipamAnthropom, TDDclust

screeArchetypal

Screeplot of archetypal individuals

Description

This function allows us to represent in the same plot the screeplot of the archetypes and the both *cand_ns*, *cand_alpha* and *cand_beta* archetypoids.

Usage

Arguments

numArch	Number of archetypal observations (archetypes and archetypoids).
rss_lass_def	Vector of the residual sum of squares (rss) associated with each archetype from 1 to numArch.
rss_step_ns	Vector of the residual sum of squares (rss) associated with each <i>cand_ns</i> archety-poid from 1 to numArch.

rss_step_alpha	Vector of the residual sum of squares (rss) associated with each <i>cand_alpha</i> archetypoid from 1 to numArch.
rss_step_beta	Vector of the residual sum of squares (rss) associated with each <i>cand_beta</i> archetypoid from 1 to numArch.
ylim	The y limits of the plot.
main	Title of the plot.
xlab	A title for the x axis.
ylab	A title for the y axis.
col	$Color\ vector\ for\ the\ screeplots\ of\ the\ archetypoids.\ Default\ is\ c("red","blue","green 3").$
axis2	A logical value. If TRUE, the y axis can be customized to have spaced tickmarks by means of the following argument seq.
seq	Vector sequence with the values of the tick-marks to be drawn in the y axis.
leg	If TRUE, a legend is shown.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* 87, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, *Technometrics* **36**, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R, *Journal of Statistical Software* **30**, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, *International Journal of Performance Analysis in Sport* **12**, 166–187.

See Also

archetypoids, stepArchetypoids

```
## Not run:
#COCKPIT DESIGN PROBLEM:
#The following R code allows us to obtain a similar plot regarding Figure 5
#of the paper Vinue et al. (2015).
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
```

```
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)</pre>
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2</pre>
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data,</pre>
                           numArch=1:numArch, numRep = numRep,
                           verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
rss_lass <- matrix(0, nrow = numArch, ncol = numRep)
for(i in 1:numArch){
  for(j in 1:numRep){
    rss_lass[i,j] <- lass[[i]][[j]]$rss
  }
(rss_lass_def <- apply(rss_lass, 1, min, na.rm = TRUE))</pre>
#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
  temp <- stepArchetypoids(numArchoid, nearest = "cand_ns",</pre>
                             USAFSurvey_preproc$data, lass)
  filename <- paste("res_ns", numArchoid, sep = "")</pre>
  assign(filename,temp)
  save(list = c(filename), file = paste(filename, ".RData", sep = ""))
}
#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
  temp <- stepArchetypoids(numArchoid, nearest = "cand_alpha",</pre>
                             USAFSurvey_preproc$data, lass)
  filename <- paste("res_alpha", numArchoid, sep = "")</pre>
  assign(filename,temp)
  save(list = c(filename), file = paste(filename, ".RData", sep = ""))
}
#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
  temp <- stepArchetypoids(numArchoid, nearest = "cand_beta",</pre>
                             USAFSurvey_preproc$data, lass)
  filename <- paste("res_beta", numArchoid, sep = "")</pre>
  assign(filename,temp)
  save(list = c(filename), file = paste(filename, ".RData", sep = ""))
```

```
}
#Numerical and graphical results:
#Cand_ns:
for(i in 1:numArch){
 load(paste("res_ns", i, ".RData", sep = ""))
rss_step <- c()
for (i in 1:numArch){
 rss_step[i] <- get(paste("res_ns", i, sep = ""))[[2]]
(rss_step_ns <- as.numeric(rss_step))</pre>
#Cand_alpha:
for(i in 1:numArch){
 load(paste("res_alpha", i, ".RData", sep = ""))
}
rss_step_which <- c()
for (i in 1:numArch){
 rss_step_which[i] <- get(paste("res_alpha", i, sep = ""))[[2]]</pre>
(rss_step_alpha <- as.numeric(rss_step_which))</pre>
#Cand_beta:
for(i in 1:numArch){
 load(paste("res_beta", i, ".RData", sep = ""))
rss_step_which <- c()
for (i in 1:numArch){
 rss_step_which[i] <- get(paste("res_beta", i, sep = ""))[[2]]</pre>
}
(rss_step_beta <- as.numeric(rss_step_which))</pre>
forYlim <- c(rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta)</pre>
range(forYlim)
#[1] 0.06387125 0.27395811
#main <- "Aircraft pilots archetypes and archetypoids"</pre>
xlab <- "Archetypes/Archetypoids"</pre>
ylab <- "RSS"
screeArchetypal(numArch, rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta,
                c(0,0.5), main = "", xlab, ylab, col = c("red","blue","green3"),
                TRUE, seq(0,0.5,0.1), FALSE)
#rm(res_ns1.RData)
#rm(res_ns2.RData)
#rm(res_alpha1.RData)
#rm(res_alpha2.RData)
#rm(res_beta1.RData)
#rm(res_beta2.RData)
## End(Not run)
```

