CRAN Package Check Results for Package bayesreg

Last updated on 2025-12-01 21:49:49 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3 4.59 40.94 45.53 OK
r-devel-linux-x86_64-debian-gcc 1.3 3.30 29.41 32.71 ERROR
r-devel-linux-x86_64-fedora-clang 1.3 13.00 58.00 71.00 OK
r-devel-linux-x86_64-fedora-gcc 1.3 10.00 55.72 65.72 OK
r-devel-windows-x86_64 1.3 7.00 61.00 68.00 OK
r-patched-linux-x86_64 1.3 4.27 38.25 42.52 OK
r-release-linux-x86_64 1.3 4.59 38.21 42.80 OK
r-release-macos-arm64 1.3 OK
r-release-macos-x86_64 1.3 7.00 45.00 52.00 OK
r-release-windows-x86_64 1.3 6.00 72.00 78.00 OK
r-oldrel-macos-arm64 1.3 OK
r-oldrel-macos-x86_64 1.3 4.00 57.00 61.00 OK
r-oldrel-windows-x86_64 1.3 8.00 78.00 86.00 OK

Check Details

Version: 1.3
Check: examples
Result: ERROR Running examples in ‘bayesreg-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: predict.bayesreg > ### Title: Prediction method for Bayesian penalised regression ('bayesreg') > ### models > ### Aliases: predict.bayesreg > > ### ** Examples > > > > # The examples below that are run by CRAN use n.cores=2 to limit the number > # of cores to two for CRAN check compliance. > > # In practice you can simply omit this option to let bayesreg use as many > # as are available (which is usually total number of cores - 1) > > # If you do not want to use multiple cores you can set parallel=F > > # ----------------------------------------------------------------- > # Example 1: Fitting linear models to data and generating credible intervals > X = 1:10; > y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677); > df = data.frame(X,y) > > # Gaussian ridge > rv.L <- bayesreg(y~., df, model = "laplace", prior = "ridge", n.samples = 1e3, n.cores = 2) > > # Plot the different estimates with credible intervals > plot(df$X, df$y, xlab="x", ylab="y") > > yhat <- predict(rv.L, df, bayes.avg=TRUE) > lines(df$X, yhat[,1], col="blue", lwd=2.5) > lines(df$X, yhat[,3], col="blue", lwd=1, lty="dashed") > lines(df$X, yhat[,4], col="blue", lwd=1, lty="dashed") > yhat <- predict(rv.L, df, bayes.avg=TRUE, sum.stat = "median") > lines(df$X, yhat[,1], col="red", lwd=2.5) > > legend(1,11,c("Posterior Mean (Bayes Average)","Posterior Median (Bayes Average)"), + lty=c(1,1),col=c("blue","red"),lwd=c(2.5,2.5), cex=0.7) > > > # ----------------------------------------------------------------- > # Example 2: Predictive density for continuous data > X = 1:10; > y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677); > df = data.frame(X,y) > > # Gaussian ridge > rv.G <- bayesreg(y~., df, model = "gaussian", prior = "ridge", n.samples = 1e3, n.cores = 2) Error in serverSocket(port = port) : creation of server socket failed: port 11391 cannot be opened Calls: bayesreg -> <Anonymous> -> makePSOCKcluster -> serverSocket Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed bayesreg 0.307 0.034 5.173 Flavor: r-devel-linux-x86_64-debian-gcc