shapes3dShapes 61

Description

This function is a slight modification of the original shapes3d function so that the resulting plot has customized title and axes. Specifically, the changing lines regarding the original function are those related to its argument *axes3* when it is fixed to TRUE.

Usage

Arguments

x	See shapes3d.
loop	See shapes3d.
type	See shapes3d.
color	See shapes3d.
joinline	See shapes3d.
axes3	See shapes3d.
rglopen	See shapes3d.
main	Allows us to give the plot a title if axes3=TRUE.

Value

A device with the desired plot.

References

Dryden, I. L., (2012). **shapes** package. R Foundation for Statistical Computing, Vienna, Austria. Contributed package.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

shapes3d

62 skeletonsArchetypal

Examples

```
## Not run:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001</pre>
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE)</pre>
prototypes <- anthrCases(resLL)</pre>
shapes3dShapes(prototypes[,,1], loop = 0, type = "p", color = 2, joinline = c(1:1),
            axes3 = TRUE, rglopen = TRUE, main = "Mean shape cluster 1")
## End(Not run)
```

skeletonsArchetypal

Skeleton plot of archetypal individuals

Description

This function represents the skeleton plots of the archetypal observations (archetypes and archetypoids) of USAFSurvey.

Usage

```
skeletonsArchetypal(measuArch,main)
```

Arguments

measuArch Vector with the measurements of each archetype.

main The title of the plot.

Value

A device with the desired plot.

Note

This function allows us to reproduce the archetypes of Figure 5 of Epifanio et al. (2013), see archetypesBoundary.

Author(s)

Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

See Also

archetypesBoundary, USAFSurvey

Examples

```
#List with the measurements of each archetype (Table 7 of Epifanio et al (2013)):
lista_arch <- list()
lista_arch[[1]] <- c(34.18, 25.85, 18.65, 39.66, 35.05, 26.73)
lista_arch[[2]] <- c(28.51, 21.23, 15.39, 33.57, 29.24, 21.26)
lista_arch[[3]] <- c(35.34, 24.94, 18.79, 36.7, 32.28, 23.41)
lista_arch[[4]] <- c(31.34, 22.27, 16.89, 38, 33.08, 25.8)
lista_arch[[5]] <- c(32.33, 25.09, 17.84, 34.46, 29.58, 22.82)
lista_arch[[6]] <- c(29.69, 24.18, 18.22, 38.07, 33.04, 24.56)
lista_arch[[7]] <- c(29.24, 22.97, 14.99, 36.88, 32.28, 24.22)

for(i in 1:length(lista_arch)){
   titlePlot <- paste("Archetype", i, sep = " ")
   skeletonsArchetypal(lista_arch[[i]],titlePlot)
}
#Note: For an example for archetypoids, see www.uv.es/vivigui/softw/more_examples.R</pre>
```

Description

This is a slight modification of the original stepArchetypes to apply the archetype algorithm to raw data. The stepArchetypes function standardizes the data by default and this option is not always desired.

Usage

```
stepArchetypesRawData(data,numArch,numRep=3,verbose=TRUE)
```

Arguments

data Data to obtain archetypes.

numArch Number of archetypes to compute, from 1 to numArch.

numRep For each numArch, run archetypes numRep times.

verbose If TRUE, the progress during execution is shown.

Value

A list with numArch elements. Each element is a list of class attribute stepArchetypes with numRep elements.

Author(s)

Guillermo Vinue based on the the original stepArchetypes.

References

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R, *Journal of Statistical Software* **30**, 1–23, doi:10.18637/jss.v030.i08.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* 87, 102–115.

See Also

stepArchetypes

```
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,</pre>
                              numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
```

stepArchetypoids 65

stepArchetypoids

Run the archetypoid algorithm several times

Description

Execute the archetypoid algorithm repeatedly. It is inspired by stepArchetypes.

Usage

stepArchetypoids(numArchoid,nearest="cand_ns",data,ArchObj)

Arguments

numArchoid

Number of archetypoids.

nearest

Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm. This initial vector contain the nearest individuals to the archetypes returned by the archetypes function of **archetypes** (In Vinue et al. (2015), archetypes are computed after running the archetype algorithm twenty times). This argument is a string vector with three different possibilities. The first and default option is "cand_ns" and allows us to calculate the nearest individuals by computing the Euclidean distance between the archetypes and the individuals and choosing the nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha" and allows us to calculate the nearest individuals by consecutively identifying the individual with the maximum value of alpha for each archetype, until the defined number of archetypes is reached. It is used in Eugster (2012). The third and final option is "cand_beta" and allows us to calculate the nearest individuals by identifying the individuals with the maximum beta value for each archetype, i.e. the major contributors in the generation of the archetypes.

data

Data matrix. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.

ArchObj

The list object returned by the stepArchetypesRawData function. This function is a slight modification of the original stepArchetypes to apply the archetype algorithm to raw data. The stepArchetypes function standardizes the data by default and this option is not always desired. This list is needed to compute the nearest individuals to archetypes.

Value

A list with the following elements:

cases: Anthropometric cases (final vector of numArchoid archetypoids).

rss: Residual sum of squares corresponding to the final vector of numArchoid archetypoids.

archet_ini: Vector of initial archetypoids (cand_ns, cand_alpha or cand_beta).

alphas: Alpha coefficients for the optimal vector of archetypoids.

66 stepArchetypoids

Note

It may be happen that archetypes does not find results for *k* archetypes. In this case, it is not possible to calculate the vector of nearest individuals and consequently, the vector of archetypoids. Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* **87**, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, *Technometrics* **36**, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R, *Journal of Statistical Software* **30**, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, *International Journal of Performance Analysis in Sport* **12**, 166–187.

See Also

archetypoids, archetypes, stepArchetypes

```
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]</pre>
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,</pre>
                              numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
```

TDDclust 67

```
#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
#for(numArchoid in 1:numArch){
# temp <- stepArchetypoids(numArchoid, nearest="cand_ns", USAFSurvey_preproc$data,lass)
# filename <- paste("res", numArchoid, sep="")
# assign(filename, temp)
# save(list=c(filename), file=paste(filename, ".RData", sep=""))
#}
temp <- stepArchetypoids(2,nearest="cand_ns", USAFSurvey_preproc$data,lass)</pre>
```

TDDclust

Trimmed clustering based on L1 data depth

Description

This is the trimmed version of the clustering algorithm based on the L1 depth proposed by Rebecka Jornsten (2004). She segments all the observations in clusters, and assigns to each point z in the data space, the L1 depth value regarding its cluster. A trimmed procedure is incorporated to remove the more extreme individuals of each cluster (those one with the lowest depth values), in line with trimowa.

Usage

TDDclust(data,numClust,lambda,Th,niter,T0,simAnn,alpha,data1,verbose=TRUE)

Arguments

data	Data frame. Each row corresponds to an observation, and each column corresponds to a variable. All variables must be numeric.
numClust	Number of clusters.
lambda	Tuning parameter that controls the influence the data depth has over the clustering, see Jornsten (2004).
Th	Threshold for observations to be relocated, usually set to 0.
niter	Number of random initializations (iterations).
T0	Simulated annealing parameter. It is the current temperature in the simulated annealing procedure.
simAnn	Simulated annealing parameter. It is the decay rate, default 0.9.
alpha	Proportion of trimmed sample.
data1	The same data frame as <i>data</i> , used to incorporate the trimmed observations into the rest of them for the next iteration.
verbose	A logical specifying whether to provide descriptive output about the running process. Default TRUE.

68 TDDclust

Value

A list with the following elements:

NN: Cluster assignment, NN[1,] is the final partition.

cases: Anthropometric cases (the multivariate median cluster representatives).

DD: Depth values of the observations (only if there are trimmed observations).

Cost: Final value of the optimal partition.

discarded: Discarded (trimmed) observations.

klBest: Iteration in which the optimal partition was found.

Author(s)

This function has been defined from the original functions developed by Rebecka Jornsten, which were available freely on http://www.stat.rutgers.edu/home/rebecka/DDcl/. However, the link to this page doesn't currently exist as a result of a website redesign.

References

Jornsten R., (2004). Clustering and classification based on the L1 data depth, *Journal of Multivariate Analysis* **90**, 67–89

Vinue, G., and Ibanez, M. V., (2014). *Data depth and Biclustering applied to anthropometric data. Exploring their utility in apparel design.* Technical report.

trimmedLloydShapes 69

trimmedLloydShapes Trimmed Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)).

This function is proposed to incorporate a modification to LloydShapes in order to make the k-means algorithm robust. Robustness is a property very desirable in a lot of applications. As it is well known, the results of the k-means algorithm can be influenced by outliers and extreme data, or bridging points between clusters. Garcia-Escudero et al. (1999) propose a way of making k-means more robust, which combines the k-means idea with an impartial trimming procedure: a proportion alpha (between 0 and 1) of observations are trimmed (the trimmed observations are self-determined by the data). See also trimmedoid.

Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section *arguments*.

Usage

Arguments

array3D	Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).
n	Number of individuals.
alpha	Proportion of trimmed sample.
numClust	Number of clusters.
algSteps	Number of steps per initialization. Default value is 10.
niter	Number of random initializations (iterations). Default value is 10.
stopCr	Relative stopping criteria. Default value is 0.0001.
verbose	A logical specifying whether to provide descriptive output about the running process.

Value

A list with the following elements:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

trimmWomen: List to save the trimmed individual of each iteration.

trimmsIter: Vector with the number of iterations where the optimum was reached. The last number different from NA refers to the last iteration where the final optimum was reached.

bestNstep: Nstep of the iteration where the optimum has reached.

initials: Random initial values used in each iteration. These values can be used by HartiganShapes.

discarded: Discarded (trimmed) observations.

Note

We note that adding a trimmed procedure to the Lloyd algorithm is very direct and easy, while for the Hartigan-Wong algorithm, more modifications of the algorithm are needed, which makes the implementation of its trimmed version difficult.

Author(s)

Amelia Simo

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10**(1), 103–132.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, *IEEE Transactions on Information Theory* **28**, 129–137.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

Garcia-Escudero, L. A., Gordaliza, A., and Matran, C., (2003). Trimming tools in exploratory data analysis, *Journal of Computational and Graphical Statistics* **12(2)**, 434–449.

Garcia-Escudero, L. A., and Gordaliza, A., (1999). Robustness properties of k-means and trimmed k-means, *Journal of the American Statistical Association* **94(447)**, 956–969.

See Also

```
LloydShapes, trimmedoid
```

```
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66</pre>
```

trimmedoid 71

```
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
numClust <- 2; alpha <- 0.01; algSteps <- 1; niter <- 1; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,</pre>
                           algSteps, niter, stopCr, FALSE)
#Optimal partition and prototypes:
clust <- res$asig
table(clust)
prototypes <- anthrCases(res)</pre>
#Trimmed individuals:
trimmed <- trimmOutl(res)</pre>
```

trimmedoid

Trimmed k-medoids algorithm

Description

This is the trimmed k-medoids algorithm. It is used within trimowa. It is analogous to k-medoids but a proportion alpha of observations is discarded by the own procedure (the trimmed observations are self-determined by the data). Furthermore, the trimmed k-medoids is analogous to trimmed k-means. An algorithm for computing trimmed k-means can be found in Garcia-Escudero et al. (2003). See Ibanez et al. (2012) for more details. Note that in the generic name of the k-medoids algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section *arguments*.

Usage

```
trimmedoid(D, numClust, alpha, niter, algSteps=7, verbose)
```

Arguments

D	Dissimilarity matrix.
numClust	Number of clusters.

alpha Proportion of trimmed sample.

niter Number of random initializations (iterations).

algSteps Number of steps of the algorithm per initialization. Default value is 7.

verbose A logical specifying whether to provide descriptive output about the running

process.

72 trimmedoid

Value

```
A list with the following elements:
```

vopt: The objective value.

copt: The trimmed medoids.

asig: The assignation of each observation (asig=0 indicates trimmed individuals).

ch: The goodness index.

Dmod: Modified data with the non-trimmed women.

qq: Vector with the non-trimmed points.

Author(s)

Irene Epifanio

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Garcia-Escudero, L. A., Gordaliza, A., and Matran, C., (2003). Trimming tools in exploratory data analysis, *Journal of Computational and Graphical Statistics* **12(2)**, 434–449.

Garcia-Escudero, L. A., and Gordaliza, A., (1999). Robustness properties of k-means and trimmed k-means, *Journal of the American Statistical Association* **94(447)**, 956–969.

See Also

sampleSpanishSurvey, weightsMixtureUB, getDistMatrix, trimowa, trimmedLloydShapes

```
#Data loading:
dataTrimowa <- sampleSpanishSurvey</pre>
bust <- dataTrimowa$bust</pre>
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78), ]</pre>
numVar <- dim(dataTrimowa)[2]</pre>
#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)</pre>
#Constants required to specify the distance function:
numClust <- 3
bh <- (apply(as.matrix(log(data)),2,range)[2,]</pre>
       - apply(as.matrix(log(data)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(23,28,20,25,25)
al <- 3 * ah
```

trimmOutl 73

```
#Data processing.
num.persons <- dim(data)[1]
num.variables <- dim(data)[2]
datam <- as.matrix(data)
datat <- aperm(datam, c(2,1))
dim(datat) <- c(1,num.persons * num.variables)

#Dissimilarity matrix:
D <- getDistMatrix(datat, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)
res_trimm <- trimmedoid(D, numClust, 0.01, 6, 7, FALSE)</pre>
```

trimmOutl

Helper generic function for obtaining the trimmed and outlier observations

Description

The methodologies included in this package which are developed to the clothing design problem take into account that a clothing sizing system is intended to cover only what we could call standard population, leaving out those individuals who are extreme respect to a set of measurements. For "trimowa", "TDDclust and "kmeansProcrustes" (which refers to as trimmedLloydShapes in this case) these individuals are called trimmed individuals. For the "hipamAnthropom" methodology these individuals are called outlier individuals.

This auxiliary generic function allows the user to identify the discarded individuals computed by each method in an easy way.

Usage

```
trimmOutl(resMethod, nsizes)
## S3 method for class 'trimowa'
trimmOutl(resMethod, nsizes)
## S3 method for class 'hipamAnthropom'
trimmOutl(resMethod, nsizes)
```

Arguments

resMethod This is the object which saves the results obtained by the aforementioned method-

ologies and which contains the discarded individuals to return.

nsizes Number of bust sizes. This argument is needed for the "trimowa" and "hipa-

mAnthropom" methodologies because they can compute the prototypes for any

given number of bust sizes.

Value

A vector of class trimmOutl with the discarded observations.

74 trimmOutl

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an application to apparel design, *Advances in Data Analysis and Classification* **10(1)**, 103–132.

Vinue, G., and Ibanez, M. V., (2014). *Data depth and Biclustering applied to anthropometric data. Exploring their utility in apparel design.* Technical report.

See Also

trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes

```
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)</pre>
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3</pre>
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]</pre>
(numIndiv <- dim(landmarksNoNa_First10)[1])</pre>
#[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)</pre>
numClust <- 2; alpha <- 0.01; algSteps <- 1; niter <- 1; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_kmeansProc <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,</pre>
                                       algSteps, niter, stopCr, FALSE)
trimmed <- trimmOutl(res_kmeansProc)</pre>
```

trimowa 75

trimowa

Trimmed PAM with OWA operators

Description

This is the methodology developed in Ibanez et al. (2012) to define an efficient apparel sizing system based on clustering techniques jointly with OWA operators. In our approach, we apply the trimmed k-medoids algorithm (trimmedoid) to the first twelve bust classes according to the sizes defined in the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

Usage

trimowa(data,w,numClust,alpha,niter,algSteps,ah=c(23,28,20,25,25),verbose)

Arguments

data	Data frame. In our approach, this is each of the subframes originated after segmenting the whole anthropometric Spanish survey into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
W	The aggregation weights of the OWA operators. They are computed with the weightsMixtureUB.
numClust	Number of clusters.
alpha	Proportion of trimmed sample.
niter	Number of random initializations (iterations).
algSteps	Number of steps of the algorithm per initialization. Default value is 7.
ah	Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
verbose	A logical specifying whether to provide descriptive output about the running process.

Value

A list with the following elements:

cases: Anthropometric cases (medoids of the clusters). They are the prototypes obtained for each bust class.

numTrim: Number of trimmed individuals in each bust class.

numClass: Number of individuals in each bust class.

noTrim: Number of of non-trimmed individuals.

C1,C2,C3,C4: Required constant values to define the distance getDistMatrix (*C1* is bh, *C2* is bl, *C3* is ah and *C4* is al).

76 trimowa

asig: Vector of the clusters to which each individual belongs. *discarded*: Discarded (trimmed) individuals.

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, getDistMatrix, trimmedoid

```
#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataTrimowa <- sampleSpanishSurvey</pre>
numVar <- dim(dataTrimowa)[2]</pre>
bust <- dataTrimowa$bust</pre>
bustSizes <- bustSizesStandard(seg(74, 102, 4), seg(107, 131, 6))
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)</pre>
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7</pre>
ah <- c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,</pre>
                                    weightsTrimowa, numClust, alpha, niter, algSteps,
                                    ah, FALSE)
prototypes <- anthrCases(res_trimowa, numSizes)</pre>
#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]</pre>
numVar <- dim(dataComp)[2]</pre>
orness <- 0.7
```

USAFSurvey 77

USAFSurvey

USAF 1967 survey

Description

This data set comes from the 1967 United States Air Force (USAF) survey. The 1967 USAF survey was conducted during the first three months of 1967 under the direction of the Anthropology Branch of the Aerospace Medical Research Laboratory, located in Ohio. Subjects were measured at 17 Air Force bases across the United States of America. A total of 202 variables (including body dimensions and background variables) were taken on 2420 Air Force personnel between 21 and 50 years of age.

Please find in www.uv.es/vivigui/softw/data_information.zip some files that provide a detailed information about this database. Please note that in this documentation 24 variable names are excluded (Vars 9-11, 28, 76-95).

In Epifanio et al. (2013), the column numbers selected were c(48,40,39,33,32) and correspond to 'Thumb tip reach', 'Buttock-Knee length', 'Popliteal height sitting', 'Sitting height', 'Eye height sitting' and 'Shoulder height sitting'.

Usage

USAFSurvey

Format

A matrix with 2420 rows and 202 columns. Each row corresponds to an observation, and each column corresponds to a variable.

Source

1967 United States Air Force (USAF) survey.

78 weightsMixtureUB

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define representative archetypal data, *Computational Statistics and Data Analysis* 87, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

weightsMixtureUB

Calculation of the weights for the OWA operators

Description

This function calculates the weights of the OWA operators. They can be used to adjust the compromise between the style of garments and the general comfort sensation of wearers. This function is used both in trimowa and hipamAnthropom.

Usage

weightsMixtureUB(orness,numVar)

Arguments

orness Quantity to measure the degree to which the aggregation is like a min or max

operation.

numVar Number of variables of the database.

Value

Vector with the weights.

Author(s)

Guillermo Ayala

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012). Apparel sizing using trimmed PAM and OWA operators, *Expert Systems with Applications* **39**, 10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for apparel sizing, *Decision Support Systems* **57**, 22–33.

Leon, T., Zuccarello, P., Ayala, G., de Ves, E., and Domingo, J., (2007), Applying logistic regression to relevance feedback in image retrieval systems, *Pattern Recognition* **40**, 2621–2632.

See Also

dbinom, getDistMatrix, trimowa, hipamAnthropom

xyplotPCArchetypes 79

Examples

```
numVar <- dim(sampleSpanishSurvey)[2]
orness <- 0.7
w <- weightsMixtureUB(orness,numVar)</pre>
```

xyplotPCArchetypes

PC scores for archetypes

Description

This function is a small modification of the generic xyplot function of the **archetypes** R package. It shows the scores for the principal components of all individuals jointly with the scores for the computed archetypes. This function is used to obtain the Figure 4 of the subsection 3.3 of Epifanio et al. (2013).

Value

A device with the desired plot.

Note

There are no usage and arguments sections in this help file because they are the same than those of the page 25 of the reference manual of **archetypes**.

Author(s)

Irene Epifanio

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating boundary cases in multivariate accommodation problem, *Computers & Industrial Engineering* **64**, 757–765.

See Also

archetypesBoundary, USAFSurvey

```
#First,the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)</pre>
```

xyplotPCArchetypes

```
#Procedure and results shown in section 2.2.2 and section 3.1:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)</pre>
#To understand the warning messages, see the vignette of the
#archetypes package.
a3 <- archetypes::bestModel(res[[3]])</pre>
a7 <- archetypes::bestModel(res[[7]])</pre>
pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)</pre>
#PCA scores for 3 archetypes:
p3 <- predict(pznueva, archetypes::parameters(a3))</pre>
#PCA scores for 7 archetypes:
p7 <- predict(pznueva,archetypes::parameters(a7))</pre>
#Representing the scores:
#Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7),
                   atypes.col = 1, atypes.pch = 15)
#Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7),
                   atypes.col = 1, atypes.pch = 15)
```

Index

* ANTHROP	* math
Anthropometry-package, 3	anthrCases, 5
* array	array3Dlandm, 12
archetypesBoundary, 6	bustSizesStandard, 13
archetypoids, 9	computSizesHipamAnthropom, 20
checkBranchLocalIMO, 16	computSizesTrimowa, 21
checkBranchLocalMO, 18	percentilsArchetypoid,44
figures8landm, 25	projShapes, 53
getBestPamsamIMO, 26	screeArchetypal, 57
getBestPamsamMO, 27	trimmedoid, 71
getDistMatrix, 29	trimmOut1,73
HartiganShapes, 31	weightsMixtureUB, 78
hipamAnthropom, 34	* multivariate
LloydShapes, 38	shapes3dShapes, 61
nearestToArchetypes, 40	
optraShapes, 41	anthrCases, 5
plotTreeHipamAnthropom, 48	Anthropometry-package, 3
preprocessing, 52	archetypes, 6, 7, 9–11, 64–66
qtranShapes, 54	archetypesBoundary, 6, 7, 41, 63, 79
skeletonsArchetypal, 62	archetypoids, 6, 9, 40, 41, 45, 58, 66
stepArchetypesRawData, 63	array3Dlandm, 12
stepArchetypoids, 65	bustSizesStandard, 13, 20-22
TDDclust, 67	20000220000011001 0, 10, 20 22
trimmedLloydShapes, 69	cdfDissWomenPrototypes, 14
trimowa, 75	checkBranchLocalIMO, 16, 35, 36
xyplotPCArchetypes, 79	checkBranchLocalMO, 18, 35, 36
* datasets	${\tt computSizesHipamAnthropom, 20}$
cube34landm, 22	computSizesTrimowa, 21
cube8landm, 23	cube341andm, 22, <i>33</i> , <i>39</i>
descrDissTrunks, 24	cube8landm, 23, <i>33</i> , <i>39</i>
landmarksSampleSpaSurv, 37	
parallelep34landm, 43	dbinom, 78
parallelep8landm, 44	descrDissTrunks, 24
sampleSpanishSurvey, 56	figures8landm, 25
USAFSurvey, 77	riguresotarium, 23
* dplot	getBestPamsamIMO, 26, 35, 36
cdfDissWomenPrototypes, 14	getBestPamsamMO, 27, 35, 36
plotPrototypes, 46	getDistMatrix, 14, 15, 17, 19, 26, 28, 29, 30
plotTrimmOutl, 50	34, 35, 47, 72, 75, 76, 78
•	

82 INDEX

```
HartiganShapes, 6, 12, 31, 39, 42, 43, 54-56,
         70, 74
hipamAnthropom, 6, 14, 17-21, 26-30, 34, 46,
         47, 49–51, 56, 57, 74, 78
landmarksSampleSpaSurv, 33, 37, 39
LloydShapes, 6, 12, 32, 33, 38, 54, 69, 70, 74
nearestToArchetypes, 7, 40
optraShapes, 33, 39, 41
parallelep34landm, 33, 39, 43
parallelep8landm, 33, 39, 44
percentilsArchetypoid, 44
plotPrototypes, 46
plotTreeHipamAnthropom, 36, 48
plotTrimmOutl, 50
preprocessing, 7, 52
projShapes, 53
qtranShapes, 33, 39, 54
round, 44
sampleSpanishSurvey, 15, 37, 46, 47, 50, 51,
         56, 72, 76
screeArchetypal, 57
shapes3d, 61
shapes3dShapes, 61
skeletonsArchetypal, 62
stepArchetypes, 6, 7, 10, 63–66
stepArchetypesRawData, 7, 10, 11, 63, 65
stepArchetypoids, 6, 9–11, 40, 41, 58, 65
TDDclust, 6, 56, 57, 67, 74
trimmedLloydShapes, 6, 12, 33, 39, 54, 69,
         72-74
trimmedoid, 47, 69, 70, 71, 75, 76
trimmOutl, 73
trimowa, 6, 14, 15, 21, 22, 29, 30, 46, 47, 50,
         51, 56, 57, 67, 71, 72, 74, 75, 78
USAFSurvey, 6, 7, 62, 63, 77, 79
weightsMixtureUB, 15, 17, 19, 26, 28, 29, 34,
         47, 72, 75, 76, 78
xyplotPCArchetypes, 79
```